RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

A. AMBROSETTI

D. ARCOYA

J. L. GÁMEZ

Asymmetric bound states of differential equations in nonlinear optics

Rendiconti del Seminario Matematico della Università di Padova, tome 100 (1998), p. 231-247

http://www.numdam.org/item?id=RSMUP 1998 100 231 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1998, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\mathsf{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Asymmetric Bound States of Differential Equations in Nonlinear Optics (*).

A. Ambrosetti (**) - D. Arcoya (***) - J. L. Gámez (***)

1. - Introduction.

Bound states of a nonlinear Schrödinger equation modelling propagation in a medium with dielectric function n^2 can be found as solutions of a differential equation of the type

(1)
$$-u''(x) + \beta^2 u(x) = n^2(x, u^2(x)) u(x), \quad x \in \mathbb{R},$$

that decay to zero at infinity, namely satisfying

(2)
$$\lim_{|x|\to\infty} u(x) = \lim_{|x|\to\infty} u'(x) = 0.$$

Actually, solutions u of (1)-(2) correspond to the eigenstate

$$E(x,z)=e^{i\beta z}u(x)$$

propagating in the direction z and with waveguide index $\beta > 0$, see [7] (actually in such a paper the equations are Maxwell's). In particular, we

^(*) Work supported by M.U.R.S.T. National Project "Problemi non lineari...", by D.G.E.S. Ministerio de Educación y Ciencia PB95-1190 and by E.E.C. contract n. ERBCHRXCT940494.

^(**) Indirizzo dell'A.: S.I.S.S.A., Via Beirut 2-4, 34013 Trieste.

^(***) Indirizzo degli AA.: Dep. Análisis Matemático, Univ. de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.

are interested in the case considered in [1] when there is an internal layer with a linear response while the external medium is nonlinear and self-focusing. More precisely, the dielectric function n^2 is taken of the form

(3)
$$n^{2}(x, s) = \begin{cases} q^{2} + c^{2} & \text{if } |x| < d, \\ q^{2} + s & \text{if } |x| > d, \end{cases}$$

where $q, c \in \mathbb{R}$ and d>0 denotes the thickness of the internal layer. In spite of the fact that the problem inherits a symmetry, it has been shown in [1] that at certain value $\beta=\beta_0$ a family of asymmetric solutions of (1)-(2) bifurcates from the the branch of the symmetric ones. The stability analysis has been carried out in [4,5]: the symmetric states become unstable for $\beta>\beta_0$, while the asymmetric states are the stable ones for β greater than a certain $\beta_1>\beta_0$, see figure 1 below. Both the preceding results rely on the fact that the nonlinearity n^2 in (3) is piece-wise linear and independent of x and this specific feature permits to solve (1) explicitely.

The purpose of this Note is to investigate the same phenomenon described above for a class of equations (1) that, unlike the cited papers, cannot be integrated directly. We consider the case that the internal layer is thin and n^2 is still symmetric but has a rather general form and show the existence of asymmetric bound states of (1) provided d is sufficiently small, see Theorem 1. To achieve this result we use a method, variational in nature, discussed in some recent papers, see [2, 3], and related to the Poincaré-Melnikov theory of homoclinics. This abstract set up allows us also to discuss, for a slightly less general class of n^2 (but still including the model case (3)), the orbital stability of these bound states, see Theorem 8.

Fig. 1. – The curve in bold represents the aymmetric solutions.

2. - The main result.

Motivated by the preceding discussion, let us consider a thin layer of thickness $d = \varepsilon$ and a dielectric function of the type

$$n^{2}(x, s) = n_{L}^{2}(x) + n_{NL}^{2}(x, s),$$

with

(4)
$$\begin{cases} n_L^2(x) = q^2 + c^2 h(x/\varepsilon) \\ n_{NL}^2(x, s) = s - a(x/\varepsilon, s) \end{cases}$$

We shall assume that $h: \mathbb{R} \to \mathbb{R}$ and $\alpha: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ satisfy:

- (a) h is an even function, with $h(x) \ge 0$, $h \ne 0$ and $h(x) \in L^1(\mathbb{R})$;
- (b) α is even, with respect to $x \in \mathbb{R}$, with $\alpha(x, \cdot) \in C^1(\mathbb{R}^+)$, $\forall x \in \mathbb{R}$, and $\alpha(x, 0) \equiv 0$.
- (c) There exists $\sigma > 0$ and $k \in L^1(\mathbb{R})$ such that $|\alpha'_s(x, s)| \leq k(x)s^{\sigma}$ $\forall s \geq 0$. Moreover, letting

$$a(s) = \int_{-\infty}^{+\infty} \alpha(x, s) \ dx,$$

one has that a(s) is increasing and $a(s) \to +\infty$ as $s \to +\infty$.

We remark here that it is possible to change in the hypothesis (c) the power s^{σ} by any continuous function in s, and all the subsequent calculations remain valid.

To be consistent with the physical problem, h, α should also be such that n_L^2 is non-increasing and $n_{NL}^2(x,s)$ is non-decreasing in x>0 and s>0. However, we do not need such assumptions here. Letting $\chi(x)$ denote the characteristic function of [-1,1], the dielectric function n^2 fits into the Akhmediev setting provided

$$h(x) = \chi(x), \qquad \alpha(x, s) = \chi(x) \cdot s$$

and corresponds to a layered medium with dielectric function given by (3), with $d = \varepsilon$.

