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Completion of r.t. Extensions of Local Fields (II).

V. ALEXANDRU (*) - A. POPESCU (**) - N. POPESCU (***) (*)

Let (K, v) be a local field and let (K(X), w) be a residual transcen-
dental extension of it. The following question arises: describe the com-
pletion of (K(X), w) (see [5]. ch VI Sect. 6) using (K, v) and related con-
cepts. In the first part of this work (see [1] had been considered the par-
ticular, but important case, when w = wo is the Gauss r.t. extension of v to
K(X). Thus (K(X), wo ) is described as the subfield of (K~ IXI 1, u) con-
sisting of all Laurent power series whose positive parts are almost peri-
odic (see [1], Theorem 2.4).

In this paper we consider the general case when (K(X), w) is any r.t.
extension of (K, v). In Section 2 we try to give a «combinatorial» descrip-
tion of elements from ( K(X ), w), using a natural inclusion K(X) -~
- K( (X - a , 3 ) ) . For that we use some elementary remarks in section 1
and a characterization of r.t. extensions of a valuation given in [3]. In
Section 3 we describe ( K(X), w) as a finite extension of (K(r), wo ), where
r is a suitable element of K(X) and wo is the Gauss r.t. extension of v to
K(r). Finally, in Section 4 we study the conditions when ( K(X ), w) is co-
incident to the completion of (K’ (X), w’ ), where K’ is a suitable finite
extension of K and w ’ an extension of w to K’ (X ) and moreover w ’ is a

slightly modified Gauss r.t. extension of v ’ to K’ (X ) (here v ’ is the

unique extension of v to K’ ).

(*) Indirizzo dell’A.: University of Bucharest, Department of Mathematics,
Str. Academiei 14, 70109, Bucharest, Romania.

(**) Civil Engineering University of Bucharest, 124, B-dul Lacul Tei, De-
partment of Mathematics, R-72302, Bucharest, Romania.

(***) Institut of Mathematics of the Romanian Academy, P.O. Box 1-764, Ro-
70700 Bucharest, Romania.



58

1. - Taylor’s type embeding of rational function field.

1) Let K be a field and let K[X] be the polynomial ring of one variable
over K. Let R be an algebraic closure of K, a an element in K and let
f(X) be the monic minimal polynomial of a with respect to K. Denote
K’ = K( a). For any we consider the Taylor’s expansion

n

(g(i) li!)(a)(X - a)i in K’ [X], where n = degg. In this way we
i=o

obtain a ring embeding T: K[X] -&#x3E; K’[X - a] = K’ [X]. Extend T in an
usual manner to a field embeding T : K(X ) ~ K’ (X - a ) = K’ (X ) and
call a rational function from the range of T a K-rational function in
K’ (X) with respect to a. One calls T the Taylor’s embeding of K(X) in
K’ (X).

2) For any natural number 1~ ~ 0 one consider the following upper
triangular (k + 1) x (k + 1 )-matrix:

where r n, 

PROPOSITION. 1.1. a) A polynomial in K’ [X] of the form G(X) =

is a K-polynomial in K’ [X] if and onLy if the column vec-

tor a,, (Ao, AI, ... , 
= ( ao , al ... , Un)t has its components in K i. e.

ao, ... , an E K. (Here "t" means the transposed). One has

= g(X).

b) A rational function in K’(X),
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is a K-function in K’ (X ) i, f and only if P and Q are K-polynomials
in K’ (X).

The proof is based on the Newton’s binomial formula for (X - a)i,
i = 0, 1 ...

3) A sequence Qn, Qn - 1, ... , Qo of elements of K’ not all zero, is
called a K-sequence if there exists a K-rational function P/Q in K’ (X)

such that

PROPOSITION 1.2. Let P be an element of K’ (X) and let 2: Ai (X - a)i
i&#x3E;i0

be the associated power series in an usual manner. This power series

represent a rational function in K(X) if and only if there exists a natu-
ral number m and a K-sequence ... , Qo in K’ such that:

for every k &#x3E; m, and

2) if one denote J m, the components of

the matrix ... , are in K.

PROOF. It is enough to identify the coefficients in the equality
and apply Proposition 1.1.

2. - 6)-completion of K(X).

