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REND. SEM. MAT. UN1v. PAaDOVA, Vol. 100 (1998)

On the Generalized Hypercentralizer
of a Lie Ideal in a Prime Ring (*).

V. DE FILIpPiS (**) - O. M. D1 VINCENZO (***)

SumMMARY - Let R be an associative ring, Z(R) its center and Hyp(U) =
={aeR:[a,u"],=0,n=n(a, u) =1, m=ma, u) =1, all ue U}, where
U is a non-central Lie ideal of R. We prove that if R is a prime ring without nil
right ideals, then either H,(U) = Z(R) or R is an order in a simple algebra of
dimension at most 4 over its center.

The aim of this paper is to extend some results about the hypercenter
of a ring to the hypercentralizer of a Lie ideal in a prime associative
ring.

Let R be a given associative ring and let » be a positive integer. The
n-th commutator of «, y € R, denoted by [x, y],, is defined inductively as
follows:

for n =1,[x, y]; = [«, y] = xy — yx is the commutator of x and y
fOI‘ n > 1, [xy y]n = [xv y]n—ly_y[xa y]n—l-
In [2], the n-th hypercenter of R is defined to be the set

H,(R) ={aeR:for each xe R there exists an integer

m=m(a, ) =1 such that [a, x™], =0}
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C/da Papardo salita Sperone 31, 98166 Messina, Italy.
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and, moreover, the generalized hypercenter of R is the set

H(R) ={aeR :for each xeR, there exist integers
n=n(a,x) =1 and m =m(a, x) =1, such that [a, ™],=0}.

The classical hypercenter theorem proved by I. N. Herstein [8] as-
serts that the hypercenter, H,(R), of a ring without non-zero nil two-sid-
ed ideals always coincides with its center.

More recentely Chuang and Lin proved that if R is a ring without
non-zero nil two-sided ideals then H,(R) coincides with the center of R,
Z(R).

They also proved that if R is a ring without non-zero nil right ideals
then the generalized hypercenter, H(R), coincides with the center (see
Theorem 2 and Theorem 4 of [2]).

In this paper we will study a more general situation. More precisely
let S be a subset of R, we say that an element a € R is in the n-th hyper-
centralizer of S, H, r(S), if and only if for each s € S there exists an inte-
ger m =m(a, s) =1 such that [a, s™],=0.

In the same way we define the generalized hypercentralizer of S to
be the set

Hp(S) = {aeR :for each seS there exist integers
n=mn(a,s) =1 and m =m(a, s) =1 such that [a, s™],=0}.

Of course if S = R then H, g(S) is merely the n-th hypercenter of R
and Hy(R) coincides with the generalized hypercenter of R. We remark
that in [6] Giambruno and Felzenszwalb studied our first hypercentraliz-
er in the case when S = f(R) is the subset of all valutations flry, ..., 73)
of a multilinear polynomial f(x;, ..., ;) on a prime ring R.

They proved that if R is without non-zero nil right ideals then either
H, p(f(R)) =Z(R) or the polynomial f(xi, ..., x;) is power central
valued and R satisfies the standard identity S;,.(x;, ..., X312).

As a consequence of this result it is proved in [1] that if U is a
non central Lie ideal of a prime ring R, without non-zero nil right ideals,
then either H; gx(U) =Z(R) or R satisfies the standard identity
Sa(@yy oovy Xy).

Our main result has the same flavour:
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THEOREM. Let R be a prime ring without non-zero nil right ideals
and let U be a non central Lie ideal of R, then either Hr(U) = Z(R) or R
satisfies the standard identity Sy(x, ..., X4).

Preliminar results.

Here we summarize some basic properties of n-th commutators.
These simple facts will be used implicitly troughout all the proofs of this

paper.
REMARK 1. Let z, y, zeR.

a) If [x, y], = 0 for some n = 1 then [x, y™], = 0 for any m =1 and
[z, y],=0 for any q = n.

b) If [x, y™],=0 and [z, y'], =0 then [z, y™], = [z, y™1,=0.

C) [x + Y, z]n = [x9 Z]n + [y, Z]n and [xy, z]n = é (n) [x, z]n—i[y, z]'i
(here we put [x, ylo=2). i=o\4

d) If [x,y™],=0 and [z, y™],=0 then [xz, y™], (-1 =0.