Substituting (4) into (1) and setting $\lambda = \beta^2 - q^2$, we find the equation

(5)
$$-u'' + \lambda u = u^3 + c^2 h(x/\varepsilon) u - \alpha(x/\varepsilon, u^2) u.$$

Solutions of (5) that decay at zero at infinity, namely satisfying (2), will be henceforth called *bound states*.

Equation (5) will be seen as a perturbation of

$$-u'' + \lambda u = u^3.$$

For all $\lambda > 0$, (6) has the positive symmetric solution

$$\phi_{\lambda}(x) = \sqrt{2\lambda}/\cosh(\sqrt{\lambda}x),$$

together with all its translates

$$\phi_{\lambda}(x+\theta), \quad \theta \in \mathbb{R}$$
.

To state our main result some further notation is in order. From (a), we can define

$$H = \int_{-\infty}^{+\infty} h(x) dx \in (0, +\infty).$$

From assumption (c) it follows that the equation

(7)
$$a(2\lambda) \equiv \int_{-\infty}^{+\infty} \alpha(x, 2\lambda) \, dx = c^2 H$$

has a unique solution $\lambda_0 = \lambda_0(c) > 0$.

THEOREM 1. Suppose that (a-c) hold and take δ , $\Lambda > 0$ such that $0 < \delta < \lambda_0 - \delta < \lambda_0 + \delta < \Lambda$. Then there exists $\varepsilon_0 = \varepsilon_0(\delta, \Lambda) > 0$ such that for all $\varepsilon \in (0, \varepsilon_0)$, one has:

1) for all $\lambda \in [\delta, \Lambda]$, equation (5) has a symmetric bound state $\overline{u}_{\varepsilon}$, which satisfies

$$\lim_{\varepsilon \to 0} \overline{u}_{\varepsilon} = \phi_{\lambda} \quad \text{in } H^{1}(\mathbb{R})$$

2) for all $\lambda \in [\lambda_0 + \delta, \Lambda]$, equation (5) has, in addition, a pair of asymmetric bound states v_{ε}^{\pm} such that

$$\lim_{\varepsilon \to 0} v_{\varepsilon}^{\pm}(x) = \phi_{\lambda}(x \pm \theta_{\lambda}) \quad \text{in } H^{1}(\mathbb{R})$$

for some $\theta_{\lambda} > 0$.

The existence of the symmetric solution is well known, even in a much greater generality, see [7]. The existence of the asymmetric sol-

utions will be proved in the sequel by means of some variational arguments introduced in [2, 3].

3. - Poincaré-Melnikov method.

We will prove Theorem 1 by using the results discussed in [2,3] which are concerned with the existence of critical points of perturbed functionals of the form

(8)
$$f_{\varepsilon}(u) = \frac{1}{2} ||u||^2 - F(u) + G(\varepsilon, u).$$

We assume that the reader is familiar with the cited papers. To put our problem into the preceding abstract frame, let us consider the Hilbert space $E = H^1(\mathbb{R})$ equipped with scalar product

$$(u|v) = \int_{\mathbb{R}_2} [u'v' + \lambda uv] dx$$

and norm $||u||^2 = (u|u)$ and define

$$F(u) = \frac{1}{4} \int_{\mathbf{D}} u^4.$$

Obviously, $F \in C^{\infty}(E, \mathbb{R})$. Critical points of $f_0(u) = 1/2 ||u||^2 - F(u)$ are the bound states of the unperturbed problem (6). As remarked before, the functional f_0 has, for any fixed $\lambda > 0$, a one parameter family of critical points $Z = \{z_{\theta} = \phi_{\lambda}(\cdot + \theta) \mid \theta \in \mathbb{R}\}$. Such a Z is a smooth one dimensional manifold and the following non-degeneracy condition (see [6, p. 226]) is satisfied:

(9)
$$\operatorname{Ker} f_0''(z_\theta) = \operatorname{span} \{z_\theta'\}, \quad \forall z_\theta \in Z.$$

Furthermore, since ϕ_{λ} decays exponentially to zero at infinity, then it is easy to see that for all $z \in Z$ the linear map F''(z) is compact. Here, as usual, F''(z) is defined by setting

$$(F''(z) v | w) = D^2 F(z)[v, w].$$

In order to introduce the perturbation term G let us set

(10)
$$W(y, u) = \int_{0}^{u} \alpha(y, s) ds - c^{2}h(y) u.$$

Notice that $W(y, u^2(y))$ is in L^1 by hypotheses (a) and (c) and the inclusion $E \subset L^{\infty}(\mathbb{R})$. Furthermore, the change of variable $x = \varepsilon y$ yields:

$$\int\limits_{\mathbb{R}} W\left(\frac{x}{\varepsilon}, u^{2}(x)\right) dx = \varepsilon \int\limits_{\mathbb{R}} W(y, u^{2}(\varepsilon y)) dy.$$

We set

$$\widetilde{G}(\varepsilon, u) = \frac{1}{2} \int_{\mathbf{p}} W(y, u^{2}(\varepsilon y)) dy$$

and

$$G(\varepsilon,\,u) = \left\{ \begin{array}{ll} \varepsilon \, \widetilde{G}(\varepsilon,\,u) & \text{ if } \varepsilon \neq 0 \,, \\ 0 & \text{ if } \varepsilon = 0 \,. \end{array} \right.$$

With this notation, it turns out that bound states of (5) are the critical points of the Euler functional f_{ε} defined in (8).