1) Let (K, v) be a local field (see [9] i.e a valued field K complete
relative to a rank one volution v. Denote by R a fixed algebraic closure of
K and denote by v the unique extension of v to K. If a E K denote deg a =
= [K(a): K], the degree of a with respect to K. Let a E K and let 6 E Q, the
additive group of rational numbers. We say that (a , 3 ) is minimal pair if
for any b E K, the condition v( a - b ) ; 3 implies deg b ; deg a. According
to [8], the number 3(a) = sup (v(a - b), b E K, deg b  deg a) is called

b

the main invariant of a. Then ( a , ~ ) is a minimal pair if and only if
3 &#x3E; 3(a).

An extension w of v to K(X) is called residual transcendental (r.t.- ex-
tension) if the residue field of w is a transcendental extension of the

residue field of v.
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Let (c~, 6) be a minimal pair. Denote w = wCa, ð) the extension of v to
K(X) defined as follows: if P(X) E K[X ], then

where m = degP(X), According to [3], ð) (extended in an usual man-
ner to K(X)) is a r.t. extension of v to K(X) and by ([3], Theorem 2.1) any
r.t. extension of u to K(X) is the form w(a, ð) for a suitable minimal pair
(a, d). ,

2) Let a E K and K’ = K(a). Denote v’ the restriction of T to K’.

According to [ 1 ] denote by K’ ~ ~X - a , (5}} the valued field of (5-formal
Laurent series over the local field (K’ , v’ ), where 6 &#x3E; 6(a) is a rational
number. According to ([1], § 2) we can also consider the embeding
c~ : K’ (X) = K’ (X - a) ~ K’ ~ ~X - a, d ~ ~. In this way K’ (X - a) can
be viewed as a subfield and by the composition o o T
we can view K(X) as a subfield of K’{{X - a, d}}. As usual (see [1]) de-
note u the natural valuation of K’{{X - a, d}}. Now if w = W(a,,6) is the
valuation on K(X) defined in the previous point, then it is easy to see that
for any a E K(X ) one has Then, through

becomes an extension of the valued field

(K(X), w). In what follows we consider (K(X), w) as a subfield of

K’ ~ ~X - a, d ~ ~ and the mapping OJ 0 T does not appear explicitely.
Because K’ ((X - a, 3) ) is complet, the topological adherence of

K(X) in it is exactly the completion of (K(X), w). Denote by (K(X), w )
this completion.

3) Using now the results of [1], we try to describe the elements of
Kf f X - a, ~ ~ ~ which lie in K(X).

If is a Laurent series in a, 3 ) ) and n is a
naturd number, the partial sum: is called a n-sec-

tion of S if u(S - Si(,,)) &#x3E; n. To every series we asso-
v - vu

ciate the sequence Sj§ = such that a-* if i &#x3E; io, and aj* = 0 if
ji0.
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If D = { do, di, ... , is a finite sequence of elements in K’ and A =
= is an infinite set of elements in K’, we define a «multiplication»
between D and A in the following way:

If are subsets of K’, denote u(C, B) =
It is possible that u(C, B) = 00.

A Laurent series k’ is called K Lo-

cal periodic series if for any n EN, there exists a n-section Si(,,) =
~í of it and two sequencs in

... , are vectors with components in K (for the definition of crp
see § 1 ) and that u( [D , B) &#x3E; n + u(D ), where u(D) = +

+ 13 ). 
~

THEOREM 2.1. An element

longs to K(X) if and only if it is a K-local periodical series.

PROOF. Let S be an element in K(X), n a natural number and Si(n) a
n-section of ,S. Let

be an element in K(X) such that u(S - a) &#x3E; n. Since u(,S - ,Si~n&#x3E; ) &#x3E; n,

then a) &#x3E; n. If B = (bk)k, D = (dk)h then it is easy to see that S
is K local periodic.

Conversely, let us assume that S is a K-local periodic element in
3 ) ) . If B = (bo, ... , and D = (do, ... , dq) are as in the

definition of a local periodic series S, for a natural number then

belongs to K(X) and u(S - a) &#x3E; n etc.
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REMARK 2.2. The above results try to give a «co_mbinatorial» de-
scription of elements of K ’ ( (X ’ - a , 3 ) ) which lie in K(X). We remark
that even in the case a = 0 this result is not as powerful as the one given
in ([1], Theorem 2.3).

