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New Convergence Criteria
for the Newton-Kantorovich Method

and Some Applications
to Nonlinear Integral Equations.

ESPEDITO DE PASCALE (*) - PJOTR P. ZABREJKO (**)

ABSTRACT - This paper presents some new conditions for the convergence of New-
ton-Kantorovich approximations to solutions of nonlinear operator equations
in Banach spaces. The derivatives of the nonlinear operators involved are re-
quired to satisfy a rather mild continuity condition in a ball centered at the in-
itial approximation. The abstract results are illustrated by applications to
nonlinear integral equations of Uryson type in the Chebyshev space C, the
Lebesgue space and the Orlicz space LM .

1. Introduction.

The purpose of this article is two-fold. First, we are going to general-
ize some results about the convergence of certain Newton-Kantorovich

approximations discussed in [1-2]. Second, we give new applications of
both the old and new results to Uryson integral equations in Lebesgue
and Orlicz spaces.

As it was shown in [2], when applying the classical Newton-Kan-
torovich method to Uryson integral equations, one meets a strange situ-
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ation. Namely, the standard theorem on the convergence of the Newton-
Kantorovich approximations does not apply in some spaces, for instance,
in Lp-spaces for 1 ~ ~ ~ 2. This unpleasant phenomenon can be over-
come by modyfying the smoothness hypotheses in a suitable way. Some
modifications of this type have been suggested in [1]; here we propose
some new variants which works «well» if the character of continuity of
the derivative at the initial approximation is essentially better (in a sense
that will become evident in the sequel) than the general continuity of the
derivative.

The new conditions proposed below may be checked rather effective-
ly for Uryson integral equations in the spaces C and Loo. On the other
hand, the situation is worse in the spaces Lp for finite p and in Orlicz
spaces. Here we describe some class of kernel functions for which the

application of our convergence results to the corresponding Uryson
equations is natural and sufficiently effective.

Generalizations of the convergence conditions introduced in this pa-
per are in a different direction from that exposed in [1]. It is possible to
give a unified treatment of the results in [1] and in this paper. Actually,
for sake of simplicity, we prefer to confine ourselves to the variant pre-
sented here.

2. New convergence criteria for Newton-Ka,ntorovich approximations

Let X and Y be two Banach spaces, B(xo , R ) : _ ~ x : x eX, I ix - ro )) S
the closed ball centered at Xo e X with radius R &#x3E; 0, and

F : B(xo , R ) -~ Y some (nonlinear) operator. The Newton-Kantorovich
method is one of the basic tools for finding approximate solutions of the
operator equation

In the corresponding iterative scheme

one has to require, in particular, that the Frechet derivative of F at all
points rn exists and is invertible in the Banach space 2(X, Y) of all
bounded linear operators from X into Y. The nonnegative numbers
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and

will be of particular interest to us in what follows.
We suppose that the Fr6chet derivative F’ (x) of F satisfies at each

point of B( xo , R ) a condition of the form

where co : [ o , 00) ~ [0, oo) is monotonically increasing with

Moreover, we assume that there is another monotonically increasing
function 8 : [ o, ~ ) ~ [ o, ~ ) such that 0 - 0(r) % w( r), (0:::; r ~ R),
and

We define three scalar functions on [0, R] by

and

As a special case of the main theorem of [6], about the convergence of
successive approximations, we get then the following:

THEOREM 1. Suppose that the function (9) has a unique zero r * E
E [ 0, R] and that ~p(R) ~ 0. Then equation (1) has a solution x * E

E B( xo , r * ); this solution is unique in the ball B( xo , R).

As a matter of fact (see e.g. [1, 4]), under the hypotheses of Theorem
1 the Newton-Kantorovich approximations need not converge. However,
the following is true.
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LEMMA 1. Suppose that the function (10) has a unique zero E

E [ 0 , R] and that ~(R ) ~ 0 . Then the scalar sequence (rn)neN defined
by

converges monotonically to p*.

