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Asymmetric Bound States of Differential Equations
in Nonlinear Optics (*).

A. AMBROSETTI (**) - D. ARCOYA (***) - J. L. GAMEZ (***)

1. - Introduction.

Bound states of a nonlinear Schr6dinger equation modelling propa-
gation in a medium with dielectric function n 2 can be found as solutions
of a differential equation of the type

that decay to zero at infinity, namely satisfying

Actually, solutions u of (1)-(2) correspond to the eigenstate

propagating in the direction z and with waveguide index P &#x3E; 0, see [7]
(actually in such a paper the equations are Maxwell’s). In particular, we
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are interested in the case considered in [1] when there is an internal

layer with a linear response while the external medium is nonlinear and
self-focusing. More precisely, the dielectric function n 2 is taken of the
form

where q , c E R and d &#x3E; 0 denotes the thickness of the internal layer. In
spite of the fact that the problem inherits a symmetry, it has been shown
in [ 1 ] that at certain value 0 = a family of asymmetric solutions of (1)-
(2) bifurcates from the the branch of the symmetric ones. The stability
analysis has been carried out in [4,5]: the symmetric states become un-
stable for B &#x3E; {3 0, while the asymmetric states are the stable ones for {3
greater than a certain fl see figure 1 below. Both the preceding
results rely on the fact that the nonlinearity n 2 in (3) is piece-wise linear
and independent of x and this specific feature permits to solve (1)
explicitely.

The purpose of this Note is to investigate the same phenomenon de-
scribed above for a class of equations (1) that, unlike the cited papers,
cannot be integrated directly. We consider the case that the internal
layer is thin and n 2 is still symmetric but has a rather general form and
show the existence of asymmetric bound states of (1) provided d is suffi-
ciently small, see Theorem 1. To achieve this result we use a method,
variational in nature, discussed in some recent papers, see [2, 3], and re-
lated to the Poincar6-Melnikov theory of homoclinics. This abstract set
up allows us also to discuss, for a slightly less general class of n 2 (but
still including the model case (3)), the orbital stability of these bound
states, see Theorem 8.

Fig. 1. - The curve in bold represents the aymmetric solutions.



233

2. - The main result.

Motivated by the preceding discussion, let us consider a thin layer of
thickness d = ~ and a dielectric function of the type

with

We shall assume that h : R - R and a: R x R+ 2013&#x3E;R satisfy:

(a) h is an even function, with h( x ) ~ 0, h 0 0 and 

E L1(R) ;
(b) a is even, with respect to x e R, with a(.r, ’) Vx e R,

and a(x, 0 ) = 0.

(c) There exists a&#x3E;0 and k E L1 (R) such that |a’s(x, s)| I 
Vs ~ 0. Moreover, letting

one has that a(s) is increasing and a( s ) -~ + oo as 

We remark here that it is possible to change in the hypothesis (c) the
power s a by any continuous function in s, and all the subsequent calcula-
tions remain valid.

To be consistent with the physical problem, h, a should also be such
that nl is non-increasing and s ) is non-decreasing in x &#x3E; 0 and

s &#x3E; 0. However, we do not need such assumptions here. Letting X(x) de-
note the characteristic function of [ -1, 1 ], the dielectric function n 2 fits
into the Akhmediev setting provided

and corresponds to a layered medium with dielectric function given by
( 3 ), with d = ~ .

Substituting (4) into (1) and setting ~, _ ~i 2 - q 2 , we find the equa-
tion
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Solutions of (5) that decay at zero at infinity, namely satisfying (2), will
be henceforth called bound states.

Equation (5) will be seen as a perturbation of

For all 1 &#x3E; 0, (6) has the positive symmetric solution

together with all its translates

To state our main result some further notation is in order. From (a), we
can define

From assumption (c) it follows that the equation

has a unique solution À 0 = A o ( c ) &#x3E; 0.

THEOREM 1. Suppose that (a - c) hold and take ð, ll &#x3E; 0 such that

0  d  ~, o - d  ~, o + ~  ll. Then there exists e o = e o ( d , ll ) &#x3E; 0 such
that for all e E (0, eo), one has:

1 ) for all A E [ 6, ~l ], equation (5) has a symmetric bound state UE,
which satisfies

2) , for all A E [~, 0 + ð, ~l ], equation (5) has, in addition, a pair of
asymmetric bound states vE± such that

for some 8 ~, &#x3E; 0.