Let $G'(\varepsilon, u)$ and $G''(\varepsilon, u)$ be defined by setting

$$\begin{split} \left(G'(\varepsilon,\,u)\,\big|\,v\right) &= D_u\,G(\varepsilon,\,u)[v]\,, \qquad \forall v\in E\,\,, \\ \\ \left(G''(\varepsilon,\,u)\,v\,\big|\,w\right) &= D_{uu}\,G(\varepsilon,\,u)[v,\,w]\,, \qquad \forall v,\,w\in E\,\,. \end{split}$$

LEMMA 2. $G \in C(\mathbb{R} \times E, \mathbb{R})$ and G(0, u) = 0 for all $u \in E$. Furthermore the following conditions hold:

(G₁) G is of class C^2 with respect to $u \in E$, G'(0, u) = 0 and G''(0, u) = 0 for all $u \in E$;

 (G_2) the maps $(\varepsilon, u) \mapsto G'(\varepsilon, u)$ and $(\varepsilon, u) \mapsto G''(\varepsilon, u)$ are continuous as maps from $\mathbb{R} \times E$ to E, repectively to L(E, E);

 (G_3) for all $z \in Z$ the map $\varepsilon \mapsto \widetilde{G}(\varepsilon, z)$ (and hence $\varepsilon \mapsto G(\varepsilon, z)$) is C^1 .

PROOF. Let $\varepsilon_n \to \varepsilon$ in \mathbb{R} and $u_n \to u$ in E. From the embedding of E into $C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ we deduce that for every $y \in \mathbb{R}$,

$$|u_n(\varepsilon_n y) - u(\varepsilon y)| \le |u_n(\varepsilon_n y) - u(\varepsilon_n y)| + |u(\varepsilon_n y) - u(\varepsilon y)| \to 0$$

whence

$$W(y, u_n^2(\varepsilon_n y)) \rightarrow W(y, u^2(\varepsilon y))$$

for all $y \in \mathbb{R}$. Since

$$\begin{split} \left|W(y,\,u_n^2(\varepsilon_ny)) - W(y,\,u^2(\varepsilon y))\right| &\leqslant \\ &\leqslant \frac{k(y)}{(\sigma+1)(\sigma+2)} \big[\left|u_n(\varepsilon_ny)\right|^{2\sigma+4} + \left|u(\varepsilon y)\right|^{2\sigma+4}\big] + \\ &\quad + c^2 h(y) \big[\left|u_n(\varepsilon_ny)\right|^2 + \left|u(\varepsilon y)\right|^2\big] &\leqslant C_1 [k(y) + h(y)] \in L^1(\mathbb{R}), \end{split}$$

one immediately deduces that $G(\varepsilon_n, u_n) \rightarrow G(\varepsilon, u)$.

By straight calculation we find

$$D_u G(\varepsilon, u)[v] = \varepsilon \int_{\mathbb{R}} W_u(y, u^2(\varepsilon y)) u(\varepsilon y) v(\varepsilon y) dy ,$$

$$D_{uu}G(\varepsilon,\,u)[v,\,w] = 2\,\varepsilon\int\limits_{\mathbb{R}} W_{uu}(y,\,u^{\,2}(\varepsilon y))\,u^{\,2}(\varepsilon y)\,v(\varepsilon y)\,w(\varepsilon y)\,dy \,+\,$$

$$+ \varepsilon \int_{\mathbb{R}} W_u(y, u^2(\varepsilon y)) v(\varepsilon y) w(\varepsilon y) dy$$
,

for every $v, w \in E$, and (G_1) follows directly.

The proof of (G_2) relies on the arguments of Lemma 4.1 of [3]. Let us prove the continuity of $(\varepsilon, u) \mapsto G'(\varepsilon, u)$. We have to show that

$$\|G'(\varepsilon_n, u_n) - G'(\varepsilon, u)\| = \sup_{\|v\| \le 1} |D_u G(\varepsilon_n, u_n)[v] - D_u G(\varepsilon, u)[v]| \to 0.$$

Setting

$$S_n(y) = \varepsilon_n W_u(y, u_n^2(\varepsilon_n y)) u_n(\varepsilon_n y)$$
 and $S(y) = \varepsilon W_u(y, u^2(\varepsilon y)) u(\varepsilon y)$,

there results

$$\begin{split} \left| S_n(y) \ v(\varepsilon_n y) - S(y) \ v(\varepsilon y) \right| \leqslant \\ \leqslant \left| S_n(y) \ v(\varepsilon_n y) - S_n(y) \ v(\varepsilon y) \right| + \left| S_n(y) \ v(\varepsilon y) - S(y) \ v(\varepsilon y) \right| \leqslant \\ \leqslant \left| S_n(y) \right| \cdot \left| v(\varepsilon_n y) - v(\varepsilon y) \right| + \left\| v \right\|_{\infty} \left| S_n(y) - S(y) \right|. \end{split}$$

Hence we find, for all $||v|| \le 1$,

$$\begin{split} |D_u G(\varepsilon_n, u_n)[v] - D_u G(\varepsilon, u)[v]| &= \left| \int_{\mathbb{R}} (S_n(y) \ v(\varepsilon_n y) - S(y) \ v(\varepsilon y)) dy \right| \leq \\ &\leq \int_{\mathbb{R}} |S_n(y)| \cdot |v(\varepsilon_n y) - v(\varepsilon y)| dy + \|v\|_{\infty} \int_{\mathbb{R}} |S_n(y) - S(y)| dy \;. \end{split}$$

