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Eigenvalue Estimates for The Weighted Laplacian
on a Riemannian Manifold.

ALBERTO G. SETTI (*)

ABSTRACT - Given a complete Riemannian manifold M and a smooth positive func-
tion w on M, let L = -L1 - V(log w) acting on L2(M,wdV). Generalizing
techniques used in the case of the Laplacian, we obtain upper and lower
bounds for the first non-zero eigenvalue of L, for M compact, and for the bot-
tom of the spectrum, for M non-compact.

1. - Introduction.

Let M n be an n-dimensional, complete Riemannian manifold. The
Laplace operator on M, - LI, can be defined as the differential operator
associated to the standard Dirichlet form

where I - I is the norm induced by the Riemannian inner product and
dV is the volume element on M n . Now let w be a given smooth strictly
positive function on M n, that will be referred to as a weight function. If
we replace the measure dV with the weighted measure w dV in the defi-
nition of Q, we obtain a new quadratic form Qw , and we denote by L the
elliptic differential operator on induced by Qw . In
this sense L arises as a natural generalization of the Laplacian. It is

clearly symmetric and positive and extends to a positive self-adjoint op-

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Milano, via
Saldini 50, 20133 Milano, Italy.
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erator on L 2 ( w dV). By Stokes theorem,

Thus introducing a weight factor is the first step towards decoupling the
leading term and the lower order terms of the operator, which in the
case of the Laplace operator are completely determined by the metric of
Mn .

Weighted Laplacians arise naturally, for example right-invariant
(sub) Laplacians on a Lie group with left Haar measure can be viewed as
weighted Laplacians with weight given by the modular function. One
might also hope that the study of weighted Laplacians will increase the
understanding of differential operators acting on L p spaces with respect
to measures on M n not so closely related to the metric structure of the
manifold, e.g. the sum of squares of left invariant vector fields on a Lie
group which satisfy H6rmander condition, and generalisations. Finally,
operators of this form are the finite dimensional model of operators on
infinite dimensional manifolds («the infinite volume limit») which arise
in Statistical Mechanics.

Operators of the form (1.1) have already been studied in [Bkl],
[BkE], [Dal], [Da3], [Dl], [D1S], which mainly deal with properties of the
heat semigroup generated by L, and in [Bk2] where the Riesz transform
defined in terms of L is investigated. In this paper we study estimates
for the L 2-spectrum of L, a problem also considered in [Dl] and in [D1S].
Pointwise estimates or the heat kernel of L have been obtained in

[Se2].
Our goal is to find upper and lower bounds in terms of the geometry

of M n and of the properties of the weight function, for the first non-zero
eigenvalue of L, when M n is compact, and for the bottom of the spectrum
if M n is not compact.

Several approaches are possible: One could consider L as a perturba-
tion of - L1 and apply perturbative methods. Or one could observe that
under the map

L is unitarily equivalent to the Schr6dinger operator H = - d +
+ (w -1~2 dw 1~2 )( ~ ) acting on and deduce estimates for L by
Schr6dinger operator techniques. Both approaches have the disadvan-
tage of requiring hypotheses that depend separately upon the geometry
of M n (typically via the curvature) and on the function w (via uniform
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bounds for w and its derivatives), without keeping into account the possi-
bility of mutual and perhaps competing interactions.

The approach presented here is more direct. The interplay between
the geometry of M n and the behaviour of the weight function w is mostly
taken into account by means of a modified Ricci curvature defined

by

Then, generalising techniques successfully applied in the case of - L1 by
Lichnerowicz ([Lz]), Li and Yau ([LiY]) and Li ([Li]), we obtain upper
and lower bounds for the first non-zero eigenvalue of L, if M n is com-
pact, and for the bottom of its L ~-spectrum, non-compact. These
bounds will be expressed in terms of bounds for Rw, of the dimension n
of M n and of its diameter.

The paper is organized as follows. In § 2 we study lower bounds for
the first non-zero eigenvalue ,1, 1 of L on a compact manifold. We prove
first a generalization of Lichnerowicz theorem (cf. [Lz], p. 135) that gives
a lower bound for ~,1 in terms Rw . Then we use the technique of gradient
estimates to obtain lower bounds for A which generalize the bounds ob-
tained by Li and Yau ([LiY]) and Li ([Li]) for the Laplacian. We conclude
the section by briefly indicating how Li and Yau’s techniques can be used
to find lower bounds for the first Dirichlet eigenvalue of L on a domain
Q c M with smooth boundary.