The existence of the symmetric solution is well known, even in a
much greater generality, see [7]. The existence of the asymmetric sol-
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utions will be proved in the sequel by means of some variational argu-
ments introduced in [2, 3].

3. - Poincaré-Melnikov method.

We will prove Theorem 1 by using the results discussed in [2, 3]
which are concerned with the existence of critical points of perturbed
functionals of the form

We assume that the reader is familiar with the cited papers. To put our
problem into the preceding abstract frame, let us consider the Hilbert
space equipped with scalar product

and norm IIul12 = (ulu) and define

Obviously, R). Critical points of fo(u) = 1/2 ~~u~~2 - F(u) are
the bound states of the unperturbed problem (6). As remarked before,
the functional fo has, for any fixed A &#x3E; 0, a one parameter family of criti-
cal points Z = I zg = 0 A (- + E R}. Such a Z is a smooth one dimen-
sional manifold and the following non-degeneracy condition (see [6, p.

226]) is satisfied:

Furthermore, since Qk decays exponentially to zero at infinity, then it is
easy to see that for all z E Z the linear map F"(z) is compact. Here, as
usual, F " ( z ) is defined by setting

In order to introduce the perturbation term G let us set
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Notice that W(y , u 2 ( y ) ) is in L 1 by hypotheses (a) and ( c ) and the inclu-
sion E c L °° ( II~). Furthermore, the change of variable x = Ey yields:

We set

and

With this notation, it turns out that bound states of (5) are the critical
points of the Euler functional fE defined in (8).

Let u ) and G" ( ê, u ) be defined by setting

LEMMA 2. G E x E, R) and G(O, u) = 0 for all u E E. Further-
more the following conditions hold: 

"

( G1 ) G is of class C 2 with respect to u E E, G ’ ( 0 , u) = 0 and
G " ( 0 , u ) = 0 for all u E E;

(G2) the maps (E, u) - G’(E, u) and (e, u) - G " (E, u) are contin-
uous as maps from IE~ x E to E, repectively to L(E, E);

( G ) for all z E Z the map E H Ox(E, z) (and hence E - G(E, z ))
is’ C1.

PROOF. Let E n - E in R and Un - u in E. From the embedding of E
into C(R) n L 00 (R) we deduce that for every y E R,

whence
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for all y E R. Since

one immediately deduces that G( En’ ~)2013~G(~ u).
By straight calculation we find

for every v , w E E, and ( G1 ) follows directly.
The proof of (G2) relies on the arguments of Lemma 4.1 of [3]. Let us

prove the continuity of (E, ~c ) H G ’ ( ~ , u). We have to show that

Setting

there results
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Hence we find, for 1,

From this and since

we deduce:

Clearly, the latter integral tends to zero. As for the former, it can be uni-
formly estimated using the fact that E c C 0, v for any v E (0, 1/2). Indeed,
for any M &#x3E; 0 and 1 we find

Taking limits as we infer

Since M is arbitrary and y E L 1, it follows that

as required. The continuity of G" follows in a similar way.
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Finally, to prove ( G3 ) it suffices to evaluate formally

and to observe that for u = zg we have from ( a ) and (c)

Thus, the theorem of derivation under the integral sign implies the
assertion.

By Lemma 2, h can be faced by the abstract setting discussed in
[2, 3]. For the reader convenience, let us sketch the procedure. First, we
seek w orthogonal to z’ satisfying

Considering the function

we are lead to solve (P(c, 0, w , ~ ) = 0. An application of the Implicit
Function Theorem yields

LEMMA 3. For E &#x3E; 0 sufficiently small there exists a unique w =
= w( E , 0), orthogonal to z’ and satisfying ( 11 ). Moreover there re-

sults

and the symmetry property w( E , 8 ) ( x ) = w( s , - 9 ) ( - x ), V0, (in
particular, w(E, 0) is an even function of x E R).

PROOF. For a complete proof we refer to section 2 of [2] or to section
2 of [3]. Here we only point out that (G ) implies the differentiability of w
at (0, 8 ) and this gives rise to (20) with = ( aw/ae ) ( 0 , 8 ). Moreover,
taking into account that h and a are even function with respect to x E R,
one infers that the function x H w( e , - 8 ) ( - x ) satisfies also the require-
ments for 8 ), and the symmetry property follows.
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Setting + 6)}, it turns out that Z, is (locally) diffeomor-
. 

phic to Z and by (11) is a natural constraint for Ie. This means that in a
neighbourhood of Z the critical points of f, coincide with the the critical
points of f, constrained on Z,.