From this and since

$$|S_n(y)| \le C_2[k(y) + h(y)] \equiv C_2 \gamma(y) \in L^1,$$

we deduce:

$$\begin{split} \left\|G^{\,\prime}(\varepsilon_{\,n},\,u_{n})-G^{\,\prime}(\varepsilon,\,u)\,\right\| &= \sup_{\|v\|\,\leqslant\,1} \left|D_{u}\,G(\varepsilon_{\,n},\,u_{n})[v]-D_{u}\,G(\varepsilon,\,u)[v]\,\right| \leqslant \\ &\leqslant C_{2} \sup_{\|v\|\,\leqslant\,1} \int\limits_{\mathbf{P}} \left|\gamma(y)\,\right| \cdot \left|v(\varepsilon_{\,n}\,y)-v(\varepsilon y)\,\right| dy + C_{3} \int\limits_{\mathbf{P}} \left|S_{n}(y)-S(y)\,\right| dy\;. \end{split}$$

Clearly, the latter integral tends to zero. As for the former, it can be uniformly estimated using the fact that $E \in C^{0, \nu}$ for any $\nu \in (0, 1/2)$. Indeed, for any M > 0 and any $\|v\| \le 1$ we find

$$\begin{split} \int\limits_{\mathbb{R}} |\gamma(y)| \cdot |v(\varepsilon_n y) - v(\varepsilon y)| \, dy &\leqslant \\ &\leqslant C_4 \|v\|_{C^{0,\,\nu}} |\varepsilon_n - \varepsilon|^{\nu} \int\limits_{|y| \,\leqslant M} |y^{\,\nu} \gamma(y)| \, dy + C_5 \|v\|_{\infty} \int\limits_{|y| \,\geqslant M} \gamma(y) \, dy \leqslant \\ &\leqslant C_6 \, |\varepsilon_n - \varepsilon|^{\nu} \int\limits_{|y| \,\leqslant M} |y^{\,\nu} \gamma(y)| \, dy + C_7 \int\limits_{|y| \,\geqslant M} \gamma(y) \, dy \;. \end{split}$$

Taking limits as $n \to \infty$ we infer

$$\lim_{(\varepsilon_n, u_n) \to (\varepsilon, u)} \|G'(\varepsilon_n, u_n) - G'(\varepsilon, u)\| \leq C_7 \int_{|y| \geq M} \gamma(y) \, dy.$$

Since M is arbitrary and $\gamma \in L^1$, it follows that

$$||G'(\varepsilon_n, u_n) - G'(\varepsilon, u)|| \rightarrow 0$$
,

as required. The continuity of G'' follows in a similar way.

Finally, to prove (G_3) it suffices to evaluate formally

$$D_{\varepsilon}\widetilde{G}(\varepsilon,\,u) = \int\limits_{\mathbb{R}} W_u(y,\,u^2(\varepsilon y))\,u(\varepsilon y)\,u'(\varepsilon y)\,y\,dy\;,$$

and to observe that for $u = z_{\theta}$ we have from (a) and (c)

$$\left| \left. W_u(y,\, z_\theta^{\, 2}(\varepsilon y)) \, z_\theta(\varepsilon y) \, z_\theta'(\varepsilon y) \, y \, \right| \leqslant \frac{k(y)}{\sigma + 1} \, z_\theta^{\, 2\sigma + 3} \, \left| z_\theta' \, y \, \right| + c^{\, 2} h(y) \, z_\theta \, \left| z_\theta' \, y \, \right| \leqslant$$

$$\leq C_8[k(y) + h(y)] \in L^1(\mathbb{R}).$$

Thus, the theorem of derivation under the integral sign implies the assertion. ■

By Lemma 2, f_{ε} can be faced by the abstract setting discussed in [2,3]. For the reader convenience, let us sketch the procedure. First, we seek w orthogonal to z'_{θ} satisfying

$$f_{\varepsilon}'(z_{\theta}+w) \in \text{span } \{z_{\theta}'\}.$$

Considering the function

$$\Phi: \mathbb{R} \times \mathbb{R} \times E \times \mathbb{R} \to E \times \mathbb{R}$$
,

$$\Phi(\varepsilon, \theta, w, \zeta) = (f'_{\varepsilon}(z_{\theta} + w) - \zeta z'_{\theta}, (w|z'_{\theta})),$$

we are lead to solve $\Phi(\varepsilon, \theta, w, \zeta) = 0$. An application of the Implicit Function Theorem yields

LEMMA 3. For $\varepsilon > 0$ sufficiently small there exists a unique $w = w(\varepsilon, \theta)$, orthogonal to z'_{θ} and satisfying (11). Moreover there results

(12)
$$w(\varepsilon, \theta) = \varepsilon w_0(\theta) + o(\varepsilon),$$

and the symmetry property $w(\varepsilon, \theta)(x) = w(\varepsilon, -\theta)(-x), \forall \theta, x \in \mathbb{R}$ (in particular, $w(\varepsilon, 0)$ is an even function of $x \in \mathbb{R}$).