In § 3 we consider the case of a (non-compact) manifold with a pole
and we prove a lower bound for the bottom of the spectrum A, of L in
terms of a negative upper bound for the radial curvature and an upper
bound for which is in the same spirit as McKean’s lower
bound for the bottom of the spectrum of the Laplacian on a negatively
curved manifold (cf. [McK]). Assuming further that the radial derivative
aw/ar is everywhere nonnegative we also show that A, can be bounded
below in terms of a negative upper bound for the radial component of Rw .
We conclude the section with two examples that show that the bounds
obtained are sharp.

In the last section we prove a comparison theorem for w-volume
(Theorem 4.1) which generalizes Bishop’s comparison theorem (cf. [Cl],
p. 71 ff.). This allows us to extend to L a version of Cheng’s comparison
theorem ([Cg]) that gives an upper bound for the first generalized
Dirichlet eigenvalue of L on a geodesic ball in M n in terms of the first
Dirichlet eigenvalue of the Laplacian on a geodesic ball of the same



30

radius in a suitable space of constant curvature. Using Cheng’s argu-
ment, this gives, in the compact case, upper bounds for all the eigenval-
ues of L in terms of a lower bound for Rw and of the diameter of M, and,
in the non-compact case, an upper bound for the bottom of the spectrum
in terms of a lower bound for 

2. - The compact case: bounds from below for the first non-zero
eigenvalue.

Let M n = M be an n-dimensional Riemannian manifold with weight
function w, and let L denote the differential operator defined as in (1.1)
above.

Using elliptic regularity, and an argument as in Strichartz ([St], see
also Bakry [Bk2] where the details are carried out), one shows that for
~,  0 the equation (Lo )* u = ~,~c has only the zero solution in

L 2 (M, and consequently ([RSi], pp. 122-137) L is essentially self-
adjoint on (M) and extends to a positive self-adjoint operator on
L2(wdV).

Since L is a positive self-adjoint operator its spectrum is contained in
the positive real axis. Moreover, since the eigenfunctions are smooth by
elliptic regularity, 0 is an eigenvalue iff the w-volume of M, defined as
the volume with respect to the measure w dV, is finite. If u is in the do-
main of L, then and 

([Bk2], Prop. 1.3). It follows that for ~,  0, (A - is a continuous map
Thus if M

is a compact manifold, the compactness of the embedding
([Au], Theorem 2.34), implies that (~, - L ) -1 is a

compact operator on and, as in the case of the Laplacian, we
conclude that the spectrum of L is purely discrete and the eigenvalues
can be arranged in a diverging sequence

The corresponding eigenfunctions {uj} are smooth on M and form a ba-
sis of 

Although we are mainly interested in the closed problem for L, in
some instances we shall also consider the Dirichlet problem for L on an
open relatively compact domain with not-necessarily smooth
boundary In this case the operator L with (generalized) Dirichlet
boundary conditions on aS2 is the Friedrichs extension of the differential
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operator Lo = - d - V(log w) that acts as a positive symmetric operator
on (cf. [R-Si], p.177). If the boundary 8Q is piecewise
smooth, elliptic regularity and the compactness of the embedding

where is the closure of

( S~ ) in the norm = ))w))f2 imply, as above, that the spec-
trum of L is purely discrete and the eigenvalues can be arranged in a di-
verging sequence 0  ~, o ( S~ )  ~,1 ( S~ ) ... ~ + oo.

At this point it is perhaps worth noticing that, even though
’ can be written as the standard Dirichlet form

relative to the metric g = w 2in - 2 g, this does not imply that L is unitarily
equivalent to the Laplacian - 4 induced by g. Indeed L acts on 
while - 3 acts on where d V = w2/n-2dV is the volume element
induced by g. Therefore we cannot reduce the problem of estimating the
eigenvalues of L to the same problem for the Laplacian relative to a con-.
formally changed metric. On the other hand Prof. C. Herz ([Hz]) pointed
out that if N is a compact 1-dimensional manifold (typically N = ,S 1), the
action of the Laplacian of the warped product M = M x w N on functions
constant on N coincides with the action of L on functions defined on M.

