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On the Asymptotic Behavior of Dirichlet Problems
in a Riemannian Manifold Less Small Random Holes.

MICHELE BALZANO (*) - LINO NOTARANTONIO (**)

ABSTRACT - In a Riemannian manifold-with-boundary, M = M U aM, we study se-
quences of Dirichlet Problems of type

where d is the Laplace-Beltrami operator, and Eh is the union of closed
h 

geodesic balls, Eh := U &#x3E; 0, hEN; the family Ix’: i = 1, ... , h}
consists of independent, identically distributed random variables whose dis-
tribution is given by a Radon measure P with finite energy. By means of a ca-
pacitary method and under a suitable assumption on the asymptotic behavior
of the sequence of radii (rh )h, the limit problem (in the sense of the strong con-
vergence in probability of the resolvent operators) has the form

v is a Radon measure which depends on f3. The measure v is explicitly deter-
mined. The proof rests on estimates of the harmonic capacity of concentric
geodesic balls.
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Introduction.

Let 4:= {1, ... , h ~, and let

be random variables defined on a probability space (,S~ , ~, P) with
values in a compact Riemannian manifold-with-boundary M : = M U aM,
8M # 0, d : = dim M ~ 2 ; let denote the geodesic ball centered
at x with radius r &#x3E; 0. In this paper we study the asymptotic behavior
of sequences of Dirichlet Problems

where L1 is the Laplace-Beltrami operator, 
and the bar denotes the topological closure. In our main result

(Theorem 4.2) we prove that if + oo[ is defined as

and if is a family of independent, identically distributed random
variables with distribution

for every Borel set B c M, where ~3( ~ ) is a Radon measure of finite

energy (cf. Definition 4.4), then the sequence of resolvent operators
associated with (1) converges strongly in probability to the resolvent
operator associated with the following Relaxed Dirichlet Problem

where v is the Radon measure defined by

and the constant cv d is the (d - 1 )-dimensional Hausdorff measure
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of the euclidean sphere of radius 1,
d~2. L 1=1 I J

To prove Theorem 4.2 we adapt to our Riemannian framework a vari-
ational method introduced by M. Balzano ([2]) for the study of a similar
problem in the euclidean space This method allows us the «recon-

struction» of the measure v, appearing in (2), from the asymptotic behav-
ior of the harmonic capacity of concentric geodesic balls

cap (Brh (xh ), for suitably defined Rh with Rh &#x3E; rh &#x3E; 0 . In this

respect the main tools are general estimates of cap (Br ( ~ ), BR ( ~ ) ) in

terms of the harmonic capacity of concentric euclidean balls in Rd of the
same radii (Proposition 2.3), and an asymptotic super-additive result for
the harmonic capacity (Lemma 5.1-(iii)). We notice that the harmonic ca-
pacity is a sub-additive set function defined on the a-algebra of Borel
sets of M (cf. Remark 2.1 ), but in general is not a measure.

Even when M is a bounded open set in our result is more general
than the corresponding result by M. Balzano in [2, Theorem 4.3].

Similar problems in a Riemannian manifold have been studied by I.
Chavel and E.A. Feldman in [6,8], using probabilistic methods, with a
particular regard to the convergence of the spectrum of the Laplace-
Beltrami operator.

Still in a Riemannian framework, G. Dal Maso, R. Gulliver and U.
Mosco in [13] studied similar problems, also when an increasing number
of handles is attached to the manifold. We mention also the papers of P.

B6rard, G. Besson, S. Gallot, I. Chavel, G. Courtois, E.A. Feldman [4, 3,
10, 7, 9], in which these authors studied (with different methods) the case
of a Riemannian manifold with a submanifold of codimension greater
than or equal to 2 excised, with a marked attention to the convergence of
the eigenvalues.