Finally, let us evaluate f, on Z~. Using (12) and recalling = b

as well as = 0, for all there results:

As a consequence of ( G3 ) we infer G( E , ze ) = + O(E), where

and this yields

In conclusion, we can state the following result:

THEOREM 4. that there exist r &#x3E; 0 and such

that

Then, for e &#x3E; 0 sufficiently small, there exists 8 £ , with 10, - 0 * ~ I ; r,
such that h has a critical of the form = ze + O(E).

REMARKS 5. (i) Theorem 3.3 is prompted for the application to the
specific problem discussed here. For more general abstract results, we
refer to [2, 3].

(ii) If T has a proper local minimum (or maximum) at 0 *, then
as E - 0.

(iii) The function T is nothing but the primitive of the Melnikov func-
tion associated to (5). m
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4. - Proof of Theorem 1.

In order to apply Theorem 4 to our equation, we first recall that for
the Melnikov primitive there results:

where we have used again the notation Qk to indicate the solutions of (6).
Observe that

Therefore  0 whenever A &#x3E; ~, o . Observe also that

Then, one easily infers that

with T~, ( 8 )  0 for large values of 10 1 It follows that the Melnikov prim-
itive r À has, for these values of A, 2 global minima 0 A &#x3E; 0 If

~, E [~, o + ~ , ~l ] there exists r &#x3E; 0 independent of ~,, such that TA satisfies
(13) with 8 * _ ± 0 À. Then such 0 A gives rise, through Theorem 4, to a
critical point 0g (E) on ZE and hence to a solution vE with
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Since we can also take r such that 0 g - r &#x3E; 0, this solution is asymmetric.
Similar argument for - 0 A. For future reference, let us indicate how we
can find in this frame the symmetric solution. Since is even, the value
B = 0 is a critical point of r À. for any 1 &#x3E; 0 and taking into account that
w(E , 0 ) is even respect to x, this critical point gives rise to a symmetric
solution ue of (5). It turns out that ue corresponds to a minimum of for

~,  ~, o - d, and a maximum of 7~ for I &#x3E; l o + 3..

REMARKS 6. (i) When a(x, s) = a(x) s (that includes the Akhme-
diev model case) the Melnikov primitive becomes

where A = f a(x) dx. Then l o = c 2 H/2A and for A &#x3E; I o rÂ has precisely 3
R

nondegenerate critical points given by 8 = 0 and ± 0g . The latters are
global proper minima and thus and vE --~ ~ ~, ( ~ + 8 ~, ). Let us
notice that in the model case one has ~3 0 = ~, o + q 2 + O( ~ ). The graph of
rÂ for different values of A and the dependence of 0 A on A are indicated
in figures 2 and 3 below.

(ii) We also point out that the maximum value of the function 1 - 0 g
can be arbitrarily large, provided that is sufficiently small. So, one can
get «very asymmetric» bound states, by taking the data of the problem
in such a way that = c 2 H/2A be small.

(iii) The existence of asymmetric bound states depends on the com-
bined effect of and Indeed, if either c = 0 or a * 0, the Mel-
nikov primitive r Â has for all 1 &#x3E; 0 a unique critical point at 0 = 0. There-
fore the preceding arguments show that (5) has, near Z, only symmetric
solutions. These bound states turn out to be unstable (if c = 0), or stable
(if a = 0), for all 1 &#x3E; 0, see Remark below.

Fig. 2. - Graphs of for different values of A.
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Fig. 3. - Dependence of 0 A on ). &#x3E;A 0.

5. - Remarks on stability.

Here we shortly discuss the orbital stability of solitary waves
corresponding to solutions found in Theorem 1. By «orbital

stability» we mean that a solution x) of the Schr6dinger equation
exists for all z ~ 0 and remains H 1-close to the solitary wave 
provided x ) is sufficiently near ue(x) in See, for example, [4].
Since the results will depend on the value of Å, we will emphasize the de-
pendence on A by writing uE, k, instead of uE.