Indeed, since M is the product manifold M x N endowed with the
metric

where .7r N are the projections and gm, 9N the metrics respectively on
M and N, a simple computation in local coordinates shows that, for

In particular, if fo is an eigenfunction of L belonging to the eigenvalue A,
then f(x, 0) = fo ( x ) is an eigenfunction of -:1 belonging to the same
eigenvalue. This fact can be used to obtain lower bounds for the first
non-zero eigenvalue of L by appropriately adapting some of the results
which hold for the Laplacian.

Assume now that M is compact. As observed above, the spectrum of L
is purely discrete. The first eigenvalue being always zero, we are inter-
ested in lower bounds for the first non-zero eigenvalue of L. These lower
bounds will necessarily depend on the interplay between the geometry
of M and the behavior of the weight function w. In many instances this
interplay can be effectively taken into account by means of a modified
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Ricci curvature defined by

Following Bakry ([Bk2]) we also put

We start with a generalization of the classical Bochner-Lichnerowicz-
Weitzenb6ch formula for functions ([BGM], p. 131 ff.). In a more general
and slightly different form, the formula appears in [BkE] and [Bk2]. The
version which we present is better suited to our purposes and admits a

simpler proof.

PROPOSITION 2.1. Let M be a (not necessarily compact) manifold
with weight function w. If u E C2(M) we have

PROOF. It suffices to prove the first equality, which follows immedi-
ately by combining the BLW formula,

and the following formula for the drift term

which, in turn, is a consequence of

The next theorem extends to L a classical result by Lichnerowicz
([Lz], p. 135]).

THEOREM 2.2. Let M be a compact, n-dimensional Riemannian
manifold with weight function w, and let ~,1 be the first non-zero eigen-
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value of L. Assume that

Then

PROOF. The proof follows closely that of Lichnerowicz: Let u be an
eigenfunction belonging to A 1. Since L1u = trace (Hess u), we have

where the last inequality follows from (x - y)2 ; ax 2 - a( 1 - a ) -1 y 2
Va E (0, 1), with a = n/(n + 1 ). Substituting this into (2.3), and using
Lu = À 1 u and the assumption we find

Integrating with respect to w dV, and using the identities

that hold for all f in the domain of L, one concludes as in [LZ], p. 135,
that

and (2.4) follows.

REMARK. If w = 1 so that L = - L1 and = Ric, Theorem 2.2 fails to
reproduce Lichnerowicz estimate. We are indebted to J. D. Deuschel for
the following variation of the argument above. For every 6; &#x3E; 0, let
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and assume that Then, by using
with a = + in (2.5) one obtains

and, arguing as above, this yields

Notice that:

- For E = 1 we recover Theorem 2.2;
- If w =1 and Ric &#x3E; x, then for all E we can take = K and, let-

ting E - oo in (2.6) we obtain Lichnerowicz’s estimate for the first non-
zero eigenvalue of the Laplacian, A 1 ~ nx/(n - 1);

Assuming that and letting ê ~ 0 in (2.6), we recover the
estimate ~,1 ~ x proven, with a different proof, in [Dl-S]. It is remarkable
that the last result holds even for M noncompact. Indeed the hypothesis
,Sw ; x implies first that the w-volume of M (the volume with respect to
the measure is finite ([Bkl]), so that 0 is an eigenvalue of L, and
then that the gap between 0 and the rest of the spectrum is at least x (cf.
[DIS]).

Adapting Li and Yau’s techniques, we shall derive next two gradient
estimates for the eigenfunctions of L belonging to a non-zero eigenvalue.
Using these gradient estimates we will be able to give bounds from be-
low for the first non-zero eigenvalue of L.