The asymptotic behavior of sequences of Dirichlet problems as (1) in
R~ has been studied by many authors since the ’70’s, when the articles by
E. Ya. Hruslov [15,16], M. Kac [17], and J. Rauch and M. Taylor [21] ap-
peared in the literature. Both the probabilistic and the analytical ap-
proach have been used in dealing with this kind of problems; we refer for
a quite complete bibliography to the recent book by G. Dal Ma-

so [12].
This paper is divided into five sections. In the first one, besides some

general notation, we introduce the geometric assumptions on the Rie-
mannian manifold M. In the second section we introduce the harmonic

capacity, the Green’s function associated with the Laplace-Beltrami op-
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erator d and give a representation result for the capacitary potential.
We conclude this section by proving Proposition 2.3. The third section
contains some technical results that are needed in the fourth section,
where our main result (Theorem 4.2) is stated. The fifth section is com-
pletely devoted to the proof of Theorem 4.2.

Acknowledgment. Both the authors are pleased to thank Gianni Dal
Maso for his advice and continuous help during the preparation of this
article.

The second author is also glad to thank Robert Gulliver for useful
discussions and suggestions, especially regarding Proposition 2.3, and
for a critical reading of part of the paper.

1. - Notation and Preliminaries.

We consider a smooth, compact, oriented, connected Riemannian

manifold-with-boundary M = M U aM, where M is the interior part of
M, and denotes its boundary; the dimension dim M : = d ~ 2 and
g is its metric tensor, g = -1. Associated to g there is the Laplace-
Beltrami operator L1, acting on real valued functions defined on M.

Let x E M, let Mx be the tangent space at x, and let Riem: Mx x Mx x
x Mx ~ Mx be the curvature tensor. If ~, 1] E Mx are two linearly indepen-
dent vectors then

is the sectional curvature of the 2-dimensional plane determined by ~
and n; · , ·&#x3E; denotes the scalar product in Mx induced by the metric ten-
sor g.

The following condition is a consequence of the regularity assump-
tion on M.

PROPERTY 1.1. For every relatively compact open set A c M there
exists K &#x3E; 0 such that

for all x E A , and for 
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We shall need the following assumption of geometrical nature.

ASSUMPTION 1.1. Let ý=I. The sectional curva-
ture is bounded above by b 2 and below by a 2 .

We recall that M is a metric space and the distance dist ( x , y ) be-
tween any two points x , is given by the infimum of all piecewise
smooth curves j oining x and y; the diameter of any set E c M is

we say that E is bounded if di-

amE+oo.

By Bg(x) we denote the open geodesic ball of center x E=- M and radius Q.
At a certain places in the following we shall also consider the eu-

clidean metric 1 defined by

The Lebesgue integral of a measurable function , f : M - R can be ex-
pressed locally as ([1, pp. 29-30])

where (U, 0) is a local chart of M.
The measure of a Borel set E C M, viz. the Lebesgue integral of the

indicator function

will be denoted by V(E); sometimes, with a little abuse in language, we
refer to V(E) as the Lebesgue measure of E . We say that a property P(x)
holds almost everywhere (a. e. in shorthand notation) if P(x) holds for all
x E M except for a set Z with V(Z) = 0 .

We define L 2 (M) as the Hilbert space of all (equivalence classes of)
measurable functions f : M - R for which the integral of f 2 is finite; its
scalar product is
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and the associated norm is given by

YM

The space H’(M) is defined as the completion of
 in the the norm induced by

where !’ 12 := (., ~, and Vf = (D1 f , ... , Dd f ) denotes the gradient of f.
The completion of C~ (M) (viz. the space of continuosly differentiable
functions on M with compact support) w.r.t. the is denoted by
HJ(M). Given an open subset A of M, we denote by Ho (A) the comple-
tion of C~ (A) w.r.t. the norm 11.111; cf. e.g. [1, Ch. 2], [6, 1.5].

Throughout this paper Borel (resp. Radon) measure will mean posi-
tive Borel (Radon) measure. We say that a Borel measure Il is a Radon
measure if  + 00 , for every compact set Kc M. Given a Borel mea-

sure u on M, we denote by L p (M, ,u ) (resp. by all (equiva-
lence classes of) real-valued measurable functions defined on M whose

p-th power is p-integrable (resp. locally p-integrable) on M, for

00 ].
Finally we let

for any 0  r  R .

2. - The harmonic capacity.