As a consequence we also have

REMARK 2.
a) Z(R)cH,, r(S)cHg(S).
b) H, gr(S) is an additive subgroup of R.
¢) Hgp(S) is a subring of R.

REMARK 3. Let ¢ be an automorphism of R such that ¢(S) c S, then
@(H,, r(S))cH, r(S) and ¢(Hg(S))c Hg(S).
1. - Some reductions.

We begin the proof of our theorem with the following standard re-
sults (see Lemmas 11, 12 of [2]).
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LEMMA 1.1. If R is a prime ring of characteristic p>0 then
Hgp(S) = Hy, g(S).

ProOF. Let ae Hgi(S). Given seS there exist positive integers
n =n(a, 8) and m = m(a, s) such that [a, s™], =0. For any x, y e R we

have [z, y], = 20( -)(—l)zy’x?/"_’-
i=0\1

Hence, for t =1 such that p’=n, we obtain 0 = [a, 8™ e =qs™" —
—gm'g = [a, s™'] and so acH; g(S). =

LemMA 1.2. Let R be a domain and let a, be H(S) be such that
a+b+ab=a+b+ba=0. Then a,beH; g(S).

Proor. If the charateristic of R is a prime number then by Lem-
ma 1.1 one has Hi(S) = H;, z(S). Hence we may assume that char R = 0.
Given se€S, let ~ and k be the minimal positive integers such that
[a, s™],=0and[b, s™], =0 for some n = 1. Suppose that # > 1 and k > 1,
then 2 + k — 2 = max (k, k). Hence [a, s"],+x-2=1[b, 8"]h+5-2=0. On
the other hand

O=[a+tb+ab,s"]hik-2=1[ab,s")hsp-2=

= (h:;f 1 2)[(1, "], -10b, $"Jk-1-
Since R is a domain of characteristic 0, we have [a, s"],_;=0 or
[b, s"],_1 =0. This contradicts with the minimality of » and k. Hence
one of 4 and k must be 1,say # =1. Then 0 = [a@ + b + ab, s"] = [b, s™] +
+alb, s"]=(1+a)b,s"]. Hence [b,s"]=1+b)1+a)b,s"]=0
(Note that the use of 1 is purely formal). Thus % = k = 1. Since this holds
for any seS we have a, beH; z(S). =

LEMMA 1.3. Let R be a prime ring and U a mon-central Lie ideal
of R. Then either there exists a mon-zero ideal I of R such that
0=[I,R]cU or charR=2 and R satisfies Sy(xy, ..., &4).

ProoF. See [7, pp. 4-5], [4, Lemma 2, Proposition 1], [10, Theo-
rem 4]. =
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2. — The case R = Hg([1, I]).

In this section I will be a non-zero two-sided ideal of R. [I, I] will de-
note the subset{[a, b]l:a, bel}. We begin with an immediate conse-
quence of Lemma 1.2.

LEMMA 2.1. Let R be a division ring. If R = Hp([R, R]) then R sat-
isfies Sy(xy, ..., X4).

Proor. Let —1#aeR.Letb=(14+a)"'—1,thena+b+ab=a+
+ b + ba = 0 and, by Lemma 1.2, a € H; z([R, R]). On the other hand, by
Lemma 1 of [6], we have either H,([R, R]) = Z(R) or dimgg R =N?
where N<2. In any case R satisfies the standard identity
Sy, ... xq). W

LEMMA 22. Let R be a domain with non-zero Jacobson’s radical
J(R). If Hr([1, I]) = R then R satisfies Sy(xy, ..., &4).

ProOF. As R is a prime ring V=INJ(R) is a non-zero two-sided
ideal of R. By Lemma 12 VcH, g([I,I]) and, a fortiori, V=
=H, y([V, V]). Therefore, by Lemma 7 of [6], V satisfies the standard
identity S,(x;, ..., x4). Since Vis a non-zero ideal of R, Sy(x;, ..., 24) is a
polynomial identity for R too. =

Notice that in the next Lemma we do not assume that R =
=Hg([I, I).

LEMMA 23. Let R be a primitive ring. If R is not a division ring
then either Hp([1, I1) = Z(R) or R = F,, the ring of 2 X 2 matrices over
a field F.