PROOF. For a complete proof we refer to section 2 of [2] or to section 2 of [3]. Here we only point out that (G_3) implies the differentiability of w at $(0, \theta)$ and this gives rise to (20) with $w_0(\theta) = (\partial w/\partial \varepsilon)(0, \theta)$. Moreover, taking into account that h and α are even function with respect to $x \in \mathbb{R}$, one infers that the function $x \mapsto w(\varepsilon, -\theta)(-x)$ satisfies also the requirements for $w(\varepsilon, \theta)$, and the symmetry property follows.

Setting $Z_{\varepsilon} = \{z_{\theta} + w(\varepsilon, \theta)\}$, it turns out that Z_{ε} is (locally) diffeomorphic to Z and by (11) is a *natural constraint* for f_{ε} . This means that in a neighbourhood of Z the critical points of f_{ε} coincide with the the critical points of f_{ε} constrained on Z_{ε} .

Finally, let us evaluate f_{ε} on Z_{ε} . Using (12) and recalling that $f_0(z_{\theta}) = b$ as well as $f_0'(z_{\theta}) = 0$, for all $\theta \in \mathbb{R}$, there results:

$$f_{\varepsilon}(z_{\theta}+w) = f_0(z_{\theta}+w) + G(\varepsilon, z_{\theta}+w) =$$

$$= f_0(z_\theta) + \varepsilon f_0'(z_\theta) w_0 + o(\varepsilon) + \varepsilon [\widetilde{G}(\varepsilon, z_\theta) + O(\varepsilon)] = b + \varepsilon \widetilde{G}(\varepsilon, z_\theta) + o(\varepsilon).$$

As a consequence of (G_3) we infer $\tilde{G}(\varepsilon, z_{\theta}) = \Gamma(\theta) + O(\varepsilon)$, where

$$\Gamma(\theta) = \widetilde{G}(0, z_{\theta}) = \frac{1}{2} \int_{\mathbb{R}} W(y, z_{\theta}^{2}(0)) dy$$

and this yields

$$f_{\varepsilon}(z_{\theta}+w)=b+\varepsilon\Gamma(\theta)+o(\varepsilon)$$
.

In conclusion, we can state the following result:

Theorem 4. Suppose that there exist r > 0 and $\theta^* \in \mathbb{R}$ such that

$$(13) \quad either \ \Gamma(\theta^*) < \min_{|\theta - \theta^*| = r} \Gamma(\theta), \qquad or \ \Gamma(\theta^*) > \max_{|\theta - \theta^*| = r} \Gamma(\theta).$$

Then, for $\varepsilon > 0$ sufficiently small, there exists θ_{ε} , with $|\theta_{\varepsilon} - \theta^*| \leq r$, such that f_{ε} has a critical point u_{ε} of the form $u_{\varepsilon}(x) = z_{\theta_{\varepsilon}} + O(\varepsilon)$.

REMARKS 5. (i) Theorem 3.3 is prompted for the application to the specific problem discussed here. For more general abstract results, we refer to [2,3].

- (ii) If Γ has a proper local minimum (or maximum) at θ^* , then $\theta_{\varepsilon} \to \theta^*$ as $\varepsilon \to 0$.
- (iii) The function Γ is nothing but the primitive of the Melnikov function associated to (5). \blacksquare

4. - Proof of Theorem 1.

In order to apply Theorem 4 to our equation, we first recall that for the Melnikov primitive there results:

$$\varGamma(\theta) = \varGamma_{\lambda}(\theta) = \frac{1}{2} \int\limits_{\mathbb{R}} W(y, \, z_{\theta}^2(0)) \, dy = \frac{1}{2} \int\limits_{\mathbb{R}} W(y, \, \phi_{\lambda}^2(\theta)) \, dy$$

where we have used again the notation ϕ_{λ} to indicate the solutions of (6). Observe that

$$\Gamma_{\lambda}''(0) = \phi_{\lambda}(0) \ \phi_{\lambda}''(0) \left[\int_{-\infty}^{+\infty} \alpha(y, \phi_{\lambda}^{2}(0)) dy - c^{2} H \right] = -2\lambda^{2} [a(2\lambda) - c^{2} H].$$

Therefore $\Gamma''_{\lambda}(0) < 0$ whenever $\lambda > \lambda_0$. Observe also that

$$\begin{split} \varGamma_{\lambda}(\theta) &= \frac{1}{2} \int\limits_{\mathbb{R}} \left(\int\limits_{0}^{\phi_{\lambda}^{2}(\theta)} \alpha(y,\,s) \,ds - c^{\,2}\,h(y)\,\phi_{\,\lambda}^{\,2}(\theta) \right) dy = \\ &= \frac{1}{2} \left[\int\limits_{\mathbb{R}} \int\limits_{0}^{\phi_{\lambda}^{\,2}(\theta)} \alpha(y,\,s) \,ds \,dy - c^{\,2}\,\phi_{\,\lambda}^{\,2}(\theta) \int\limits_{\mathbb{R}} h(y) \,dy \right] = \\ &= \frac{1}{2} \phi_{\,\lambda}^{\,2}(\theta) \left[\int\limits_{\mathbb{R}} \int\limits_{0}^{1} \alpha(y,\,\phi_{\,\lambda}^{\,2}(\theta)\,t) \,dt \,dy - c^{\,2}\,H \right]. \end{split}$$

Then, one easily infers that

$$\lim_{\theta \to \pm \infty} \Gamma_{\lambda}(\theta) = 0 ,$$

with $\Gamma_{\lambda}(\theta) < 0$ for large values of $|\theta|$. It follows that the Melnikov primitive Γ_{λ} has, for these values of λ , 2 global minima $\theta_{\lambda} > 0$ and $-\theta_{\lambda}$. If $\lambda \in [\lambda_0 + \delta, \Lambda]$ there exists r > 0 independent of λ , such that Γ_{λ} satisfies (13) with $\theta^* = \pm \theta_{\lambda}$. Then such θ_{λ} gives rise, through Theorem 4, to a critical point $\theta_{\lambda}(\varepsilon)$ of f_{ε} on Z_{ε} and hence to a solution v_{ε} with

$$v_{\varepsilon}(x) \simeq \phi_{\lambda}(x + \theta_{\lambda}(\varepsilon))$$
.

