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Valuations and Group Algebras.

ULRICH ALBRECHT (*) - GUNTER TORNER

1. - Introduction.

In [5], Dubrovin constructed a chain domain which has a prime ideal
which is not completely prime. This ring was obtained by considering a
right ordered group I” such that the group algebra K[I'] can be embed-
ded in a skew field D. Thus a partial answer was given to the Malcev-
Problem [7]: Let F' be a field and G be a left orderable group. Can the
group ring F[G] be enclosed in a skew field? This question has a
stronger version which can be found for instance in Passmann’s
book [10]: Determine the right ordered groups I' with positive cone IT
for which the skew-group-algebra R[I', o] is an order in a division alge-
bra D whenever R is an Ore domain. In the following, the pair (I, IT)
denotes a right ordered group I with its positive cone 77, while o: I'—
— Aut (R) is a group homomorphism. A perhaps more natural reformula-
tion of Passmann’s problem is to ask for which I the group algebra
R[T", o] is a right Ore domain whenever R is one. This question has been
discussed in detail in [1], and most constructions of chain orders in skew
fields are based on the results of this paper, as one can see for instance
in [2].

The primary goal of this paper is to investigate the structure of the
group algebras and chain rings obtained via the localization techniques
which were discussed in [1]. Our discussion focuses on a pair I'; and I, of
right ordered groups with positive cones 7, and II, respectively. We
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consider a subsemigroup 4 of I'; containing I7, and a cone preserving
semigroup-morphism ¢: 4—TI',, and define the right and left ¢-values
of non-zero elements of R[4, o). Theorem 2.2 shows that these ¢-values
give rise to a pair of generalized, conjugated valuations in the sense
of [1]. The same result also shows that R[4, o] has a zero Jacobson-radi-
cal and that its group of units U(R[I";, o]) is U(R) U(4). In particular,
Theorem 2.2 permits to solve the isomorphism problem for right order-
able groups: Two right orderable groups I'; and I', are isomorphic if and
only if R[I',] = RI[I,] for all rings R (Corollary 2.3). This extends the
well-known result that torsion-free abelian groups are isomorphic if and
only if the corresponding group algebras are isomorphic. Since the ring
structure of R[I';, o] is independent of the chosen right order on I';, no
statement can be made about I'; as a right ordered group. The remain-
ing part of Section 2 investigates the valuation ring S?¢ associated with
the ¢-values.

Section 3 considers the chain rings S;’ arising as localizations of S?
inside the classical right ring of quotients of R[I';, o] in the case that
R[I';, o] is a right Ore ring. Theorem 3.1 determines the Jacobson radi-
cal J(S?) of this ring and shows that S?/J(S?) is the classical right ring
of quotients of R[H, o|H] where H = ker ¢. Furthermore, the pair of
generalized, conjugated valuations on R[I";, o] induces a left valuation
| |, on S¢ such that |a|,<|b| if and only if bSycaSy for all a,
beSS.

In the following, all rings have a multiplicative identity. The symbols
J(R) and U(R) denote the Jacobson-radical and the group of units of R
respectively. All groups are written multiplicatively.

2. — Group rings and cones.

Let I' be a group. A subsemigroup IIcI'; is called a cone if
IINIM'={e}and U ' =T hold. Note that in the case where IT is
invariant, I' is an ordered group. In general, setting a <, iff fa "1 Il
resp. a <;B iff a !B e IT allows to view the group I' as a right-ordered
resp. left-ordered group.

We consider the pair (I'y, IT,) where I'; is a group and I, a cone.
Further let R be a domain, i.e. a ring without zero divisors. For a group
homomorphism o: I'y — Aut (R), we define a ring multiplication on the
free left R-module with basis I'y by ar =7%®q for all aeI', and reR.
The resulting ring is denoted by R[I";, o]. Write a non-zero « in R[I";, o]
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asx=2,.r,7,, and let supp (x) = {a|r, # 0} denote the support of x.