ProoF. Let V be a faithful irreducible right R-module with endo-
morphisms ring D, a division ring. Since [ is a non-zero two-sided ideal of
R then R and I are both dense subrings of D-linear transformations on
V. Suppose that dimpV =3. We claim that in this case Hg([I, I]) =
=Z(R).

In fact, let @ # 0 be in Hz([I, I]) and assume that for some v e V the
vectors v and va are linearly independent over D. By our assumption
there exists a vector w such that v, va, w are linearly independent
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over D. As I acts densely on V there exist elements r, sel such that
vr=0, (va)r=w, wr=0 and wvs=0, (va)s=0, ws=va.

Hence v[r,s]=0 and wvalr,s]"=va for any m=1. Since ae
e Hp([1, I]) there exist positive integers », m such that [a,[r, s]"], = 0.
Thus we have:

0=1[a,[r, sI"],=v (io(n)( —1)i[r, sT™a[r, s~ | =
i=0\17

=va[r, s =va#0,

a contradiction.

Hence, given v e V, v and va are linearly dependent over D. It is well
known that in this case @ must be central (see, for istance, the proof of
Lemma 2 in [8]).

Hence we may assume that dimp V' < 2 and so, by our hypotesis, R =
= D,, the ring of 2 X 2 matrices over the division ring D. Thus R is a simple
ring with a non-trivial idempotent and I coincides with R. Moreover, by
Remarks 2 and 3, Hg([R, R]) is a subring of R which is invariant under
all the automorphisms of R. If R is not the ring of 2 X 2 matrices over
GF(2), then, by [7, theorem 1.15], either Hp([R, R]) = Z(R) or
Hp([R,R]) =R. In the last case we have Hp,([D,, D,;]) =D, and
we claim that D is commutative. Let e; be the matrix unit with 1 in
(i,7) entry and 0 elsewhere. Let r=a(e;s + ex) and s = b(e; + e)
where a,beD; hence [r,s]"=[a, b]"(e;x+ ex) for any m=1.
Since Hp,([D;, D;]) =D, there exist positive integers =», m such
that [eyp,[r, s]"],=0. Since [ey,[7, s]™] = [e,[a, b]"(e;z + €x)] =
=[a, b]™ ez, weobtain0 = [eys, [, s]™], = [a, b]™e;s,andso[a, b]™ =0
in D. Hence [a, b] =0 for all a, be D, that is D is commutative and we
are done. =

As an immediate consequence of Lemmas 2.1 and 2.3 we obtain

LEMMA 24. Let R be a primitive ring. If R = Hp([I, I]) then R sat-
isfws S4(x1, ceny x4).

ProoF. It is suffices to recall that F, satisfies the standard identity
Sy(xy, ..., x4) (see Example 3 page 12 of [9]). =
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LEMMA 2.5. Let R be a domain. If R = Hp([I, I]) then R satisfies
Sy(@y, ...y 24).

Proor. If J(R) # (0) then the result follows by Lemma 2.2. Now we
assume J(R) = (0). So that R is a subdirect product of primitive rings
R,, yel.

Let P, be a primitive ideal of R such that R, = R/P,. We consider
I'y={yel:IcP,} and I'y={yel:I¢P,}, in addition let I,= NP,
for yerl';, 1=1, 2. Since R is semisimple I, I,cI; N I, = (0).

Since R is a domain we must have either I; = (0) or I, = (0). If I, =
= (0) then I cI, = (0), a contradiction. Hence I, = (0) and so R is a subdi-
rect product of primitive rings R, = R/P,, such that I¢P, . Of course I, =
=(+P,)/P, is a non-zero two-sided ideal of R, and we also have
R,=Hg,([1,, I,]).

Therefore, by Lemma 2.4, S,(x,, ..., 4) is a polinomial identity for
R,, for each y eI, and so R satisfies S,(xy, ..., xs). ®

LEMMA 2.6. Let R be a prime ring satisfying a polynomial identi-
ty. If R=Hgr([R, R]) then R satisfies Sy(xy, ..., x4).