Since we can also take r such that $\theta_{\lambda} - r > 0$, this solution is asymmetric. Similar argument for $-\theta_{\lambda}$. For future reference, let us indicate how we can find in this frame the symmetric solution. Since Γ_{λ} is even, the value $\theta = 0$ is a critical point of Γ_{λ} for any $\lambda > 0$ and taking into account that $w(\varepsilon, 0)$ is even respect to x, this critical point gives rise to a symmetric solution $\overline{u}_{\varepsilon}$ of (5). It turns out that $\overline{u}_{\varepsilon}$ corresponds to a minimum of Γ_{λ} for $\lambda < \lambda_0 - \delta$, and a maximum of Γ_{λ} for $\lambda > \lambda_0 + \delta$.

Remarks 6. (i) When a(x, s) = a(x) s (that includes the Akhmediev model case) the Melnikov primitive becomes

$$\Gamma_{\lambda}(\theta) = \frac{1}{4} A \phi_{\lambda}^{4}(\theta) - \frac{1}{2} c^{2} H \phi_{\lambda}^{2}(\theta),$$

where $A=\int\limits_{\mathbb{R}}\alpha(x)\;dx$. Then $\lambda_0=c^2H/2A$ and for $\lambda>\lambda_0$ Γ_λ has precisely 3 nondegenerate critical points given by $\theta=0$ and $\pm\,\theta_\lambda$. The latters are global proper minima and thus $\theta_\lambda(\varepsilon)\to\theta_\lambda$ and $v_\varepsilon\to\phi_\lambda(\cdot+\theta_\lambda)$. Let us notice that in the model case one has $\beta_0^2=\lambda_0+q^2+O(\varepsilon)$. The graph of Γ_λ for different values of λ and the dependence of θ_λ on λ are indicated in figures 2 and 3 below.

- (ii) We also point out that the maximum value of the function $\lambda \mapsto \theta_{\lambda}$ can be arbitrarily large, provided that λ_0 is sufficiently small. So, one can get «very asymmetric» bound states, by taking the data of the problem in such a way that $\lambda_0 = c^2 H/2A$ be small.
- (iii) The existence of asymmetric bound states depends on the combined effect of αu^3 and $c^2 hu$. Indeed, if either c=0 or $\alpha \equiv 0$, the Melnikov primitive Γ_{λ} has for all $\lambda > 0$ a unique critical point at $\theta = 0$. Therefore the preceding arguments show that (5) has, near Z, only symmetric solutions. These bound states turn out to be unstable (if c=0), or stable (if $\alpha \equiv 0$), for all $\lambda > 0$, see Remark below.

Fig. 2. – Graphs of $\Gamma_{\lambda}(\theta)$ for different values of λ .

Fig. 3. – Dependence of θ_{λ} on $\lambda > \lambda_0$.

5. - Remarks on stability.

Here we shortly discuss the orbital stability of solitary waves $e^{i\lambda z}u_{\varepsilon}(x)$ corresponding to solutions found in Theorem 1. By «orbital stability» we mean that a solution $\psi(z,x)$ of the Schrödinger equation exists for all $z \ge 0$ and remains H^1 -close to the solitary wave $e^{i\lambda z}u_{\varepsilon}(x)$ provided $\psi(0,x)$ is sufficiently near $u_{\varepsilon}(x)$ in H^1 . See, for example, [4]. Since the results will depend on the value of λ , we will emphasize the dependence on λ by writing $u_{\varepsilon,\lambda}$ instead of u_{ε} .

We shall take a(x, s) = a(x) s. Our discussion relies on some results of [4] which, in the present setting, can be formulated as follows.

Let $u_{\varepsilon,\,\lambda}$ be a solution of (5) and consider the eigenvalues l of the linearized equation

$$(14) -v'' + \lambda v - \left(3 u_{\varepsilon, \lambda}^2 + c^2 h\left(\frac{x}{\varepsilon}\right) - 3 \alpha \left(\frac{x}{\varepsilon}\right) u_{\varepsilon, \lambda}^2\right) v = lv.$$

Let $N = N(u, \varepsilon, \lambda)$ denote the number of negative eigenvalues of (14) and let

$$\mu(\lambda) := \frac{\partial}{\partial \lambda} \int_{\mathbb{R}} |u_{\varepsilon, \lambda}(x)|^2 dx.$$

Then one has:

- (A) N = 1 and $\mu(\lambda) > 0$ implies stability;
- (B) N = 1 and $\mu(\lambda) < 0$ implies instability;
- (C) N = 2 and $\mu(\lambda) > 0$ implies instability.