If T={xeRI[I', o] |e,esupp(x)CcIl,}, then every x € R[I';, o] has
unique factorizations « = ua = fv with a, e I'y and u, ve T. We refer to
this decomposition as the T — I'\-factorization of x and say that |x|, =
resp. |x|,= a are the left resp. right I";-values of x. In a previous paper
we had introduced the concept of generalized valuations, however this
terminology can be omitted in this context. Naturally, the question aris-
es at this point if the conditions on I7, can be weakened by assuming that
the subsemigroup I7, is a right cone only, i.e.

(a) I1, generates I';.
(b) If a, beIl, with a 'b¢Il,, then b laell,.

This question is answered in a negative way by

ProrosITION 2.1. A right cone Il of I'; is a cone if and only if
xeR[I'y, 0] has a unique T — I'{-decomposition.

ProoF. The uniqueness property guarantees immediately that 7,
cannot contain any units but ¢,. If aerl';, then we can find del';
and 7y, moell, with £, + a=0(xw; + m,). Without loss of generality,
€,=0m,; and a =0m,. Since I1, is a right cone, we may assume that
ailny,elly, say mwy=m,n for some well,. Then,a =0n,=0m,m=me
eIl,. In the same way, n;'m, el yields a 'ell,. =

Let (I'y, I1,) be a further right-ordered group. We consider a sub-
semigroup A4 of I', containing I7,. A semigroup map ¢: 4 — I, is called a
cone preserving homomorphism, provided ¢ maps I7, into IT,. It is nat-
ural to define the ¢-values of an element x € R[4, ] to be the values un-
der ¢ of |x|, resp. |x|;. To be more precise, we set |x|? = ¢|x|, resp.
|x|f = ¢|x|;. We call (I'y, I's, A) a cone-valuated triple with associated
map ¢ if A contains a 7! for every a e ker ¢. In the case that 4 = I'y, we
omit any reference of A4 and speak of a cone-valuated pair instead.

THEOREM 2.2. Let (I'y, Iy, A) be a cone-valuated triple with asso-
ciated map ¢. The following hold for any domain R and any group-ho-
momorphism o: I'y— Aut (R):

(a) For all non-zero x, y, z € R[4, o], the following conditions are
satisfied:

() |x|?ell, if and only if |x|? e ,.
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() |x|?=¢e2 if and only if |x|] =¢€,.

i) If @+y=0, then |v+y|!=min{|z|}, |y|{} and
@ +y|? Zmin{|z|?, |y|?}.

(iv) If |x|? /,.|y|$, then |xz|?=,|yz|¢, while |x|?=|y|?
yields |zx|? = |2y|!.

(b) UR[4, o)) = UR)U(A) = {ua|ue UR) and aec U(4)}.
(¢ J(R[4,0]D) =0 || >1.

PrOOF. (a) Since |z|?=min{¢(a)|aesupp(x)}ell;, we have
¢(a) e I, for all a e supp (x). But then, |z|¢ = mlln {¢(a) |a esupp(x)}
has to be in IT, too. Thus, (i) holds by symmetry. Furthermore, if |x|? =
= g4, then ¢(a) € IT, for all a e supp (x) by what has been shown so far. If
ay= mm supp (¢), then ¢(a,) =€, and e, <, |x|l <, ¢p(ag) = €5 from
which (11) follows by symmetry.

To show (iii), let o= min supp (x + ). Then ag,esupp(x) or aye
e supp (). In the first case, |9c +y|?=¢(ay) =, |x|? /Tmln{ |z|2, |y|2}
as desired. The second case is treated similarly. By symmetry, (iii) is
satisfied. For (iv), we suppose |x|? <,|y|?. Choose u;, uz, uge T and
oy, as, aged such that x =u;a;, y =usa, and z =uza;. For j=1, 2
write a;us =v;B; with v;e T and B;e 4. We obtain xz =u,v,8,a; and
Yz =uz v B a3. But this gives |az|? = @(B,a3) and |yz|? = ¢(Bza3).
Since o(ay) <,¢(ay), we have ¢@(B;)= m1n¢(supp(a1u3))

»min ¢(supp(asus)) = ¢p(B5), from which the " first part of (c)
follows In view of the symmetry of the problem, a) has been
shown.