DEFINITION 2.1. Let A c M be a bounded open set and let E be a

Borel subset of A. The harmonic capacity of E w.r.t. A is

where u ~ 1 a. e. on a neighborhood of E ~ .
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REMARK 2.1. 1) Let A be a bounded open set of M; it can be proven
that the harmonic capacity is a set function which satisfies the following
properties (cf. e.g. [11, Proposition 1.4]):

(a) if El c E2 c A are two Borel sets, then 

- cap (E2, A);

(b) if (Eh ) is an increasing sequence of Borel sets of A and E =
= U Eh c A , then cap ( U sup cap (Eh , A);

h e N h e N ~ heN

(c) if (Kh ) is an decreasing sequence of compact sets contained
in A and K = f 1 Kh , then cap ( f 1 Kh , A) = inf cap ( Kh , A);h e N hEN ~ hEN

(d) if El , E2 are two Borel sets of A, then cap (E1 U E2, A) +
+ cap (El n E2 , A ) ~ cap (E1, A ) + cap (E2 , A);

(e) if Al c A2 are two bounded open sets of M, then cap ( ~ , 
; cap (~, A2).

2) We say that a property P(x) holds for quasi every x E E (q. e. in
shorthand notation) if P(x) holds for all x E M, except for a set Z with
cap (Z, M) = 0. Note that (4) does not depend on local coordinates.

3) Each function in H  (R ) has a representative which is defined
up to a set of capacity zero (cf. e.g. [22, Chapter 3]); by Property 1.1 this
continues to hold for functions in 

REMARK 2.2. Using standard variational methods, such as those
in [18, Chapter II, §6], it is possible to prove that the infimum in (4) is at-
tained. We will call the (unique) function uE, which realizes
the minimum in (4) the capacitary potential associated with

cap (E, A).

We now give a representation formulas for the capacitary potential
uE, A associated with cap (E , A ) in Proposition 2.2 below by means of the
Green’s function of the Laplace-Beltrami operator L1. This result can be
proven adapting to our case the methods developed in [19, §§ 5, 6] for a
similar purpose. Before stating the result, we introduce and give some
properties of the Green’s function of L1 which are needed in the

following.

DEFINITION 2.2 (cf. [1]). Let W = W U aW be a compact manifold-
with-boundary, 8W # 0. The Green’s function y ) of the Laplace-
Beltrami operator, with Dirichlet boundary condition on aW, is the func-



256

tion which satisfies, for x , y E W,

in the sense of distribution and which vanishes for x , y E aW; here 6 x is
the Dirac mass at x . The subscript « (y ) » indicates that the Laplace-Bel-
trami operator acts on the function y - gw (x, y).

We list in the following proposition the properties of the Green’s
function we shall need afterwards.

PROPOSITION 2.1. Let W = W U 3W be an oriented compact mani-

fold-with-boundary. There exists gw(x, y), the Green’s function of the
Laplace-Beltrami operator, which satisfies the following properties:

if d = 2 , where r : = dist ( x , y) and Co is a constant which depends on the
distance of x to the boundary of W.

PROOF. See Theorem 4.17-(a), (e), (c) in [1]. m

PROPOSITION 2.2. Let A be a bounded open set in M, let E c A be a

compact set and let UE be the capacitary potential associated with
cap (E, A). There exists a Radon measure 11 E for which the inte-

gral

exists, it is finite almost everywhere (w.r.t. the Lebesgue measure on A)
and

The measure U E is called the capacitary distribution of E and ,u E van-
ishes on all Borel sets having harmonic capacity zero. Moreover the
measure Jl E is supported on aE .

In the euclidean case the harmonic capacity of a ball of radius r &#x3E; 0

w.r.t. the concentric ball of radius R , with r  R , is equal to c(r, R),
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which has been introduced in (3). Note that in this case the harmonic ca-

pacity does not depend on the center of the balls; moreover the capaci-
tary potential u:, R = ~ e (in shorthand notation) associated with c(r, R) is
radially symmetric, viz. the value off at a point depends only on the
distance of that point from the center of the ball.

In the following result we compare cap (Br(x), BR(x» of concentric
geodesic balls in M with c( r, R); this result is one of the
main tools in the analysis we shall develop in the fourth and fifth sec-
tions ; it is a quantitative statement of the intuitive fact that cap (Br ( ~
.), BR(.» should not differ too much from c(r, R) if the radii are suffi-
ciently small. To achieve this proposition we shall rely in an essential
way on Assumption 1.1: The sectional curvature is bounded below by a 2 ,
and above by b 2 , a , 6eRUzR, i = ý=1.