THEOREM 2.3. Let M be an n-dimensional compact Riemannian
manifold with weight function w and let u be an eigenfunction of L with
eigenvalue A &#x3E; 0. Assume that Rw ; K. Then 1 we have

PROOF. The proof is a modification of the proof of Theorem 1 in

[LiY]. Assuming without loss of generality that sup u ~ I = 1 and 0 &#x3E; 1,
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define a function F by

and let x, be the point where F’ attains its maximum. Since u is smooth by
elliptic regularity, so is F, and, applying the maximum principle, we
have

Now,

so that, at xo ,

A straightforward computation that uses (2.3), (2.8) and Lu = Au

yields

Now be a local orthonormal frame field in a neighbourhood of
x,. An argument as in [LiY], formula (1.9), yields
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where the second inequality follows from (x - y)2 ~ ax 2 - a( 1 - a)-ly2
with a = (n - 1)/2n, and the last inequality is a consequence of L1u =
- = £w - and of ( x + y )2 ~ ( 1 - 8)-1 X2 + s -1 y 2 with s =
= 1/(n + 1). Notice that our choice of a (Li and Yau take a = 1/2) is moti-
vated by the desire of giving a unified treatment of cases n = 2 and n ~ 2
here and in the sequel.

The definition of Hessian and (2.8) imply that, at x,,

for every i, so that, assuming without loss of generality that, at Xo,

81 w # 0, and = 0, i &#x3E; 1, we obtain

Putting (2.11) into (2.10), substituting the result into (2.9) and simplify-
ing, we get

Since, by assumption, sup u I = 1, we have lu/(,8 - u) ~ ~ 1 /(~3 - 1), and
1). Substituting these into the inequality above, and

using the hypothesis and the definition of F, we finally find

which can be rewritten as

with

Notice that if K &#x3E; 0, then ~, ~ (n + &#x3E; (n - 1 ) x, by Theorem 2.2, so
that C is always positive. The quadratic formula applied to the last in-
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equality gives

and (2.7) follows.

REMARK. A similar, but weaker, result can be obtained by using the
relationship noted in the introduction between eigenfunctions of L on M
and eigenfunctions of the Laplacian of the warped product M = M x w S 1.
Notice that M is a compact, (n + 1 )-dimensional manifold and that, by
[ON], Corollary 7.43, we have

for X, Y E TM = TM X ~ 0 ~ c T(M), O E T,S and where a hat on a symbol
indicates that the corresponding object is defined on M. For u as in
the statement of the theorem define the function S on M by 8 ) =
= u(x), (x, e) e Mso that - 2i = AS. Assuming that and that

- w -1 dw ~ x, [LiY], Theorem 1, yields

which immediately gives

THEOREM 2.4. Let M, be as in Theorem 2.3, and assume
that Sw ; K. Then Va ~ 0 and ~3 2 ~ sup (a + U)2,
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REMARK. Notice that, since = Rw + d(log w) 0 d(log 
(2.12) certainly holds with the same constant if we assume instead that
Rw &#x3E; K.

PROOF. As in [LiY], Theorem 4, the proof is carried out by applying
the arguments used above to the function G defined by

where a &#x3E; 0 and &#x3E; sup (a + u )2 .

In the next two theorems we use the gradient estimates just derived
to obtain lower bounds for the first non-zero eigenvalue of L.

THEOREM 2.5. Let M be a compact, n-dimensional manifoLd with
weight function w and diameter d, and assume that K. If 
~ d - 2 then the first non-zero eigenvalue ~,1 of L satisfies

PROOF. The proof mimics that of Theorem 7 in [LiY] and we only
sketch it here. Let u be an eigenfunction belonging to the eigenvalue X1.
We may assume that sup u ~ I = sup u. Since u is L 2 (w dV)-orthogonal to
the constants, the nodal set N of u is not empty. Integrating

u) along the shortest geodesic from N to the point x
where u attains its maximum, and using Theorem 2.3, we find

so that squaring and simplifying we get

for every 9 = (~3 - E (0, 1). Under the assumption that 
the right hand side of (2.17) is maximized for
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and, since,

(2.13) follows.

REMARK. If 2 nK &#x3E; d -2, then the right hand side of (2.14) is maxi-
mized for e = 1 and this gives the estimate (r~ + 1) - 1 nK which is
worse than the estimate provided by Theorem 2.2. For Rw non-negative,
the following theorem gives a better bound for ~,1.