To prove (b) consider an element x € R[4, o] which has an inverse
yeR[A4, o]. We write x = vf withve T and fe 4. If |supp(x) | > 1, then
supp (v) contains an element of I7, \{e;}. We write y = ua with ueT
and a € 4 and select we T and y e A with fu = wy. Since ¢, = vwya, we
have ya = ¢, and vw = ¢, by the uniqueness of T — I';-factorizations. In
supp (v), choose an element a which is maximal in the leff order induced
by IT,, while in supp (w) choose § maximal in the right order. Since
|supp (v) | =2, we have a >,¢&;, from which we obtain af >,>f=,¢
Because R is a domain, a8 has a non-zero coefficient in the product vw,
but is not an element of supp (vw) since vw = ¢,. Hence, there are o' e
esupp(v) and B'esupp(w) with af=a’'f’ and a#a’ or B=8'. A
straightforward calculation shows that a # a’' and 8= 8’. Since 8 >,.8’
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by the choice of 8, we can find we IT, with f=nB'. Then a'B'=aff =
= anf’ yields o’ = ax from which a’ =, a follows. However, we have o' <
<,a by the choice of a. The resulting contradiction shows that x cannot
have more than one element in its support, i.e. ve R. Then, |supp (y) | =
= |supp(xy) | =1, and weR. In particular, &, = xy = vu"? fa = yax =
= uv“® af yields that a is a unit of 4. Moreover, v is a unit of R whose in-
verse is u°® . The converse is obvious. For the proof of (c), let x be a non-
zero element of J(R[A4, o]) and write x = ua where ueT and aed. If
a<,e;, then a ' =,¢e,. We choose any Bell, \{¢,}, and observe that
xa 2B is a non-zero element of J(R[4, o]) with xa 28 =wua "' and
a !B >,e,. Hence, no generality is lost, if we assume that a >, ;. Since
€, ¢ supp (x) in this case, we have supp (e; — ) = supp (x) U {¢,}. Since
supp (x) is not empty, £; — 2 cannot have a right inverse in R[4, g] by
what has been shown previously. On the other hand, J(R[4, o]) is a
quasi-regular ideal, which results in a contradiction. =

Theorem 2.2 shows in particular that the maps | |, and | |, defined in
part (a) form a pair of generalized, conjugated valuations in the sense
of [1].

COROLLARY 2.2. Let I'1 and I's be right orderable groups. Then,
I'y=rIy as groups if and only if R[['\]1=RI[I,] for all rings R
Q[T ]1=QIT:D.

Proor. By Theorem 2.2 (b), we known that U(Q[I";]) = U(Q)T;. Ob-
serve that N; = U(Q)¢; is a normal subgroup of U(Q[I;]) since it is con-
tained in the center of Q[I';]. Every ring isomorphism o: Q[I';]— Q[I',]
induces a group isomorphism z: U(Q)I"'; — U(Q)I ;. Since T was induced
by the ring-map o, we have 7(re;) = re, for all r e U(Q). Thus, 7| N; maps
N, onto N,. Since U(Q[I';]) is the direct product of N; and I'";, we obtain
that I’y and I', are isomorphic as groups. =

We are particularly interested in the ring
S?={xeR[4,0]||x|?=es} ={xeR[A4, o] |supp(x)cIl,Uker¢}.
Observe that 0 eS? since [0|;=|0|,= % >¢, by convention.

ProPOSITION 2.4. Consider a cone-valuated triple (I'y, 'y, A) with
associated map ¢ whose kernel is demoted by H, a domain R,
and a group homomorphism o: I —Aut(R). Then I%={xe
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eS?| |x|? > e} isatwo-sided ideal of S? such that S* /I =R[H, t]where
1=0|H.

PRrOOF. If « is a non-zero element of I?, then || >e,. Observe
that, for every non-zero y € S?, the inequality |y|f Z60= €, |f yields
|xy|? =, |x|? > e, from which |xy|?>,e, follows. On the other hand,
|y|¢ =,e2= e, |? implies |yx|? =, |e %|f =|x|f >,&2. Thus, vy, yxe
eI?. Moreover,ifa # bareinI?, then |a — b|? Brmrin{ |a|?, |b|2} >, &2,
and a —bel?, and I? is a two-sided ideal of S?. Let ¢ = X, c suppw) T2 @ b€
a non-zero element of S?, and write &' =3, c qupp@)n 72 @. We define a
map A: S?/I*—>R[H,t] by A(x) =x'. Ifx —yel? then0=(x —y)' =
=gx'—1y’', and A is well-defined. Moreover, if x, ye S?, thenx —x', y —
—y'el®, anday —x'y'=(@—2a")y+x'(y—y')el?since I? is a two-
sided ideal. Then, A(xy) =A(x'y') =«'y' = A(x)A(y). It is now routine
to show that 1 is an isomorphism. =