PROPOSITION 2.3. For each x E M there exists R = R(x) &#x3E; 0, the in-

jectivity radius of M at x, such that

for any 

NOTATION 2.1. As a, we use the following convention:
When a 2 or b 2 is less than zero, then we use the following formula

while if a 2 or b 2 is equal to zero, then we replace sin at/at or sin bt/bt by 1.

PROOF. Let x E M, and consider the exponential map

By Gauss’s Lemma we write the given metric on M using geodesic polar
coordinates as

where t &#x3E; 0 and # = ( ~ 1, ... , ~ d -1 ) E ,S d 1; we denote by d~ the eu-
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clidean measure on ,S d -1. We then identify Mx with and let the origin
of be the pre-image of x under expx . Moreover we let J(t, ~) denote
the Jacobian of expx .

Let R = R(x) &#x3E; 0 be the injectivity radius of M at x, i.e., R is such
that for each R e ]0 , R[ the exponential map is a diffeomorphism between
the euclidean ball centered at the origin with radius R and BR(x). Let
0  r  R  R, consider Br(x) c BR (x) and let ur, R * u (in shorthand no-
tation) be the capacitary potential associated with cap (Br(x), BR (x) ) .
With our choice of coordinates we have

As a consequence of Assumption 1.1 the Jacobian J( t , ~) satisfies the bounds

for t E [ o, R[, cf. e.g. Theorem 15 in [5, Chapter 11, p. 253].
We point out that the capacitary potential u e (resp. the capacitary po-

tential u) associated with c(r, R) (resp. with cap BR (x) )) is an

admissible function in the minimum problem associated with

cap (Br(x), BR (x) ) (resp. with c(r, R) ) . This requires the composition
with expx-1 (resp. expx ), which we suppress in this computation.

Consider the upper bound of J(t, v) in (8), recall that u e is radially

symmetric and get (below we use the notation
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this inequality gives the upper bound in the statement of the proposi-
tion.

As for the lower bound, we write the relation (6) in an equivalent
fashion as

where gll and denote respectively the radial and spherical part
of the metric notice that g11 = 1, and gla = 0, a = 2, ... , d. By As-
sumption 1.1 we have the following lower bound on the sectional curva-
ture then the Rauch’s Comparison Theorem ([5, The-
orem 14, Chapter 11, p. 250-251]) gives

hence

for 0 ~ t ~ R , i. e. , on BR ( x ) . Therefore

Now let u be the capacitary potential associated with cap(Br(x), BR(x»).
We have
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So this proves the lower bound in (5), hence the proof of the proposition
is accomplished.

3. - The u-capacity.

In this section we introduce a family of Borel measures on M which
we denote by JK6. Using some properties of the fl-capacity (see below for
its definition) we are able to give the structure of a measurable space
(JTè6, which we shall use in the fourth section.

Let us indicate by 8 the a-algebra of all Borel subsets contained in
M, by a the family of relatively compact open subsets of M and by x the
family of all compact subset of M.

DEFINITION 3.1. We indicate by JTè6 the class of all Borel measures
,u on M such that:

= 0 whenever cap (B , M) = 0;
= A quasi open, for every B 

We say that a Borel set B c M is quasi open (resp. quasi closed) if for
every E &#x3E; 0 there exists an open set (resp. a closed set) U such that

where here L1 denotes the symmetric difference between two sets. More-
over B is quasi open if and only if its complement Be is quasi closed; the
countable union or the finite intersection of quasi open sets is still quasi
open. Notice that an open set (resp. a closed set) is quasi-open (resp.
quasi-closed).