3. - Another type of characterization of the completion of

(K(X), w~a, a) ) .

1) The notation and the hypotheses are as in the section 2. Let f be
the minimal and monic polynomial of a with respect to K. According to
([3], Theorem 2.1) and [7], there exists a natural number e, and a polyno-
mial h(X) in KfX], with deg h  n = deg f such that:

i) The rational function is such that

w(r) = 0 and t, the image of r in the residue field of w, is transcendental
over the residue field of v, and

ii) r is of minimal degree with these properties:
Let us denote by wo the restriction of w to K(r) and by 

the ramification index and respectively the inertia degree of w
over wo . Using ([3], Theorem 2.1, Corollaries 2.4, 2.5, and 2.6) and ([4]),
Theorem 4.5) we conclude that [K(X) : K(r)] = ne = e(wlwo).f(w(wo), so
w is the unique extension of wo to K(X). The valuation wo on K(r) is exact-
ly the Gauss extension of v to K(r) and from [1] we know a characteriza--
tion for the completion K(r). It is easy to see that K(X) and K(r) are lin-
ear disjoint over K(r), r(X), the minimal polynomial of X
over K(r) is also irreducible over K(r), so K(X), the completion of K(X)
with respect to w, is exactly K(r)(X). ne -1

It is clear that any element in K(X) is of the form I ai (r) X~, where
i=o

ai (r) E K(r). Let us consider now the embedding úJ (see [1]) of K(r)
in the local field of 0-formal Laurent series in the variable r

over K, (see [1]), and describe any element from K(X) as being of the
ne-1 

_

from where bi (r) E K(r).
I = o

Using these last remarks above it is not difficult to see that any ele-
ment in K(X) may be described as being a Laurent series of the type
E si (X) r i, where si (X) E K[X], deg si  ne, the values of coefficients of
2EZ

si (X) are inferior bounded (for all i E Z) and when the values of
them tendes to 00. Even the is almost periodic and we
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have the equality

4. - Some properties of the algebraic extension K(X) 2013&#x3E;~(X).

The notations and definitions are as in section 1. In this section we

are interested in some properties of the extension K’ (X)/K(X). Particu-
larly we derive some conditions such that K(X) is coincident to

K’ (X).

1) Let a E K and f the monic minimal polynomial of a with respect
to K. Let S = {a = ... , be all roots of f in K. Let 6 be a rational
number such that (a, d) is a minimal pair, i.e cS &#x3E; ~(a). Denote y =

n

= E inf (6, v (a - ai ) ) and let e be the smallest non-zero natural number
i = 1

such that ey E Gv -, the value group of v ’ and by e ’ denote the smallest
non-zero natural number such that 

Denote W = w(a, 6) the r.t. extension of v to K(X) defined by the mini-
mal pair ( a , 3). According to ([3], Theorem 2.1) relative to the value
group Gw of w one has:

In what follows we assume that a is separable over k. We remark, ac-
cording to ([4], Theorem 3.1) that any r.t. extension w of v to K(X) is of
the form w = ð) where a is separable over K.

Denote s the number of all conjugates a’ of a over K such that
v(a - a’ ) ; 6. As usual by e(v’ I v) and f(v’ we denote the ramifica-

tion index and the residual degree of v ’ with respect to v (see
[10]).

THEOREM 4.1. With the above notations and hypothesis one

has:

1) s divides n = deg f = [K’ : K],

2) There exists exactly n/s distinct extensions of w to K’ (X).

3) If w’ is an extension of w to K’ (x) and d = e(w’ w) then d is
the greatest common divisor between s and e ’, and f(w’ I w) = sld.
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PROOF. Let K" = K(al , ... , an ). Then K"/K is a Galois extension and
denote by G = Gal (K"/K). Let H = ~g e G/v (a - g(a) ) ~ 3 ) and S(H) =
= ~g(a), g Then H is a subgroup of G and S(H) contains exactly s
elements. Since G acts transitivly on ,S(H) then s devides n, as

claimed.