THEOREM 2.6. Let M be a compact Riemannian manifolds with
weight function w and assurrze that K. Then

PROOF. Again let u be an eigenfunction belonging to the eigenvalue
By changing the sign of u if necessary, we may assume that sup u ~

~ inf u 1. Therefore, letting a = 0 and ~3 = sup u in Theorem 2.4, we
have

The proof now proceeds as in [Li], Theorem 3: Integrating (2.19) along
the minimizing geodesic y joining the point where u achieves its supre-
mum to the point where it attains its infimum, and taking into account
the fact that the length of y is at most d, we get

If the multiplicity of X1 is &#x3E; 2, Li’s argument shows that there is an
eigenfunction u for which sup u = inf u I and therefore (2.15) holds with
,~2 /( 2 d 2 ) replaced by Z2 Id 2. In the general case one considers the prod-
uct manifold M = M x M with the weight function w( x , y ) = w( x ) ~ w( y ).
It is easy to see that the operator L induced on M is simply Lx + Ly , 9
where Lx = - L1 x - Vx (log w)(x), so that Lf (x, y) = Lx f(x, y) +
+ Ly f(x, y ). This implies that the first non-zero eigenvalue ~,1 of L is ~.1
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. 

with multiplicity -&#x3E; 2. Moreover, for X, Y E 

where Xi , X2 (resp. Yl , Y2 ) are the projections of X (resp. Y) on TM x
x ~ 0 ~ and {0} x TM. Thus the hypothesis ,Sw ; x holds and we can con-
clude as above that

where d is the diameter of M = M x M. Since Å1 and d 2 = 2 d 2, (2.15)
follows.

REMARK. From the variational characterisation of ~,1 1 and the

identity

that holds for every finite measure 03BC and one concludes
that

where XA1 is the first non-zero eigenvalue of the standard Laplacian of M.
min can be estimated by integrating I V(Iog w) I along a min-
imising geodesic joining the points where w attains respectively its mini-
mum and maximum value, thus yielding

Together with known estimates for À f this gives bounds for ~,1 in terms

of Ricci curvature, diameter and of (sup I V (log W) The dependency onM 

the last quantity reflects the perturbative nature of the method. The
bounds provided by Theorems 2.2, 2.5, and 2.6, by contrast, are ex-
pressed in terms of the tensor Rw which takes into account the mutual,
and possibly competing, interaction of the curvature of M and of the be-
haviour of w.

We conclude this section showing how the techniques introduced
above can be used to give lower bounds for the first eigenvalue of L with
Dirichlet boundary conditions. In what follows ,S~ will be an open rela-
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tively compact domain in M with smooth boundary We will denote by
the outward unit normal to and, for x E H(x) will be the

mean curvature of 8Q with respect to a/av, defined as -

THEOREM 2.7. Let M be a complete Riemannian manifold with
weight w and let Q be a relatively compact open domain in M with
smooth boundary Assume that K in Q, with x ~ 0, and that Ho
is a lower bound for the mean curvature H of If u is a positive sol-
2Gt2on of

then, 1, either

or

PROOF. Assuming without loss of generality that sup u ~ I = 1 and
f3 &#x3E; 1, we consider again the smooth function 

Q

and let xo be the point where F attains its maximum.
If then 0 and a computation as in the proof of

Theorem 2 in [LiY] shows that
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Since = 0, Vu(x,) = 313v so that

Moreover, since u ~ 0 in S~ and u(xo ) = 0, we have 8u/8v(xo) =
= - 

, and the inequality above becomes

and (2.18) follows. If x, Ei Q, (2.17) follows from Theorem 2.3. Notice that
since now we cannot guarantee that ~,1; x, the positivity of C in the
proof of Theorem 2.3 follows from the assumption K S 0.

Now let u be the eigenfunction belonging to the first Dirichlet eigen-
value ~,1 of L on S~. The proof that one gives in the case of the Laplacian
(cf. [Bd], ch. IV, Lemma 3) can be used to show that u has constant sign
in S~. Assuming u &#x3E; 0, we can apply the gradient estimate obtained above
and deduce the following theorems.

THEOREM 2.8. Let M and Q be as above. Suppose that Rw ; K, with
K S 0. Let Ho be the lower bound for the mean curvature of 8Q and de-
note by i the inscribed radius of Q. Then

with

PROOF. As in [LiY], Theorem 5, one shows that if f3 in Theorem 2.7 is
chosen so that

then (2.17) holds. One then proceeds as in the proof of Theorem 2.5
above.
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3. - The non-compact case.