PROOF. For simplicity we consider only the case when all the scalar
functions under consideration are differentiable; the general case can be
reached with usual considerations involving monotonicity. Since Q. is

the only zero of the function (10), this function is strictly positive on
[ 0, ~o * ). The same is true for the function r H - = 1 - bFo(r),
as may be seen from the following reasoning. First of all we have

- bO’ (0) = 1. Suppose that lil ’ (j) = 0 for Since

O’(r) = w(r) - 1/b is increasing in [ 0 , R ], we have q5’(0) = 0  O’ (r) for
r E [-Q, R 1. So O is increasing and convex on [o, R]: the hypotheses

0 together with o(Q = 0 implies = Q = R, i.e. - 0’(r) &#x3E; 0 on

(0, Q Now, since 0  - bQ’ (r) = 1 - 1 - bO(r), the function Y
defined by is also strictly positive on

(0, o*).
We claim that the map + y(r) is increasing on [ 0, Q .). In fact,

its derivative satisfies for r E [ 0 , Q . )

Indeed condition - bQ’ (r)  1 - implies that 1 + b(p’ (r) /(1 -
- bO(r)) &#x3E;- 0, and the monotoniticity of 0 together with the posivity of Q
imply the validity of inequality Q(r) 8 ’ ( r) ; 0 .

Now the assertion of the lemma follows easily. In fact, the sequence
(11) is monotonically increasing and bounded above by ~:
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for rn ~ O * . Consequently, the sequence (11) converges to some r * E
E [0, Q,I. But r* = r* + 1jJ( r *) implies 1jJ( r *) = 0, that is r* = o*.

THEOREM 2. Under the hypotheses of Lemma 1 the approxima-
tions (2) are defined for all n, belong to the ball B(xo, Q . ), are convery-
ing to a solution x * of (1) and satisfy the estimates

and

PROOF. If for every n &#x3E; 0 1- rn , then for m &#x3E; n we
have I lxm - rm - rn , and consequently is Cauchy sequence
convergent to a limit x * in X, which solves equation (1) by (2) and by our
assumption on F . Clearly Ilx * - (2 * - rn and it is sufficient to prove
(12).

For n = 0 the equality (12) simply reads

which is obvious. Suppose that (12) holds for all n  I~ . This implies, in
particular, that

Now, by definition (2), we have:
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We conclude that

But the definition (8) of the function 65 implies that cv(r - s)  w(r) -
- 0(s), hence

This shows that (12) holds for n = k as well, and so the proof is

complete.

Theorem 2 can be extended in a standard way (see [1]) by replacing
the assumption on the function (10) by the assumption that the sequence
(11) converges. This extension, however, is not very effective; we there-
fore just formulate the corresponding result without proof:

THEOREM 3. Suppose that the sequence (rn)n given by (11) con-
verges to some limit roo (a). Then the approximations (2) are defined for
all n, belong to the ball B(xo , ( a ) ) , and satisfy the estimates (12) and
(13).

Our Theorems 1-3 are generalizations of the Theorems 1-3 contained
in [ 1 ] which may be obtained by the special choice 0(r) = 

When 0(r) cv(r) the approximations (2) coincide with the classical
ones studied by Kantorovich, Vertgeim and others. When 0(r) is a

costant in (0, 1 ), our conditions coincide with the so-called Mysovskikh
conditions ([11]). We remark that the usefulness of Theorem 2 consists
in reducing the (hard) problem of finding zeros of a nonlinear operator in
a Banach space to the (possibly simpler) problem of finding zeros of a
scalar function.
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3. Integral equations of Uryson type.

The purpose of this section is to discuss and illustrate various aspects
of our preceding Theorems 1-3 by means of the nonlinear integral
equation

We suppose that the Uryson integral operator

defined by the right-hand side of (14) acts in some Banach space X; thus
we may put Y = X and write equation (14) in the form (1) with

We shall assume throughout that ,S~ is a compact set in the Euclidean
space, and k: Carath6odory function (i.e. 1~( ~ , ~ , u) is
measurable on Q x Q, and k(t, s , ~ ) is continuous on R ). Moreover, we
suppose that the derivative

exists and is also a Carath6odory function. We point out, however, that
the results of this section carry over,without essential changes, also to
arbitrary sets Q, equipped with some o-algebra a of measurable subsets
and some countably additive measure; in particular, our results are true
for infinite systems of nonlinear equations.

For simplicity, we choose xo = 0 in this and in the following sections;
the case of arbitrary xo E X may be formulated simply by «shifting»
arguments. 

°

In what follows, as Banach space X we take either the space C =

= C( S~ ), the Lebesgue space Lp (Q) or the Orlicz space
We remark, however, that our results carry over the ideal spaces

of measurable functions (see [6,13]):
A Banach space of measurable functions is called ideal if 
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implies x ( e X and and the relations x e X and 
~ I a.e. in S2 imply yeX and llxll.