In all the cases, the rest of the spectrum of (14) is assumed to be positive and bounded away from zero. See Theorem 2 and Section 6. D of [4]-I for statements (A), (B) and the Instability Theorem in [4]-II for the statement (C).

In the model case, namely when $\alpha(x) = h(x) = \chi(x/d)$, the characteristic function of the interval [-d,d], the solitary wave corresponding to the symmetric mode becomes unstable for $\lambda > \lambda_0$. Moreover, there exists $\lambda_1 > \lambda_0$ such that the solitary wave corresponding to the asymmetric bound state is stable for $\lambda > \lambda_1$ and unstable for $\lambda \in (\lambda_0, \lambda_1)$. See [4, 5]. Actually, one shows by a direct calculation that $\mu(\lambda) > 0$ for all $\lambda > 0$ but when $u_{\varepsilon,\lambda}$ is asymmetric and $\lambda_0 < \lambda < \lambda_1$, see figure 1, where we have used the parameter β such that $\lambda = \beta^2 - q^2$. As for the spectral analysis, it is carried out by a phase plane analysis. This is no more possible in the more general case when $\alpha(x,s) = \alpha(x)s$ and it will be investigated by taking advantage of the variational approach discussed before.

We will use in the sequel the notation $\overline{u}_{\varepsilon,\lambda}$ for the symmetric solution, $v_{\varepsilon,\lambda}$ for the asymmetric one, and $z_{\lambda,0}$ for $\phi_{\lambda}(\cdot + \theta)$. According to Remark 6-(i) we know that

$$\overline{u}_{\varepsilon,\lambda} = z_{\lambda,0} + O(\varepsilon), \qquad v_{\varepsilon,\lambda} = z_{\lambda,\theta_{\lambda}} + O(\varepsilon).$$

LEMMA 7. Take δ , Λ like in Theorem 1. Then there exists $\varepsilon'_0 = \varepsilon'_0(\delta, \Lambda) > 0$ ($\varepsilon'_0 \leq \varepsilon_0$) such that for all $\varepsilon \in (0, \varepsilon'_0]$ one has

- 1) if $u_{\varepsilon,\lambda} = \overline{u}_{\varepsilon,\lambda}$,
 - (a) $\lambda \in [\delta, \lambda_0 \delta] \Rightarrow N = 1$;
 - (b) $\lambda \in [\lambda_0 + \delta, \Lambda] \Rightarrow N = 2$;
- 2) if $u_{\varepsilon,\lambda} = v_{\varepsilon,\lambda}$ and $\lambda \in [\lambda_0 + \delta, \Lambda]$ then N = 1.

In all the cases, the rest of the spectrum is positive and bounded away from zero.

PROOF. In the proof of this Lemma we let θ^* denote either 0 or $\pm \theta_{\lambda}$. The number of negative eigenvalues of (14), $N(u, \varepsilon, \lambda)$ equals the dimension of the subspace where $D^2 f_{\varepsilon, \lambda}(u_{\varepsilon, \lambda})$ is negative defined. Let first take $\varepsilon = 0$ and the corresponding family of solutions $z_{\lambda, \theta}$. By a straight

calculation there results

$$\begin{split} &D^2 f_{0,\,\lambda}(z_{\lambda,\,\theta})[z_{\lambda,\,\theta},\,z_{\lambda,\,\theta}] < 0\;,\\ &D^2 f_{0,\,\lambda}(z_{\lambda,\,\theta})[z_{\lambda',\,\theta}',\,z_{\lambda',\,\theta}'] = 0\;,\\ &D^2 f_{0,\,\lambda}(z_{\lambda,\,\theta})[v,\,v] > 0\;,\qquad \forall v\perp \mathrm{span}\,\{z_{\lambda,\,\theta},\,z_{\lambda',\,\theta}'\},\;\;v\neq 0\;, \end{split}$$

for every λ , θ . By the way, these relationships are related to the fact that $z_{\lambda, \theta}$ can be found as Mountain-Pass critical point of $f_{0, \lambda}$ and is degenerate because it appears together its translates. Let $J = [\delta, \lambda_0 - \delta] \cup \cup [\lambda_0 + \delta, \Lambda]$. Since the preceding inequalities are uniform for $\lambda \in J$ then, after a small perturbation, one has for all $\lambda \in J$:

$$D^2 f_{\varepsilon,\lambda}(u_{\varepsilon,\lambda})[z_{\lambda,\theta^*},z_{\lambda,\theta^*}] < 0$$
,

as well as

$$D^2 f_{\varepsilon,\lambda}(u_{\varepsilon,\lambda})[v,v] > 0$$
, $\forall v \perp \operatorname{span} \{z_{\lambda,\theta^*}, z'_{\lambda,\theta^*}\}, v \neq 0$.