In this section we study the operator L defined on a non-compact
manifold M. Our goal is to find lower bounds for the bottom of the spec-
trum À 0 of L. Note that by the spectral theorem and the density of
C~°° (M) in the domain of L, ~, o admits the following variational character-
ization :

where f varies over CcOO(M), or equivalently, over H 1 (M, w dv), defined
as usual as the space of all functions f such that f, Recall
that if M is a Riemannian manifold with weight function w and D is a
measurable subset of M, the w-volume of D, denoted is by defi-
nition the measure of D with respect to w dV. If volw (M)  oo, clearly
~, o = 0. The proposition below, which extends to L a theorem proven by
Brooks ([Br]) for the Laplacian, shows that much more is true.

PROPOSITION 3.1. Suppose that the w-volume of the geodesic balls
of M grows subexponentially, i. e. for some (and therefore all) p E M and
for all a &#x3E; 0,

Then ~,0=0.

After replacing the Riemannian volume with the w-volume, the proof
is as in Davies [Da2], p. 157, and therefore will be omitted.

Turning to positive results,note first that (3.1) immediately implies
that

where ~, o is the bottom of the spectrum of the standard Laplacian of M.
Of course this is interesting only when it is a priori known that is
bounded above and away from 0. In the general case a more direct ap-
proach is needed.

In the following M will be a manifold with a pole, i.e. there exists p E
E M such that is a diffeomorphism. Let (r, u) E R + x
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x ,STp M be spherical geodesic coordinates at p E M, where STp M = S n - 1
is the unit tangent space at p. We denote by ÝiJ( r, u) the area element in
the coordinates (r, u), so that the Riemannian volume element of M is
given by dV = u) dr du, du being the standard measure on STp M.
Therefore a standard integration by parts argument (cf. [Cl], p. 47)
yields:

THEOREM 3.2. Let M be a manifold with weight function w and let
p E M be a pole. If

for all (r, u) eR+ x STp M, then

To apply the result obtained above one needs to estimate

The following proposition, of perturbative nature,
is a first step in this direction.

PROPOSITION 3.3. Let M be a manifold with a pole p and with
weight function w. Suppose that Sect 0 for all radial 2-planes z
and that in geodesic polar coordinates at p we have

for all (r, u). Then

In particular this holds for all p E M if M is complete simply connected
with Sect (M) ; 0 and Ric ~ - (~i + I lw -1 Vwlloo )2.

PROOF. Observe first that the conclusion of Lemma 3 in [Sel] holds
under the weaker hypothesis that the radial sectional curvature and the
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radial component of the Ricci curvature satisfy the inequalities stated
there. Therefore (3.4) implies that

Since Lemma 4 in [Sel] holds provided ýg-1 0 and this is

again guaranteed by our assumption on the radial sectional curvature,
we conclude that

and (3.5) follows from

REMARKS.

1) Example 1 below shows that even though it is rather crude,
Proposition 3.3 provides, via Theorem 2, a sharp lower bound for 

2) Proposition 3.3 can be applied when the supremum of the sec-
tional curvature is zero and the Ricci curvature is bounded above by a
negative constant (and the perturbation introduced by the term 
is suitably small). This is the case, for instance, when M is the product of
two or more Riemannian manifold with negative curvature. Even in this
simple case the bound for À 0 that one finds is far from being sharp. In
the proof of Proposition 3.3 above we have used the inequality

Therefore the bounds one can derive from it are more interesting when
is negative. We consider now the case 0.

THEOREM 3.4. Let M be a manifold with a pole p and weight func-
tion w and denote by 313r the radial unit vector field. Assume that for
all q E M

i) For all radical 2-planes Tq M, k ~ 0 ;
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Then

PROOF. An argument as in the proof of Lemma 3 in [Sel], which, as
remarked above, can be carried through under the weaker hypothesis
that M has a pole and the radial curvatures are controlled, shows that i)
and ii) imply

whence

The rest of the proof is now a simple modification of the proof of Lemma
4 in [Sel ]. Since ~ -1 a ~~ar ~ (n - 1 ) r -1 as r 1 0 aw/ar is
smooth and bounded, we have

for r small. Since i) and iii) imply that

The argument in [Se1] shows that (3.6) follows from (3.7).
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We conclude the section with two examples.