COROLLARY 2.5. Consider a cone-valuated triple (I'y, '3, A)
with associated map ¢, a domain R, and a group homomorphism
o: '1— Aut(R).

(@) I? is maximal as a right ideal of S? if and only if ¢ is one-to-
one and R is a division algebra.

(b) S? has the property that |x|? = &, yields that « is a unit of S?
if and only if |I'1|=1 and R is a division algebra.

PROOF. (@) Suppose that I? is a maximal right ideal of S?. Using the
notation of Proposition 2.4, R[H, 7] is a division algebra. But this is only
possible if H = {¢,;} by part (b) of Theorem 2.2. Consequently, R =
=S8%/I? is a division algebra. The converse is obvious.

(b) Suppose that S? is regular. If I'; contains two elements, we
can find a e I'y such that @ >,¢,. Then, £, + a is an element of S? with
|e1+ a|f =¢,. But then, &; + a is a unit of S? which is impossible by
Theorem 2.2. The rest of the proof is obvious. =

3. — Localizations.
In this section, R always is a right Ore-ring and we assume that

(I'y, IT;) has the property that R[I";, o] is a right Ore ring. Turning to
the valuation rings which we considered in Proposition 2.4 and Corollary
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2.5, we consider the set X = {xeS? | |x|? =¢,}. It easy to see that the
elements of X are precisely the elements x € R[I";, o] of the form x = ua
for some u e T and a € ker ¢. Since the elements of ker ¢ are units in S?,
it follows that X is an Ore sets, and that S = Sy is a chain-order in D in
the sense of Dubrovin (for details see [1, Theorem 4.2]). In particular, D
is the classical ring of quotients of S,.

THEOREM 3.1. Consider a right Ore-domain R, a cone-valuated
triple (I'y, I's, A) with associated map ¢ whose kernel is denoted by H,
and a group-homomorphism o: I'|— Aut (R). If R[I";, o] is a right Ore-
domain, then

(@) 8§ is a chain-domain with maximal ideal 1.

(b) R[H, 1] is a right Ore-domain whose classical ring of quo-
tients is SP/I7.

(©) | |; induces a generalized left valuation | |, on Sg.
(@) For all a, beSy we have |a|,<|b|, if and only if aSL2bSy.

Proor. (a) To see that S;’ is a right and left chain domain, we con-
sider non-zero elements a; and a, of S}” , and write a; = a;u;t; ! with a; e
el and u;, t;e T for i =1, 2. Then, a,-Sf = aiS}”. Ifas=;a;,then a, =
= a7 for some 7z € IT, c S?. Therefore, a,Sf ¢ a, S£. Because of the sym-
metry of the problem, S}’ is a right chain domain.

Observe that I is a right ideal of S;/ whose elements are of the form
at ! with aeI? and te T. We show that I }’ consists of the non-units of
S?. To see this, suppose that 1 e ;’ . It implies 1 = at ~! for some a eI?
and teT. We obtain a =t and ¢, <, |a|,=|t|,= €z, a contradiction.
Thus, I consists only of non-units. On the other hand, if at ~! e S# is not
a unit, then |a|, > ¢, since otherwise a € X, and at ~! is a unit of S¢. But
|a|,> €, implies a eI?. Therefore, I}" indeed is the collection of non-
units of S¢. This shows that I is the Jacobson-radical of the chain-ring
S?. In particular, D' =S} /I is a division algebra.