Next, using the properties of G and the fact that $\theta_{\lambda}(\varepsilon) \to \theta^*$ as $\varepsilon \to 0$, one can show, see Lemma 3.2 of [3]:

(15)
$$\lim_{\varepsilon \to 0} \varepsilon^{-1} D^2 f_{\varepsilon, \lambda}(u_{\varepsilon, \lambda})[z'_{\lambda, \theta^*}, z'_{\lambda, \theta^*}] = \Gamma''_{\lambda}(\theta^*).$$

According to Remark 6-(i), the critical points θ^* are nondegenerate for $\lambda \in J$ and hence (15) yields

$$\Gamma''_{\lambda}(\theta^*) > 0 \implies D^2 f_{\varepsilon,\lambda}(u_{\varepsilon,\lambda})[z'_{\lambda,\theta^*}, z'_{\lambda,\theta^*}] > 0 ,$$

$$\Gamma''_{\lambda}(\theta^*) < 0 \implies D^2 f_{\varepsilon,\lambda}(u_{\varepsilon,\lambda})[z'_{\lambda,\theta^*}, z'_{\lambda,\theta^*}] < 0 ,$$

provided ε is sufficiently small. Recalling that $\overline{u}_{\varepsilon,\lambda}$ corresponds to a non-degenerate minimum (maximum) of Γ_{λ} provided that $\lambda \in [\delta, \lambda_0 - \delta]$ ($\lambda \in [\lambda_0 + \delta, \Lambda]$), while $v_{\varepsilon,\lambda}$ always corresponds to nondegenerate minima of Γ_{λ} for $\lambda \in [\lambda_0 + \delta, \Lambda]$, the Lemma follows.

THEOREM 8. Let $\alpha(x, s) = \alpha(x) s$ and h satisfy hypotheses (a - c). Take δ , Λ like in Theorem 1 and suppose, like in the model case, that

$$\frac{\partial}{\partial \lambda} \int_{\mathbb{R}} |\overline{u}_{\varepsilon, \lambda}(x)|^2 dx > 0, \quad \forall \lambda > 0,$$

while

$$\begin{split} &\frac{\partial}{\partial \lambda} \int\limits_{\mathbf{R}} \big| v_{\varepsilon,\,\lambda}(x) \, \big|^2 \, dx < 0 \;, \qquad \forall \lambda \in [\lambda_0 + \delta,\, \lambda_1) \,, \\ &\frac{\partial}{\partial \lambda} \int\limits_{\mathbf{R}} \big| v_{\varepsilon,\,\lambda}(x) \, \big|^2 \, dx > 0 \;, \qquad \forall \lambda \in (\lambda_1,\, \Lambda] \,, \end{split}$$

for some $\lambda_1 = \lambda_1(\varepsilon) \in (\lambda_0 + \delta, \Lambda)$. Then:

- 1) the solitary waves corresponding to symmetric bound states $\overline{u}_{\varepsilon,\lambda}$ are stable for $\lambda \in [\delta, \lambda_0 \delta]$, and unstable for $\lambda \in [\lambda_0 + \delta, \Lambda]$
- 2) the solitary waves corresponding to asymmetric bound states $v_{\varepsilon,\lambda}$ are unstable for $\lambda \in [\lambda_0 + \delta, \lambda_1)$ and stable for $\lambda \in (\lambda_1, \Lambda]$.

PROOF. If $u_{\varepsilon,\lambda} = \overline{u}_{\varepsilon,\lambda}$ we have that $\mu(\lambda) > 0 \ \forall \lambda > 0$. Moreover, by Lemma 7-1) we infer

$$N = \begin{cases} 1 & \text{if } \lambda \in [\sigma, \lambda_0 - \delta], \\ 2 & \text{if } \lambda \in [\lambda_0 + \delta, \Lambda]. \end{cases}$$

Thus (A), resp. (C), implies stability, resp. instability. If $u_{\varepsilon, \lambda} = v_{\varepsilon, \lambda}$, Lemma 7-2) yields N = 1. Moreover, one has

$$\begin{cases} \mu(\lambda) < 0 & \text{if } \lambda \in [\lambda_0 + \delta, \lambda_1), \\ \mu(\lambda) > 0 & \text{if } \lambda \in (\lambda_1, \Lambda_1). \end{cases}$$

In the former case (B) implies instability, while in the latter stability follows from (A).

REMARK 9. Completing Remark 6-(iii), we point out that if either c=0 or $\alpha\equiv 0$, the unique critical point $\theta=0$ of Γ_λ is a maximum, respectively a minimum, and hence the corresponding (symmetric) solution is unstable, respectively stable.

REFERENCES

[1] N. N. AKHMEDIEV, Novel class of nonlinear surface waves: Asymmetric modes in a symmetric layered structure, Sov. Phys. JEPT, **56** (1982), pp. 299-303.

- [2] A. Ambrosetti M. Badiale, *Homoclinics: Poincaré-Melnikov type results via a variational approach.* Annales I.H.P. Anal. Nonlin., to appear. Preliminary note on C. R. Acad. Sci. Paris, 323, Série I (1996), pp. 753-758.
- [3] A. Ambrosetti M. Badiale, Variational perturbative methods and bifurcation of bound states from the essential spectrum, Preprint Scuola Normale Superiore, March 1997, to appear.
- [4] M. GRILLAKIS J. SHATAH W. STRAUSS, Stability theory of solitary waves in the presence of symmetry I and II, Jour. Funct. Anal., 74 (1987), pp. 160-197 and 94 (1990), pp. 308-348.
- [5] C. K. R. T. Jones J. V. Moloney, Instability of standing waves in nonlinear optical waveguides, Phys. Lett. A, 117 (1986), pp. 176-184.
- [6] Y. G. OH, On positive multi-bump states of nonlinear Schrödinger equations under multiple well potentials, Comm. Math. Phys., 131 (1990), pp. 223-253.
- [7] C. STUART, Guidance properties of nonlinear planar waveguides, Arch. Rational Mech. Analysis, 125 (1993), pp. 145-200.

Manoscritto pervenuto in redazione il 24 marzo 1997.