For fixed x e X, we define a linear integral operator L(x) by

and put

It is natural to expect that the derivative of the operator (15) is related to
the operator (17), and hence the derivative of (16) is related to (18). In
fact, the following is true:

LEMMA 2. Let X be an ideal space or the space C. Suppose
that

and the operator L given by ( 17) is defined on the ball B( 0 , R), takes its
values in the space 2(X, X), and satisfies a condition

where

Then the operator (16) is differentiable, as an operator on X, at every
point x E B( 0 , R), and

We omit the (rather elementary) proof of the lemma (see e.g. [2]).
The following lemma was been proved in [2] as well:

LEMMA 3. Suppose that the Uryson integral operator (15) acts in
an ideal space X and admits a derivative

at zero. Assume that 1 and denote by r(t, s) the resolvent
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kernel for L(t , s , 0 ). Then

and

the inequality (25) turns into an equality if X = C or X = L ~ .

Recall that the resolvent kernel r( t , s) for a given kernel L( t , s ) is de-
fined as a solution to the equation

the condition is therefore necessary (and, usually, also
sufficient) for the existence of r( t , s). Furthermore, the norm

11r( t, s) 11.’X(x, x&#x3E; , by definition, coincides with the norm of the corrispond-
ing integral operator. At least in the case X = C or X=Loo the

equality

holds true.
In the case of spaces X different from C and L 00 , the calculation of the

norm of r( t , s) in x(X, X) leads to serious problems. We will return to
this problem in Sections 5 and 6 for the cases X = Lp and X = LM .

In order to apply the convergence results and error estimates ob-
tained in Theorems 1-3 above, we have to calculate or estimate the con-
stants a and b defined by (3) and (4), respectively, and to «catch» the
functions cv(r) and 0(r) for which the inequalities (5) and (7) hold. It is
easy to see that the «optimal» choice for these functions is

and
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respectively. In fact

implies

and consequently

The last inequality gives the optimality of 0 defined in (27). The problem
of calculating a and b was studied in detail in [2]. As a matter of fact, the
article [2] contains also some information about how to calculate the

functions co(r) and 0(r). We return to this problem in the following sec-
tions ; here we restrict ourselves only to mentioning the following impor-
tant lemma whose proof can be obtained by reasoning as in the proof of
Theorem 5 in [2].

Before to state the next lemma, we want to recall that an ideal space
X is called rearrangement-invariant if any two equimeasurable functions
f and g in X (i.e. for every h &#x3E; 0 lf(s) I 
e Q , I &#x3E; h} )) have the same norm.

LEMMA 4. Let X be a rearrangement-invariant ideal space with
fundamental function x(t). (x(t) is defined by the formula x(t) = 
where xD is the characteristic function of a measurable subset D of S2,
with mes D = t) . Suppose that for every fixed T

or more generally

Then the condition (6) can be satisfied in case (28) only if the function
1 = 8k/8u does not depend on u, and in case (29) only if 1 satisfies the
condition
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Roughly speaking, the statement of Lemma 4 means that the New-
ton-Kantorovich method, applied to the Uryson operator (15), works
only in sufficiently «small» spaces. As was noticed in [2], any conver-
gence result for the Newton-Kantorovich method in the classical Kan-
torovich setting (i.e. (t)(r) = kr) is useless in the spaces Lp for 1  p  2; a
similar situation occurs in Vertgeim’s setting (i.e. cv(r) = kra, 0  a  1 )
in the spaces Lp for 1 ~ p % 1 + a (see [1])

4. The case L 00 .

Now we return to the problem of calculating (or estimating) the func-
tions cv(r) and 0(r). The simplest case is that of the space X = L ~ . The
reason lies in the very pleasant fact that one may calculate both func-
tions in explicit form.

THEOREM 4. Suppose that the kernel k(t, s, u) satisfies the follow-
ing three conditions:

Then

(34)

and
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PROOF. The inequality

is evident. The reverse inequality is a straightforward consequence of
the important equality

which is a modification of the general equality

Here one should notice that the sup in the left-hand side of (37) and (38)
is meant as supremum in the space ,S of measurable functions. The proof
of the formula (38) can be found in [14] (see also [2]). The formula (37)
may be proved similarly.