ProOOF. Since R is a P.I. ring, by Posner’s theorem, the ring of cen-
tral quotients of R, i.e. thering @ = {rz "':re R, 0 # ze Z(R)} is a finite
dimensional central simple algebra. Of course Q = Hy([Q, Q]), hence by
Lemma 2.4 @ must satisfy S;(x;, ..., ©4) and we are done. =

LEMMA 2.7. Let R be a prime ring without non-zero nil right ide-
als. If R =Hgr([R, R]) then R satisfies Sy(xy, ..., X4).

Proor. Let o be a non-zero right ideal of R; we claim that if o satis-
fies a polynomial identity then o satisfies Sy(xy, ..., x4) 5.

In fact let l(¢) = {xeR :x0 =0} the left annihilator of o. Then the
quotient ring ¢ =g/(l(¢) N) is also a prime P.I. ring such that
Hy([o, 0]) = o. Hence, by Lemma 2.6, S;(«, ..., ;) is a polynomial iden-
tity of o, that is S,(rq, ..., r4) €l(p), for all r;ep, and so ¢ satisfies
Ss(xy, ..., ®4) x5, as required.

Now if R is a domain then our result follows by Lemma 2.5.
Suppose that R is not a domain and let ab=0 for some non-zero
elements a, beR. Then bRa# (0) and so there exists reR such
that c¢=0bra is a non-zero square-zero element of R. Let ¢ =cR,
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and, as above let l(¢) its left annihilator. We consider the prime
ring ¢ = o/(l(¢) N @) which is without non-zero nil right ideals.

Let r, r, e R, since ce Hp([R, R]) there exist positive integers n, m
such that 0 = [¢,[cry, ¢ru]"],,. Hence [cry, cra]"™c =0, since ¢2=0. In
other words the polynomial [«,, ] is nil on g, and so, by Theorem 1 of
[3], © is commutative, that is [r;, 72 ]75 = 0, for all 7; € ¢. Therefore R con-
tains non-zero right ideals satisfying a polynomial identity; thus, by first
part of the proof, they must satisfy S,(xy, ..., 24) @s.

Hence, by Zorn’s Lemma, there exists a non-zero right ideal ¢ ' which
is maximal with respect to the property that it satisfy S,(zxy, ..., x4 5.
Now let reR and sy, sg, 83, 84, S5€0’, then, since each s;rep’, we
have

S4(7sy, 183, 783, 1Sy) 1S5 = 1S4(817, 827, 837, 847) 85=0.

This says that the right ideal 7o’ satisfies the identity
Sy(xy, ..., x4) x5s. Since both ¢’ and 7o’ satisfy a polynomial identity
then, by a theorem of Rowen [11], o’ + 7o’ also satisfies some identity.

Therefore, as we showed above, o' + ro’ satisfies Sy(x, ..., x,) 5.
By the maximality of o' we have ro’' co’, for all re R, that is ¢’ is a non-
zero two-sided ideal of R. Hence, by Lemma 1 of [4], R is a P.I. ring and
by Lemma 2.6 it satisfies S;(x;, ..., ;). ®

3. — Some results on invariant subrings.

As we said in remark 3, Hz(S) is a subring of R which is invariant un-
der any automorphism ¢ of R such that ¢(S) cS. This fact is enough to
focus our attention on invariant subrings A of R. In this section we will
consider the following situation:

R will be a prime ring with non-zero Jacobson’s radical J(R) and A
will be a subring of R which is invariant under the automorphisms of R
which are induced by all the elements of J(R). More precisely, let a be a
quasi-regular element of R with quasi-inverse a’, thatisa+a’' +aa’' =
=a'a+a’'+a=0.

Notice that if B has a unit element 1 then 1+ @ is invertible and
(1+a)'=1+a’'.

Let ¢,: R— R be the map defined by

@ (r)=r+ar+ra’ +ara’.

@, is an automorphism of R, we write ¢, () = (1 + a) (1 + a)~! and we
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say that a is formally invertible. As in the proof of Lemma 1.2 , we also
write (1 + a) for r+ ra and (1 + a) r for r + ar.

Some of the following results are implicitly contained in [6]. We in-
clude these statement in this form for the sake of clearness and
completeness.

Let R, A be as described in the beginning of this section; we
have

LEMMA 3.1. Let I be a mon-zero two-sided ideal of R then either
AcCZ(R) or ANI=(0).