(b) In the first step, we compute S? N I7. Choose ael? and te T
such that at ~'eS?, say at "'=b. If be¢I?, then |b|,=¢,, and beX.
Consequently, I contains an element of X, and I} =S¢ which is
not possible. Therefore, S? OI;” =1?. In the division algebra D', we
consider the ring L = (S + I.2)/I? and show that it is essential in D' as
a L-submodule: If at ! eS}’ with aeS? and te T, but at ! ¢I;’, then
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la|,=,e5, and a+If=(at ' +I2)t+1}) is a nonzero element of
(at1+1 }) ) L N L. Therefore, D' is the maximal right ring of quotients
of L by[6, Propositions A. 2.11 and Corollary C. 2.31]. Moreover,
L=8%/8S*NI?=S8?/I*=R[H, 1] yields that R[H, 7] is a right Ore-
ring whose classical right ring of quotients is isomorphic to D' as desired.

To show (¢) and (d), consider a, beS;.’ . We can find a, Bel’; and
u, v, x, y € T such that @ = aux ~! and b = Bvy ', where the T — I'-fac-
torizations have the property aw, fveS?. Then |au|,=¢(a), and
|Bv|, = ¢(B). We obtain that ua ! and vy ~! are units in S;. Therefore,
aS? = aS¢ and bS? = BS7.

Suppose aS$2BS?. We can find se S? and z € T with ﬁ =asz !, and
write s = E r;0; such that ¢(o;) =€, for all 7 and z= Z t;0; where

i=1

¢(6) =6, and ¢(6;) =e,. We obtain fz= Z t"(/’)ﬂé and as=

= 221 rf®qo;. There exists ipe {1, ..., n} with ﬂél = ao;,. This shows

o(B) = p(ad ) = ¢p(a) p(oy) =,¢(a) smce P(0;) Z65.

Define |a|;= ¢(a) where a = aux ~ 1 is a factorization of a as before.
To show that this map is well-defined, we consider a second factorization
a = &ii# ~'. Since aS¢ = @Sy, the results verified up to this point yield
o(a) < ¢(a) < ¢p(a). ThlS shows that the map | |; is indeed well-defined.
Moreover, every aeS? can be written as a = aul™' with e T. Then,
|a|,= ¢(a) = |a|{. Thus, | |, extends | |? as desired.

We consider a, be S} with |a|, =, |b|;, and choose a decomposition of
a and b as before. Observe o(a) Z,0(B). Ifa=,BinI'{,then B taell,C

cS?, and there is seS? with a = 8s. Thus, aSy = aS} cfS; =bSS. On
the other hand, if a <;8, then ¢(a) <;¢(B); and hence o(a) = ¢(B). Slnce
a 'Bell,cd4, we have ¢(B) =p(a)p(a'B) = qb(ﬂ)d)(a‘lﬂ) Hence,
a 'Beker¢, and hence B 'aeA. But then, 8 'aeker(¢)cX yields
that 8 ' is a unit of S¢. In this case aS; = ,BSf . In either case, we have
shown |a|,=;|b|, if and only if aSg cbS,.

Using the last result and the fact that S is a chain ring, it is now pos-
sible to show that the map | |, defines a generalized left valuation on S¢
using standard arguments. =

In the last result, we assumed that R[I",, o] is a right Ore ring in or-
der to embed S? as an essential submodule into a ring @ in which the ele-
ments of T are units. We now show that the Ore condition on R[I";, o] is
necessary and sufficient for the existence of such a ring Q.
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COROLLARY 3.2. Consider a right Ore-domain R, a cone-valuated
pair (I'y, I'y) with associated map ¢, and a group-homomorphism
o: I'y—=Aut (R). Then, the following conditions are equivalent:

(a) R[4, 0] is a right Ore ring.

(b) S? can be embedded as an essential S?-submodule of a ring Q
in which the elements of T are units.

PrOOF. (a)=>(b) is an immediate consequence of the Theorem 3.1.

(b)=>(a) Let te T and s e S?. No generality is lost if we assume that
s # 0. Because of (b), we can find elements t,, t,e S? with t “1st; =t,.
Choose u;, useT and a,, asel’; with t;=wu;a; for i=1,2. Write
Su; 0, =tusa, to obtain su, =tus(asar?) in R[I;, o]. Then, su,=

= > a;0; where supp (su,) = {01, ..., 0, } cI'; and ¢(d;) =,¢&,. Simi-
i-1 .
larly, tu, = '21 b;0; where supp (tus) = {01, ..., 0} With ¢(0;) =,¢5.
n J= m m
Then z aiéi: (2 ij]) agafl = 2 bj(Qj(lzail). This shows
i=1 =1 =1

n m
2S5, |SUy |, = min @(d;) = T]n:l{l ¢(Qjaza1_1) =

= (min ple)) plazai’) = exp(@rai®) = plazai’).