For example the measure u(B) = ff dV, for f E=- L 1 (M), belongs to
JK6, as well the singular measure B

where E is a (quasi) closed subset of A.
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DEFINITION 3.2. Let p E JR:6. For every B E we define the ,u-ca-
pacity of B as

REMARK 3.1. If p = 00 F, for a quasi closed set F, then

PROPOSITION 3.1. For every fl E the set function C(fl, .) satis-
fies the following properties:

(a) C(,u, Q~) = 0; 1

(b) if B1, B2 E B1 C B2, then C(,u, C(,u, B2);

(c) if (Bn) is an increasing sequence in B = U Bn , then

C(,u, B) = sup C(y, Bn); 
n

(d) if (Bn) is a sequence in Be U Bn , then C (,u , B ) ~
Bn); 

’~

n

(e) C(,u, B1 lJ B2) + C(,u, B1 n B2) s C(,u, B1) + C(,u, B2), for all

B1, B2 E 1B;

( f ) C (,u , B ) ~ cap (B , M), for every B E ~3;

(g) C(fl, B ) ~ y(B), for every B E ~3;

(h) C (,u , K) U): K C U, U E U 1, for every K EX;

(i) C (y, B) = sup K): KCB, KE W 1, for every B E ~3.

PROOF. All these properties can be proven as in [11, §§ 2, 3], so we
refer to that paper for the proof.

We may associate to every u E the functional
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defined by

We recall that each is defined up to a set of capacity
zero; cf. Remark 2.1-(3). As the measureu does not charge (Borel) sets
of capacity zero, it follows that the functional F,(.) is well defined and
F,(’) is lower semicontinuous w.r.t. the strong topology of L 2 (M).

DEFINITION 3.3. Let be a sequence in ~ and letu e ~. We
say that y-converges to p if the following conditions are satis-

fied :

(a) for every u E Ho (M) and for every sequence in 77j(M)
converging to u in L 2 (M) we have

(b) for every there exists a sequence (Uh) in 
such that uh converges to u in L 2 (M) and

REMARK 3.2. It can be proven that there exists a unique metrizable
topology z Y on ~ which induces the y-convergence. All topological no-
tions we shall consider are relative to z Y w.r.t. which Mq is also metriz-
able and compact cf. [14, § 4] for more details.

The following result establishes a connection between y-convergence
and the convergence of the ,u-capacities in this Riemannian framework;
cf. [20, Proposition 3.8].

PROPOSITION 3.2. Let (,u h ) be a sequence in and let ,u E 

Then ,u h y-converges to ,u if and only if

are satisfied for every K E ~(, and for every U e ‘i l.
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REMARK 3.3. By the above proposition it follows that a sub-base for
the topology -r . is given E ~: C (,u , U) &#x3E; t ~, ~ ~c E ~: C (,u , K) 
 s}, for t , s &#x3E; 0 , K E X and U E 1L We therefore may speak about open
and closed sets in MI, hence about Borel sets whose family we denote by
B(M*0).

From the next proposition we get some useful measurability proper-
ties of the ,u-capacity.

PROPOSITION 3.3. The family is the smallest a-algebra for
which the function C ( - , U): [ 0, + 00 ] is measurable for every U E
E ’U (resp. the function C ( ., K): mq* - [ o , + 00 ] is measurable for every
K 

PROOF. It can be obtained adapting the proofs of Proposition 2.3 and
Proposition 2.4 in [2].

From the previous proposition we have the following consequence.

COROLLARY 3.1. Let ( , I, P) be a measure space and Let m : A -
-~ ~* be a function. The following statements are equivalent:

(i) m is 

(ii) C ( m( - ), U) is I-measurable, for every U E ‘U, ;

(iii) C ( m( - ), K) is Z-measurable, for every K 

LEMMA 3.1. Let A be an open, bounded set; for every compact set
K c A c M , and for every R &#x3E; 0 , the real-valued function, defined on
M x ... x M by

is upper semicontinuous in M x ... x M.

PROOF. Adapt the proof of Lemma 3.1 in [2].

4. - The main result.

Let (Q, E, P) be a probability space. We shall denote by E and
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Cov respectively the expectation and the covariance of a random
variable w.r.t. the measure P.

DEFINITION 4.1. A measurable function : will be called a
random measure.

We recall that necessary and sufficient conditions for the measurabil-

ity of the function m : are given in Corollary 3.1.
Let p E 04 and let 1 &#x3E; 0 be a parameter. Let us consider the follow-

ing Dirichlet problem, formally written for every f E L 2 (M) as

We say that ueHJ(M)nL2(M,fl) is a weak solution of (10) if

for any v E Ho (M) /1).
Let /1 e ~; the resolvent operator for the Dirichlet problem (10)

is defined as the operator that associates to every f E L 2 (M) the unique
solution u to (10). Observe that R~‘ is a positive and linear opera-
tor.