ProoF. Since R is a prime ring V=1 N J(R) is a non-zero two-sided
ideal of R. Since the centralizer of a non-zero two-sided ideal in a prime
ring is equal to the center of the ring then either A ¢ Z(R) or there exist
acA,reV such that (1+7)a(l+7)"'#a, that is a+ra+ar’ +
+rar' #a.

Since a +ra + ar’ + rar’' is an element of A then 0 #ra +ar’ +
+rar'eANI. =

Lemma 3.2. If A has no non-zero nilpotent elements then any non-
zero element of A is regular in R and Z(A)CcZ(R).

Proor. See [6] page 423, rows 10-30. =

We remark that the same argument used in the previous Lemma (of
course «xeD — {—1}» instead of «xeJ(R)») shows the following
result

LEMMA. 3.3. Let R be a division ring. If A is a subring of R which
18 tnvariant under all inner automorphism of R then Z(A)c Z(R).

In the next Lemma we will use the following definition:

Let R be a prime ring with non-zero Jacobson’s radical J(R), then we
put

0.={xeJ(R):ax=0}. Clearly g, is a right ideal of R which is the
right annihilator of a in J(R).

LEMMA 34. If A does not contain a non-zero two-sided ideal of R,
then the set {0 ,: a € A} is linearly ordered, that is: for all a, be A either

Qang or ngga-



292 V. De Filippis - O. M. Di Vincenzo
Proor. See [6] page 424, rows 10-24. =
We conclude this section by proving the following result:

LEMMA 3.5. Let A be a domain such that Z(R) CA; if A satisfies a
polynomial identity then either A = Z(R) or Q, the ring of central quo-
tient of R, is a simple ring with 1.

Proor. Since A is a P.I. domain then by Posner’s theorem its center
Z(A) is non-zero and any non-zero element of A is invertible in Q(A) =
={az " ':aeA, 0#2eZ(A)}. Moreover, by Lemma 3.2, Z(A) = Z(R),
hence Q(A) is a subdivision ring of @, the ring of central quotients of R,
and it has the same unit element of R. Assume now that A ¢Z(R) and let
V be a non-zero two-sided ideal of Q. Then V' N R is a non-zero two-sided
ideal of R and so, by Lemma 3.1, AN (VN R) = (0).

Therefore V contains an invertible element of A and so V=Q. =

4. — The general case.
We begin with the case when R is a division ring.

LEMMA 4.1. Let R be a division ring then either Hy([R, R]) =
=Z(R) or R satisfies the standard identity S;(xy, ..., x4).

Proor. Let A =Hg([R, R]), as we said above A is invariant under
all the automorphisms of R. Hence Z(A) c Z(R) by Lemma 3.3 and so
Z(A) = Z(R).

Since H4([4, A]) = A, by Lemma 2.5, we obtain that A satisfies the
standard identity S,(«, ..., 2;). By Posner’s theorem the ring B =
={az':aeA,0#=z2eZ(A)} of central quotients of A is a finite dimen-
sional central simple algebra which satisfies S,(x1, ..., ;). Of course B
is a subdivision ring of R, moreover it is invariant under all automor-
phism of R. Therefore, by Brauer-Cartan-Hua theorem, either B = R or
BcZ(R).

In the latter case Hx([R, R]) = A = B = Z(R), while in the first case
R satisfies the standard identity Sy(x;, ..., 24). ®

LEMMA 4.2. Let R be a prime ring with no mon-zero wil right
ideals and J(R)#0. Let I be a non-zero two-sided ideal of R. If
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Hy([I, R]) =A does mot contain a mon-zero two-sided ideal of R
then Hr([I, R]) = Z(R).

Proor. Since A does not contain a non-zero two-sided ideal of R,
then, by Lemma 3.4, for all a, be A we must have either o,C0; or
0pCQ0q-

We claim that A does not contain non-zero nilpotent elements. Let
a €A be such that a2=0 and a #0.

If a annihilates on the left every square-zero element of A then

al+x)a(l+2)"'=0 for all xeJ(R).

Hence, since a? = 0, we have aJ(R)a = (0) and so a = 0, a contradic-
tion.

Thus there exists be A with b2=0 and ab# 0. Then 0 # abJ(R)C
CaQ,, so 0,¢0,. Hence 0,C0;, in particular we have:

baJ(R)Cbo,cboy=(0) and so ba=0.