Moreover tu, e T, and hence aya;'eS?. Furthermore, u, e T yields
usasa 'eS?. Therefore, su; = t(usasai’) with u, e T and usasai'le
eS?; and T is right Ore in S*.

To show (a), let r; and 7, be two non-zero elements of R°[I";]. Choose
Uy, useT and a,, aye ', with r;=u;a; for 1 =1, 2. By (b) there are
vy, Vo€ T With us vs = u;v;. Then rya s vy = up v = uy v; = 717, 1 v, is non-
zero, and a;'v;e R[I'y, o]. Hence R[I';, o] is a right Ore ring. =

The last result of this section shows that, in the setting of Mathiak’s
work ([8]), the pair of conjugated generalized valuations can be extended
to the localization S? just like standard valuations.

COROLLARY 3.3. Let R be a right and left, Ore-domain, (I'y, I, A)
a cone-valuated triple with associated map ¢, and o: I'y— Aut(R) be a
group homomorphism such that R[I, a] is a right and left Ore-do-
Main.
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(@) The pair (| |, | |») of generalized, conjugated valuations on
S? extends to a pair (| |;, | |») of conjugated, generalized valuations
on SE.

(b) The induced valuations in a) are order-anti-isomorphic to the
generalized valuations on S§ which are induced by the linear ordering
of the one-sided ideals of S}’.’ .

Prorr. By Theorem 3.1, there exist extensions | |; and | |, of | |;
and | |, which are one-sided generalized valuations and satisfy condition
(b). Since |a|,=,e; and |a|,=,e, for all aeS}”, it remains to show
|a|;= ez if and only if |a|,=¢,. If |a|, =&, then aS?T=Sf and a is a
unit of S7. In this case, S;a = S7 and |a|, = ¢,. The converse is verified
in exactly the same way. m

4, - Examples.

Dubrovin showed in [5] that the property that R[I', o] is a right
Ore-domain whenever R is a right Ore-domain, is inherited by sub-
groups. Using this, we can easily establish the following

ProOPOSITION 4.1 (a) The following conditions are equivalent for a
group I', a right Ore-domain R, and a group-homomorphism o: I'—
—>Aut(R):

(i) RII, d] is a right Ore-domain.
(ii) For every finitely generated subgroup U of I, the ring
R[U, o|U] s a right Ore-domain.
(iii) I is the union of a smooth ascending chain {I', |v < K} of
subgroups I', such that R[T',, o ] is a right Ore-domain.

(b) The following conditions are equivalent for a group I which is
the semi-direct product of a normal subgroup N by a subgroup U:

() RIT, o] is a right Ore domain for all right Ore domains R
and all o: I'— Aut (R).

(ii)) a) R[N, o] is a right Ore domain for all right Ore domains
R and all o: N— Aut(R).

B) RLU, 7] is a right Ore domain for all right Ore domains R and all
7: U— Aut (R).
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ProoF. (a) The implication (i)=> (iii) is obvious. (iii)=>(ii): If U is a
finitely generated subgroup of I', then UcrI', for some v < k. Since
(o|r,)|v=0]|y, we have that R[U, o|y] is a right Ore domain by
Dubrovin’s result. (ii)=> (i): Whenever a and b are non-zero elements of
R[I', o], then there is a finitely generated subgroup U of I" with a, be
e R[U, o|y]. But the latter ring is a right Ore-domain. (b) (i) = (ii): Condi-
tion (i) holds by (a). To show the second condition, we observe that every
homomorphism ¢: U— Aut(R) can be extended to a homomorphism
: I'— Aut (R) by setting o(nu) = o(u) for all ne N and u e U. Now, we
apply Dubrovin’s result again.