In the sequel we are interested in sequences of Dirichlet problems
such as

where (mh ) is a sequence of random measures. In particular we want
also to study the asymptotic behavior as h - + oo of the resolvent opera-
tors Rrh associated to the random measures mho The following result,
Theorem 4.1 gives an answer in this sense.

We recall that denotes the family of all relatively compact open
subsets of M.
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DEFINITION 4.2. Let us define the following set functions:

for every U E 1L Next consider the inner reguLarization of a’ and a" de-
fined for every U E by

Then extend a’ and a " to arbitrary Borel sets by

Finally denote by v’ , v" the least superadditive set functions defined on
~3 greater than or equal to a’ and a" respectively.

The following theorem can be obtained adapting the arguments used
in [2, Theorem 4.1].

THEOREM 4.1. Let be a sequence of random measures. Let a’
and a" be defined as in Definition 4.2 above; let v’ and v" be the least
superadditive set functions on ~3 greater that or equal to a ’ and a " re-
spectively. Assume that:

(i) v ’ (B ) = v " (B), for every B E and denote by v(B) their com-
mon value;

(ii) there exist e &#x3E; 0 , a continuous function ~ : II~ x with

~(0, 0 ) = 0 and a Radon measure {3 on []3 such that

lim sup I Cov (C (mh (.), U) , C(mh (.), V)) I ~ ~(diam ( U), diam (V)) ¡3( U) (3(V)
h-~+~

for every pair U, V of relatively compact open sets with U n V = ~ and
diam ( U)  E , diam ( %J  E.

Then the set function v is a measure and for every ~, &#x3E; 0, the se-
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quence converges strongly in probability to R’ in L 2 (M),
z. e.,

for every 1] &#x3E; 0 and for any 

From now on, we shall consider a particular class of random mea-
sures, which are related to Dirichlet problems with random holes.

Let us denote by e the family of closed sets contained in A.

DEFINITION 4.3. A function F: Q - C is called a random set if the
function m : defined by for each w E Q is X-mea-

surable, where ooF(w) is the singular measure defined in (9).

Let F: Q - e be a function; using the notation introduced in § 2, it
follows from Corollary 3.1 that the following statements are equiva-
lent :

a) F is a random set;

b) C (F( - ), U) is E-measurable for every U e a ;

c) C (F( - ), K) is E-measurable for every K e x.

Let (Fh) be a sequence of random sets and let be the se-

quence of random measures so defined

for each cv e Q .

and 1 &#x3E; 0 be a parameter. We shall consider the weak
solution Uh of the following Dirichlet problem on random domains

As in [14], it can be shown that the above Dirichlet problem can be writ-
ten using the measures 00 Fh as
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the resolvent operator is defined as

where Rfl is the resolvent operator associated to (14).

DEFINITION 4.4. Let [R be the class of Radon measures on M. For

1l1 , we define

for each relatively compact open set A c M . In analogy with the eu-
clidean case, we call 8(p, A ) the energy of fl on A .

We say that {3 E lll has finite energy if

where is the class of all relatively compact open subsets of M.

ASSUMPTIONS 4.1. Let us assume the following hypotheses:

( i1 ) let f3 be a probability law on M of finite energy;
(i2 ) for every we set Ih : ~ 1, ... , h ~ and we consider h mea-

surable functions such that is a family of inde-
pendent, identically distributed random variables with probability distri-
bution f3, viz.

for every Borel set B c M ;

(i) let (rh) be a sequence of strictly positive numbers such
that

and
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From now on, we shall consider the sequence of closed sets (Eh ),
given by ,

By Lemma 3.1 it follows that the sets Eh are actually random sets, ac-
cording to Definition 4.3.

The next theorem is our main result.

THEOREM 4.2. Let (Eh) be the sequence of random sets, as defined
by (16). Assume the general hypotheses (i1), (i2 ), (i3 ). Then for any 1jJ E

and for every E &#x3E; 0

where RA is the resolvent operator associated with the measure

5. - Proof of the main result.