EXAMPLE 1. Let M = Hn 4, the n-dimensional hyperbolic space
with constant curvature -4, which we identify with Rn endowed
with the metric given in polar coordinates(r, g) by 
+ 11 /2 sinh ( 2 r) dg 12 and let w(r, ~) = Since 1

is C °° and even on I~, w is C °° on M. Since w -1 aw/ar = - (n - 1 ) tanr we
have (n - 1 ) so that we can write

with a = 1. By Proposition 3.3 and Theorem 3.2 it follows that ~, o ~
- l(n -1)2 /4. On the other hand and

consequently w dV = (sinh r)n -1 dr d~. Therefore we see that if f is a radi-
al function, the Rayleigh quotient for L

coincides with the Rayleigh quotient for the standard Laplacian - L1 on
the hyperbolic space with constant curvature -1. Since both the

metric of M and the weight function w are radially symmetric one can
easily see that

and since this is also true for the Laplacian - A on we conclude

that the bottom of the spectrum of L on M coincides with the bottom of
the spectrum of - L1 on Thus ~, o = (n - 1 )2 /4 ([McK]), showing that
the bound obtained above is sharp.

EXAMPLE 2. Let M = R2 with the metric given in polar coordinates
(r, 8) by and let w(r, 8) = cosh r. Notice that in this
case Proposition 3.3 is not applicable. On the other hand we have
Sect (M) = 0, a/ar) _ -1 and 3wl3r = sinh r &#x3E; 0, so Proposition
3.4 implies that A,, -&#x3E; 1/4. We will show that in fact = 1 /4 which implies
that Proposition 3.4 gives a sharp lower bound for A 0. To see this we
adapt a proof by Pinsky [Pk]. Let f be defined by f(r, 8) _ q5(r), where
~(r) = e -r~2 sin [ 2 ~t(r - d/2 ) ~ -1 ] if r E [~/2 , ~ ] and ~(r) = 0 otherwise.
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Then and on [ d/2 , d ], ~ satisfies the differential

equation

Integrating by parts, using the differential equation and the fact that
r -1 + tanh r -1 is decreasing in (0, 00), we find:

Thus, integrating over S1, dividing through by and applying the
quadratic formula yields

whence, letting ð~ + 00 gives ~, o ~ 1/4, and our claim follows. thus prov-
ing our claim.

4. - E stimates from above.

In this section, essentially extending ideas of S. Y. Cheng presented
in [Cg], we study bounds from above for the eigenvalues of L, in the com-
pact case, and for the bottom of the spectrum, for M non-compact.

For p e M and let be the distance along the geodesic
y u = expp (tu) from p to the cut locus of p. Note that ~ (r, u) E R + x
x 0  r  c(u) ~ is the domain of the polar geodesic coordinates at
p. Keeping the notation introduced in the previous section, we have
w(r, ~c) &#x3E; 0 dr E (0, c(u) ) , and therefore for every weight
function w we have ~c) &#x3E; 0 in the same domain. To simplify the
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notation we let also

The following theorem generalizes Bishop’s comparison theorem and
will allow us to extend to L some of Cheng’s results.

THEOREM 4.1. Let M be a Riemannian manifold with weight
function w. Assume that in polar geodesic coordinates at p we
have

Then, VueSTpM and c(u) ),

where ~3 = a/n and Cf3 are defined in (4.1 ). Moreover, if
a&#x3E;0,

PROOF. Adopting Chavel’s notation ([CI], p. 65 ff.), for U E TpM,
let A(r, u) be the self adjoint isomorphism of defined

by where is the parallel translation
along the geodesic = Then detA(r, u) = w(r, u) and
if we define then U is self adjoint,
tr U(r, u) = W-1 aw/ ar( r, u), and the following differential equation
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holds:

Using the inequalities

i) tr U2 &#x3E; (tr U)2 /(n - 1), which follows from the self adjoint-
ness of U,

iii) and A 2 /( n - 1) + B 2 ~ (A + B )2 /n VAN, B, with equality iff
A = (n - 1 )B, it follows that