2) and 3). Let t = n/s and let H = 77i, ... , Ht be all conjugates of H
in G. Denote by ,S(Hi ) _ and 

- ~ ai 1 ~ , ... , ass) 1. Denote Wü 1 ~ i ~ t, the r.t. extension of v to K(X), de-
fined by the minimal pair ( ai 1 ~ , 3). Then according to ([4], Theorem 2.2),
the extensions wi, 1 ~ i ~ t are pair distinct and are all extensions of w to
K(X). Denote wi the restriction of wi to K’ (X). It is clear that the set of
wi , 1 ~ i ~ t contains all possible non - equivalent extension of w to
K’ (X). We assert that wi , 1 ~ i ~ t are all pair distinct. Using the above
notations and relations it will be enough to show the following equali-
ties

Because of symmetry it is enough to shaw the above equalities for w, =
= w ’ . Now we denote e = y - s3. It is clear aj), where aj
runs all conjugates aj of a such that v(a -  3. By a permutation of ai,
1in we can assume that v(a-ai)&#x3E;d if 1is and v(a-ai)d if
s  i ~ n. We assert Indeed, one has (, f’~s~ /s! )(a) E K". But

. Then according to

definition of s one has v’((f(s)/s!)(a)) = v((a-as+1)···(a-an))=e E
as claimed.

Now we use the definitions of e and e ’ and the equality e ’ y = se ’ 3 +
+ e ’ E in order to derive that e ’ y E Gu’. It follows that e ’ = ed for a natural
number d. Since by (1), Gw = Gv , + Zy and Gw - = Gv + Z6, it follows that
e(w’ = d. But d is a divisor of s since se6 = ey - eE E Gv , and so se is a
multiple of e ’ = ed. It is easy to see that d is exactly the greatest common
divisor between s and e ’ (use the difinition of e ’).

Now let us compute f(w’ ~ w). Denote by b an element in K such that
= 3 and by kw, kv, etc. the residue field of w; T, etc. Then 0, the im-

age of (X - a)/b in k--, is transcendental over and (see [3].
Theorem 2.1). Now consider the element defined in section 3.

Then kw = ( t ) c kw - c k-- . It is not dificult to see that t is a polynomial of
0 of degree se. If 1(X) E K’ [X] is such that w’(l(X)) = e ’ 3 then t’, the
image in kw - of (X - a)e’ ll(X), is transcendental over kv,. The degree of t ’
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as polynomial of 0 is exactly e ’ . Then [kw’:kw]=f(w|w’) sele = s/d.
The proof of Theorem 4.1 is complete.

COROLLARY 4.2. The extension (K(X), w) c (K’ (X ), w’) is immedi-
ate (see [11]) if and only if s = 1. In this case X - a E ( K(X), w ) _
= ( K(X ), w ’ ). This is true if and only if 6 &#x3E; o-)(a) = sup ( v( a - a ’ ) ), where
a ’ runs all conjugates of a distinct to a.

Now we indicate some cases when the conditions of Corollary 4.2 are
verified

COROLLARY 4.3. Let p = char ku &#x3E; 0. If n = [K’ : K] is relative

prime to p then s = 1.

PROOF. Indeed, in this case 3(a) = cv(a). For that let S(a) = (a ’ e
E ,S , v( a - a ’ ) ~ and let h be the cardinal of ,S( a ). Let H be the sub-

group of G = Gal (K" ~ K) defined by: If m =
= I GIH then m divides n and let H = Hl , ... , Hm be all conjugates of H in
G. If Hi = gi Hgi-’, let ai = gi (a) and let S(ai) defined as ,S(a). Then the

i gives a partition of S. Denote where a ’ runs over

,S( ai ), 1 ; i ~ m. It is clear that G acts transitively on the set

... , bm ~. It follows that the coefficients of the polynomial cp(X) _
= (X - b1) ... (X - bm ) belongs to K. Hence the element b1 is such that
[K(b1): K] ~ m ~ n. Since one has v(a - bi/h) ; w(a) then, according to
definition of 6(a), one has necessarily 3(a) = o(a).

REMARK 4.4. It can be proved that the polynomial cp is irreducible
and the pair (a, b1) is admissible (see [8]).

COROLLARY 4.5. If a is an uniformising element of K’ and e(v/v’ )
is relatively prime to p, and 

= kv (a), where a is the image of a in kv,, then s = 1.

The proof follows by [9], since in both cases one has =

= 3( a).
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