(ii)= (i): By condition (ii), R[N, o|y] is a right Ore domain, and
(R[N, o | ~yDIU, 7] is a right Ore domain for all homomorphisms z: U—
—Aut (R[N, o|x]). In particular consider the map 7, which is defined by
[rU(u)]( >, a) = > r®@q for all ue U. By[l, Lemma 3.1}, R[T, o]

aeN aeN
is isomorphic to the right Ore domain (R[N, o|yDIU, ty]. =

ExamPLE 4.2. Let G and H be infinite groups such that R[G] and
R[H] are right Ore domains for all right Ore domains R. Then, I =
= G H has the property that R[I'] is a right Ore domain for all right Ore
domains R, but I" has a trivial center. Here, ¢ denotes the restricted
wreath-product of G by H.

ProoF. By Proposition 4.1, it is enough to show that € G is Ore for

T
all index sets I. Because of Proposition 4.1, it suffices to consider the
case that I is finite. However, a finite direct sum of Ore groups is an Ore
group by Proposition 4.1. =

For instance, consider the following family {G,|n <w} of groups:
Set Gy=7 and G, ,,=G, 2Z. We observe that each G, is a solvable
finitely generated Ore group with trivial center whose (n — 1)* commu-
tator subgroup is non-trivial. By Proposition 4, the group I' = @ G, is an
Ore group which is not solvable.

We conclude with some examples relating our results to previous
work by Brungs’ and Torner.

ExXaMPLE 4.3. Since every skewpolynomial ring R[x, o] can be
viewed as a subring of R[Z, o] Theorem 2.2 shows that the chain rings
constructed in this paper include those from [2].
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In[1], we investigate groups I’ which are the union of a smooth as-
cending chain {I', }, -, of normal subgroups such that I', /I, is tor-
sion-free abelian.

THEOREM 4.4. Let R be a right Ore-ring and I' a group which is the
union of a smooth chain {I',}, <, of normal subgroups of I' with I'y =
= {e}. Then, I can be right ordered in such a way that for all a <k

a) I/T, carries a natural right order induced by the I',’s such
that the canonical projection m,: —I/T"', is an order preserving
map.

b) SFe/J(SF<) is the classical right ring of quotients of RI[I,].

ProoF. Using [4, Lemma 3.7], we can right order I in such a way
that an element xeI',,; \TI', is positive in I exactly if «I", is positive
in I',,,/',. We fix a<k, and observe that the group
[y /T INTC,/T, =T, /T, is torsion-free abelian. We right order
the group on the left in such a way that the natural isomorphism be-
comes order-preserving. Once I" and I/, are right ordered as has been
detailed in the first paragraph, the canonical projection 7z ,: '—=1I/I, is
order preserving. To see this let x € I" be positive and choose ¢ < k mini-
mal with x e I',. Then, 0 =v + 1, and I, is positive in I",/I",. Only the
case o0>a needs further consideration. In this case, I, e
ellr,/T J\T,/T,], and hence xI', is positive since the isomorphism
[Loii/TINT,/T,1=T,,1/T,is order preserving and xI”, is positive in
I',/I'",. The theorem is now an immediate consequence of the results of
Section 3. =

ExamMpLE 4.5. Suppose that I is a right Ore-group which contains
a normal subgroup N such that N and I/N are both right ordered
groups, e.g. I' is the semi-direct product of N and a switable subgroup
U. Then, I' can be right ordered in such a way that the projection-map
¢: T—I/N is order preserving. We obtain that Sg/J(Sy) is the classi-
cal ring of quotients of the group algebra R[N], while the chain-ring STI’
which is obtained by using 1r: I— T to define the generalized valua-
tions satisfies STlr/J(S;r ) = Q(R) where Q(R) is the classical ring of
quotients of R. In the case of [1, Example 2], the first ring is the classi-
cal ring of quotients of R[Z] and is not associated with the cone II,.
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The last example also applies in the following case. Let I'=
=7.2(Z2Z) in which IT1,,,7Z is the kernel of the induced map ¢: I'—
— 7.7, and consider the group-algebra K[I'] over a field K. Since this
kernel is an abelian group, the induced valuation ring S ¢ has the proper-
ty that S2/J(S%) is a commutative ring not isomorphic to K although
K[ TI'] is non-commutative.
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