Thus the function o(r) defined by

for re (0, c(u)), satisfies the differential inequality

where fl = a/n, and Setting y(r) = one verifies that 1jJ satis-
fies the differential equation

, (¡

and therefore, as in the proof of Bishop’s comparison theorem ([CI],
p. 73), one concludes that y(r) in (0, n (0, c(u) ), where

+ 00 0. 0, the proof is complete. If {3 ~ 0, take
c( u ) ) n (0, and note that, since
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we have

REMARK. Let M n and w be as in the statement of the Theorem, with
a &#x3E; 0. As in the proof of the Bonnet-Myers Theorem, since M is complete
and the geodesic y u is not minimizing after c(u), it follows that

dist (q, p) ~ for all q E M, and M n is compact by the Hopf-Rinow
theorem. If we assume that a, with a &#x3E; 0, we can conclude that, in
fact, diam(M) S In connection with this, observe that Bakry
([Bkl]) has shown that a &#x3E; 0 implies that voly(M)  oo.

THEOREM 4.2. M and R &#x3E; 0, and consider the generalized
Dirichlet problem for L on the geodesic ball in M centered at p with

If

in Bp (R), then

where Åo(Bp(R) is the bottom of the spectrum of L on and
I ~, -a (B; + 1») is the smallest Dirichlet eigenvalue for - L1 on the disk of
radius R in Mn + 1, the (n + 1 )-dimensional space with constant curva-
ture {3 = a/n.

REMARKS.

i) Since we do not assume that is contained in the domain of
the normal coordinates at p, 3B may fail to be smooth and it is necessary
to consider the generalized Dirichlet problem on In any case the
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bottom of the spectrum of L is given by

where f ranges over or, equivalently, over

Ho1 (Bp(R), wdV).
ii) If a &#x3E; 0 so that 0, then Mrp + 1 is the n + 1 sphere with curva-

ture /3 and Riemannian diameter jr/N F8. According to Theorem 4.1 we
also have d(p, dq E M. Consequently the theorem has con-
tent only for R S n/ýp, for if R &#x3E; then Bp (R ) = M and 

and the theorem holds trivially with A 0 (M) = 0 = ~, -° (M~ + 1 ). No-
tice that if R then À -LI + 1 (R) ) = 0 (cf. [Cl], p. 53), and so
again ~, o (B~ (R ) ) = 0 = ~, - ° (B~ + 1 (R ) ) .

PROOF. Since the proof is very similar to that of Cheng’s theorem
([Cg], Theorem 1.1, or [Cl], pp. 74-77) we will only indicate how to adapt
Cheng’s proof to our case. Let T be the radial eigenfunction belonging to
~, -° (B,~ + 1 (R) ) and define F by F(q) = T(r(q», where r(q) = d(q, p). It
is easy to see that Letting for convenience b(u) =
= min (c(u), R), and using Theorem 4.1 instead of Bishop’s Comparison
Theorem in the integration by parts argument in [Cg], pp. 290-91,
yields

so that, integrating we find

and (4.6) follows from (4.7).

COROLLARY 4.3. Let M be a compact manifold with weight func-
tion w and assume that
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be the sequence of the eigenvalues of L, where each eigenvalue is repeat-
ed according to its multiplicity. Then for every m we have

where d is the diameter of M and f3 and ~, -° (B~ + 1 (R) ) are defined in
Theorem 4.2.

PROOF. For every m, let Øm be the (normalized) eigenfunction be-
longing to À m. As in the case of the Laplacian it is easy to see that

with equality Using Theorem 4.2 above the proof follows ex-
actly as in [Cg], Theorem 2.1.

Using the estimate for ~, -° (BK (R) ) obtained by Cheng ([CG]), we
also have:

COROLLARY 4.4. Let M be as in Corollary 4.3, and assume that
Rw ~ - a, with a ~ 0. Then

with C(n) depending onLy upon n.

We conclude remarking that Cheng’s results relative to non-compact
manifolds ([Cg], § 4) also extend effortlessly to the operator L and allow
us to state the following corollary:

COROLLARY 4.5. Let M be an n-dimensional complete, non-com-
pact Riemannian manifoLd with weight function w. If
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then
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