We shall take a(x, s) = a(x) s. Our discussion relies on some results
of [4] which, in the present setting, can be formulated as follows.

be a solution of (5) and consider the eigenvalues 1 of the lin-
earized equation

Let N = N(u, E, À) denote the number of negative eigenvalues of (14)
and let

Then one has:

(A ) N = 1 and &#x3E; 0 implies stability;
(B) N = 1 and  0 implies instability;
(C) N = 2 and p(1) &#x3E; 0 implies instability.
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In all the cases, the rest of the spectrum of (14) is assumed to be positive
and bounded away from zero. See Theorem 2 and Section 6. D of [4]-1 for
statements (A), (B) and the Instability Theorem in [4]-II for the state-
ment (C).

In the model case, namely when a(x) = h(x) = the character-
istic function of the interval [ - d, d], the solitary wave corresponding to
the symmetric mode becomes unstable for À &#x3E; À o. Moreover, there exists
À such that the solitary wave corresponding to the asymmetric
bound state is stable for A &#x3E; ~.1 and unstable for A E (~, o, A 1). See [4, 5].
Actually, one shows by a direct calculation that p(1 ) &#x3E; 0 for all À &#x3E; 0 but

is asymmetric and ~, o  ~,  ~,1, see figure 1, where we have
used the parameter {3 such that the spectral analysis,
it is carried out by a phase plane analysis. This is no more possible in the
more general case when a(x, s) = a(x) s and it will be investigated by
taking advantage of the variational approach discussed before.
We will use in the sequel the notation for the symmetric solution,

v£, ~, for the asymmetric one, and for 0,1 + 0). According to Re-
mark 6-(i) we know that

LEMMA ’7. like in Theorem 1. Then there exists 

_ ~ o ( d , A) &#x3E; 0 ( e o ~ E o ) such that for all E E ( 0 , E o ] one has

In all the cases, the rest of the spectrum is positive and bounded
away from zero.

PROOF. In the proof of this Lemma we let 0 * denote either 0 or ± 0 A.
The number of negative eigenvalues of (14), N(u, e, À) equals the dimen-
sion of the subspace where is negative defined. Let first
take E = 0 and the corresponding family of solutions zk, 0. By a straight
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calculation there results

for every ~. , 8. By the way, these relationships are related to the fact that

ZÀ,8 can be found as Mountain-Pass critical point and is degen-
erate because it appears together its translates. Let J = [ d , ~, o - a ] U
U [~, o + d , ll ]. Since the preceding inequalities are uniform for 
then, after a small perturbation, one has for all A E J:

as well as

Next, using the properties of G and the fact that 0 g (E ) - 0 * as E - 0, one
can show, see Lemma 3.2 of [3]:

According to Remark 6-(i), the critical points 0 * are nondegenerate for
A E J and hence (15) yields

provided e is sufficiently small. Recalling that corresponds to a non-
degenerate minimum (maximum) of r À provided that ~, E [ ~ , ~, o - d ]
(,1 E + ~ , A]), while vE, ~, always corresponds to nondegenerate mini-
ma of rÀ for ,1 E [l o + 3 , A], the Lemma follows.

THEOREM 8. Let a(x, s) = a(x) s and h satisfy hypotheses (a - c).
Take ð, A like in Theorem 1 and suppose, like in the model case,

that
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while

for some ~,1= ~,1 ( E ) E (~, o + d , ~l ). Then:

1) the solitary waves corresponding to symmetric bound states
u~, ~, are stable for A E [ 6, Ào - d ], and unstable for À e [A 0 + ~ , ~l ]

2) the solitary waves corresponding to asymmetric bound states
v,, A are unstable for A e [~, 0 + ð, A 1) and stable for A e (A 1, ~l ].

PROOF. If ue,À=ue,À we have that &#x3E; 0 Vl &#x3E; 0 . Moreover, by
Lemma 7-1) we infer

Thus (A), resp. (C), implies stability, resp. instability. Lem-

ma 7-2) yields N = 1. Moreover, one has

In the former case (B) implies instability, while in the latter stability fol-
lows from (A)..

REMARK 9. Completing Remark 6-(iii), we point out that if either
c = 0 or a = 0, the unique critical point 0 = 0 of rA is a maximum, respect-
ively a minimum, and hence the corresponding (symmetric) solution is
unstable, respectively stable.
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