Since a € Hi([I, R]), for any r e I, there exist positive integers n, m
such that 0 = [a,[r, ab]™],. And so, since a?= b2 = ba =0, we obtain
0=[a,[r, ab]™], br=(—1)"(abr)™™, that is abl is a nil right ideal of R.
Hence abl = (0) and so ab =0, a contradiction again.

Therefore A = Hp([I, R]) does not contain non-zero nilpotent ele-
ments and, by Lemma 3.2, we obtain that any non-zero element of A is
regular in R and Z(A) = Z(R). In particular A is a domain, moreover if
A¢Z(R) then ANI#(0), by Lemma 3.1.

Therefore A N I is a non-zero two-sided ideal of A and we also have
A=H,([INA, A]). Hence, by Lemma 2.5, A satisfies Sy(x;, ..., 24).
Since A ¢Z(R), Q, the ring of central quotients of R, is a simple ring with
1 (see Lemma 3.5), and so it is a primitive ring.

Of course A = Hg([I, R]) cHy([Q, Q)). But, by Lemmas 2.3 and 4.1,
either Hy([Q, Q]) = Z(Q) or Q satisfies S,(xy, ..., ®4).

In the first case we obtain A c Z(R) which contradicts with our last
assumption. In the last case @ is a simple algebra which is at most 4-di-
mensional over its center.

Therefore @ must satisfy all the polynomial identities of 2 x 2 matri-
ces over its center (see [9]), hence [, [x;, 25]?] is a polynomial identity
for Rc@Q.

In other words A = Hp([I, R]) = R, that is A contains a non-zero
two-sided ideal of R, and this is a contradiction again.
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Hence AcZ(R) and we are done. =
A special case of our final result is the following

PROPOSITION 4.1. Let R be a prime ring without non-zero nil right
ideals. Let I be a non-zero two-sided ideal of R and let A = Hg([I, R]).
Then either A= Z(R) or R satisfies Sy(xy, ..., 4) and A =R.

ProoF. Suppose R is semisimple. Then, as in the proof of Lemma 2.5,
R is a subdirect product of primitive rings R, = R/P,, such that I ¢P,, for
each y in the set I" of indeces.

For each y e[, let A, and I, be the images in R, of A and I respect-
ively. Then, since A,c H Ry([l},, R,]), by Lemmas 2.3 and 4.1, either 4, ¢
CZ(R,) or R, satisfies S,(xy, ..., 4).

Now, let I'y= {yel':A,cZ(R,)} and I'y={yel:A,¢Z(R,)}.

Then '=I' UT'y. Let 1=NP,,yel and I,=NP,, yels,.

So (0)=J(R)=I,NI;, moreover if yel, then R, satisfies
Sy(xy, ..., x4).

Since R is prime and I, I,c I, N I, = (0) we must have either I; = 0 or
I, =0. If I; = 0 then we conclude that A c Z(R). Hence if A¢Z(R) then
I, = (0) and consequentely R satisfies S;(xy, ..., %4). In this case, by
Posner’s theorem, R is an order in a simple algebra at most 4-dimen-
sional over its center. Hence R satisfies the polynomial identity
[[2;, 2512, 23] and so A = Hg([I, R]) =R.

Therefore we must assume that J(R) # 0.

If A does not contain a non-zero ideal of R then, by Lemma 4.2,
Hg([1, R]) = Z(R).

Hence we may assume that A contains a non-zero ideal V of R. Since
R is prime, R, =V N1 is a prime ring without non-zero nil right ideals,
moreover, as VCA, we have that INV =H;y([INV, INV]). By Lem-
ma 2.7, I NV satisfies Sy(«;, ..., %4), and so R too. As above this implies
Hp([I, R]) =R and we are done. =

THOREM 4.1. Let R be a prime ring without non-zero nil right ide-
als, U a noncentral Lie ideal of R. Then either Hp(U) = Z(R) or R satis-
ﬁes S4(x1, ...,x4). R

Proor. By Lemma 1.3 if R does not satisfy S,(x;, ..., x4) then there
exists a non-zero two-sided ideal I of R such that [I, R]cU. Since
Hp(U)cHg([I, R]), we conclude by previous proposition. =
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