By Theorem 4.1, Theorem 4.2 is an immediate consequence of the fol-
lowing proposition.

PROPOSITION 5.1. Let (Eh ) be the sequence of random sets defined
in (16). Let a ’ , a " be the set functions as in Definition 4.2. Then if gen-
eral hypotheses (i1), (i2 ), (i3 ) are satisfied, we have:

(t1) v’ (B) = v"(B) = v(B), for every B E ~3;

( t2 ) there exist a constant E &#x3E; 0 , a continuous x

x IE~. ~ with ~( o , 0) = 0 and a Radon measure f3 1 such that

for any pair of relatively compact open sets U, V with U n V = 0 and
diam ( U)  E, diam (%J  E.
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In order to prove the above proposition, we need to introduce
some more notation.

Let (ri : be a finite family of independent, identically distribut-
ed random variables, with values in M, and with distribution given by

where fl is a probability measure on M.
For 0  r  R and for any subset Z of M let us introduce the follow-

ing random set of indices

and for every t7 &#x3E; 0

and finally

Loosely speaking, the (random) set I(Z) gives a «separating condition»
among the xi’s (2 R could play the role of «separating radius » ), while if
i E then we have an upper bound on the potential at xi .

Let A be a relatively compact open subset of M. Applying Proposition
2.3, and taking into acccount the relation (3), we get in particular that for
each i E I(A) there exists a constant R(xi ) (the injectivity radius of M at
xi) such that
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for any 0  r  R  R(xi ), where c(r, R) is as in (3). Let us set

The following lemma will be essential in the proof of Proposition 5.1.

LEMMA 5.1. Let us consider the notation introduced above. For

any 0  r  R  R let us set

Then:

(i) The expectation of the random variable # (Ja (A) ) satisfies the
inequality

(ii) the expectation of the random variable # (J(A) ) satisfies the
inequality

where dist ( y , A ) 4~}, and ~(~3 , ~ ) is the energy of the
measure (3 introduced in Definition 4.4;

moreover there exists a constant C = C(r, R , d, A) such that

for all 6 sufficiently small so that C6  1.

PROOF. We give the proof for the case d ; 3 , for the remaining case
d = 2 can be proved similarly.
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We start off proving the inequality in (i). First of all we notice

that

Therefore

hence

Let us prove the inequality in (ii). Define

and recall
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We notice that

If i E J(A), we have that 4R &#x3E; dist (xi, xj), for some j E N(A); hence

for any i E J(A ). Therefore

and

Finally we prove (iii). Let us consider the Green’s function g( ~ , ~ ) with
Dirichlet boundary condition on aM . By Proposition 2.1-(iii)

where Co &#x3E; 0 is uniform for x , y E A .
Let us define

and take 6 &#x3E; 0 sufficiently small so that C6  1.

Let u be the capacitary potential associated with

If on for each we claim that the proof is
achieved. Let us introduce indeed v = ( 1 - C~ ) -1 (~c - C3) + ; the function

i,E Ia U and v = 0 on for every i E
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We then have

for every Hence

On the other hand we have also

therefore we have

Now we verify that u ~ Cd , on 3BR (Xi), for each i E=- 1,5 (A). Let

be the capacitary potential associated with cap (Br (Xi), M) , where u i is
the corresponding capacitary distribution (cf. Proposition 2.2). De-

fine

Adapting a classical comparison result ([18, Chapter 6, § 7]) to our case,
we find that for each x E A u(x) ~ z(x). Let for a fixed i E

we have

For ~ E 8Br(Xi) we have dist ( y , I) % R - r, while for ~ E ~ i , we
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have

hence dist ( y , ~ ) ~ dist ( xi , Xj) - 2 R . Then

C is the constant defined in (19), and in passing from the second to the
third inequality we have used the relation (19) together with the inequal-
ity (5) in Proposition 2.3.

REMARK 5.1. Since the measure /3 has finite energy, it does not

charge sets of capacity zero; this implies that the measure a, defined on
the Borel family of M x M by

does not charge singletons. This property also holds true in the case
d=2.

Now consider a non-atomic, finite measure Q on a separable, metric
space X. For every E &#x3E; 0 there exists 6 &#x3E; 0 such that for every A with
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diamA  3 we have a(A)  E . In fact, suppose for the moment that the
measure has support in a compact subset of X and assume, by contradic-
tion, that there exists E0 &#x3E; 0 such that for every hEN there exists Ah
with diam (Ah )  and Let xh E Ah; then for
h sufficiently large we have

Then implies If we let r - 0, we have -

- {x}, hence a({x}) ; &#x3E; E0 &#x3E; 0, but we have a contradiction, since the mea-
sure a is non-atomic. If the finite measure a is not supported on a com-
pact set, given E &#x3E; 0, there exists a compact set K such that a(XBK)  E;

now we repeat the argument above in the compact set K.

PROOF OF THE PROPOSITION 5.1. We shall prove the proposition
when d ; 3, because the proof of the remaining case d = 2 can be adapt-
ed in a straightforward way.

Consider the function

It is not difficult to see that there is 1[ such  1, for
every 0~6o. For 3 e]0, 30[, and heN let us define so

that

Let Ch = Ch(rh, Rh , d , A) be the constant defined in (19) with r = rh and
R = Rh , viz.

We notice that for h sufficiently large we have  1. Let us introduce
the following families of random indices
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and set = Ih (A) )Id h (A). Moreover let

It is not difficult to see that = Denote by Eh the
random set Eh : = U Brh (rj/ ). Note that cap (Eh n A , A) ~ cap (Eh n

i E Id, h(A)
n A, A). We apply Lemma 5.1-(iii), the lower bound in Proposition 2.3 and
find that

for h sufficiently large, where we have set for ease of notation

we recall that a and b are respectively the lower and upper bound on the
sectional curvature, as in Assumption 1.1.
We introduce

and we notice that We have

for h sufficiently large. In the second inequality of the first line
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we have used the subadditive property of the harmonic capacity (cf.
Remark 2.1-(d)) and we have used Proposition 2.3 in the last line.

PROOF OF (tl ). We recall that by Definition 4.2 we have

Moreover by Lemma 5.1 we deduce that

and

(23)

Let

Then it is not difficult to check that

for every A with f3(aA) = 0 .
Therefore from (21), (25), we get

for every B E ~6 and from (20), (25), (22), and (23) it follows that



278

for every B ’ E fJ3. From (26) we have

for every B E ~B. On the other hand we have also

for each B E 8. Let us fix indeed B E ~3; for arbitrary 0  t7  1, take a
Borel partition (Bk)keK of B with diam Bk  1]. Since v’ is superadditive,
we have

where D~ _ ~ ( x , y ) E M x M : dist ( x , y )  1]}, so that Bk x Bk c D,7, for
every notice that diam D~  1]. Since {3 is a measure of finite en-
ergy, and taking into account of Remark 5.1, we find that

and we get (29); letting ð ~ 0 we get from (29) and (28)

and (t1) is proved, because we always have v " ( - ) ; v ’ ( - ).

PROOF OF (T2). First of all we observe that by the Strong Law of
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Large Numbers we have

and

for any U E ‘1,1,. Actually we have, for any U e a,

since h -1 # (Nh ( Uh) ) is an equibounded sequence of random variables.
By (30), (31), (32) we have

for any pair U, V E a with U n 9 = 0 . From (32) we obtain

moreover by Lemma 5.1, (22), (23) and (30) we have
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for any U, V E ‘l,t, . Then by (33), (34), (35), (36), (37), (38)

for every U, VE=- U with U n V = 0.
By (21) and (32), we also deduce

for any U, with /3(aU) = fl(8%J = 0. Estimates similar to (39) and
(40) for the upper and lower limit of the sequence E [cap (Eh (.) n
n U, M)] E [cap (Eh (.) n V, M)] can be obtained in the same way. There-
fore we get for every U, V e ‘U with U n V = 0 ,
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where p(.) is the Radon measure defined by %3(~) :_ ( 1/d) {3(.) and c =
4111. Finally defining

for every we have

N I

We note that is a Radon measure and we take 6 =
= max I diam U, diam VI

and E = 2 d . The proof of (t2) follows, and hence the proof of the proposi-
tion is accomplished.
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