As a matter of fact, the space L ~ has rather «bad» properties. As a
consequence, whenever possible, one tries to avoid the space and to

consider, instead, the space C of continuous functions.
Surprisingly, stating an analogue to Theorem 4 for the space C, is es-

sentially more complicated than for the space L 00. The basic reason for
this is the complexity of conditions under which the Uryson integral op-
erator (15) (and even linear integral operators) acts in the space C.

THEOREM 5. Suppose that the kernel k(t, s, u) satisfies the follow-
ing three conditions:
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Moreover, assume that, for each continuous function x(s) satisfying
~ x(s) ~ ~ R, the kernel l(t, s, x(s) ) defines a continuous linear integral
operator L(x) in the space C. Then

and

Of course, Theorem 5 is only a repetition of Theorem 4 containing, in
addition, some cumbersome assumption on the kernels L(t , s , x( s ) ) for
||x||C  R.
We point out that the assumption on the kernels l(t, s , x( s ) ) is com-

plicated only because of its high generality: this assumption covers in
fact all possible situations in which one can consider equation (14) in the
space C. There are simple sufficient conditions under which the kernels

s , x( s ) ) generate, for continuous linear integral operators
in C. One such condition is

where a(Q) denotes the a-algebra of Lebesgue-measurable subsets of
In fact, the condition (45) guarantees that all linear integral

operators

and the Uryson integral operator (15) acts from Loo to C, and the
identity

holds in the space C) of bounded linear operators from £ 00 to C.
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Another (rather strong) sufficient condition on the kernels

x( s ) ) to generate continuous (in fact, compact) linear integral op-
erators in C is

r

We omit the proofs of these well-known facts which may be found, for
example, in [9].

5. The case Lp.

The simplicity of Theorem 4 and Theorem 5 is a strong motivation to
study Uryson integral equations as operator equations in the space L~&#x3E;~
or in the space C. Unfortunately, it may happen that the corresponding
Uryson operator does not act in the space L 00 or C, or that one is just in-
terested in unbounded solutions. In these cases it is natural to study the
given integral equation in some other Banach space X; a classical choice
is here X = Lp for 1 ~ p  oo . However, the use of these spaces leads to
serious difficulties. As was shown in [2], the classical theorems on the
convergence of the Newton-Kantorovich approximations [6,8, and also
15-17] can be applied to the Uryson integral equation (4) in Lp only in
case p * 2. Similarly, the generalizations of the classical theorems,
where the Lipschitz condition for the derivative of the nonlinear opera-
tor involved is replaced by a Holder condition with exponent a (0  a 

 1), apply only in Lp for p ~ 1 + a [1]. In Section 3 we have seen that it is
impossible to use the space L1 even in the case when the derivative of the
operator involved is uniformly continuous on the ball R ) (see Lem-
ma 4 and following paragraph). The last assumption seems to be «maxi-
mal» in this kind of theorems.

Unfortunately, the utilization of the space Lp (1  p  oo ) in the

analysis of the Uryson equation (14) is connected with yet another diffi-
culty. As a matter of fact, in the spaces Lp for 1  p  o0 one cannot give
explicit formulas for the functions cv(r) and 0(r), for the simple reason
that one does not know, except for trivial special cases, explicit formulas
for the norm of a linear integral operator in these spaces.

All this emphasizes the need of changing the statement of the

problem in general. Below we will restrict ourselves to the description
of a class of nonlinearities k(t, s, u) for which the corresponding
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Uryson integral equation (14) can be studied successfully in the space
Lp for 1  p  oo .

To this end, we need some standard definitions and notation. Let 1 ~
~ ~ , q:::; 00. As above, by 2(Lp, we denote the space of all bounded lin-

ear operators with the usual norm, and by ~,(Lp, Lq) the kernel space
with norm induced from 2(Lp, Moreover, by Lq ) we denote
the (Zaanen) space of kernels which generate regular (see [9] for the
definition) integral operators from Lp into Lq , endowed with the
norm

Calculating these norms for given kernels is, in general, a difficult prob-
lem. In most application, however, one may use some simple classical in-
equalities (see [6,9,12,13]), namely the direct Hille-Tamarkin inequali-
ty

the dual Hille-Tamarkin inequality

or the Schur-Kantorovich inequality

here the numbers ro , rl , ( o , oo ) and I E (0, 1 ) are connected by
the conditions

There are more complicated inequalitites based on sophisticated inter-
polation theorems like the classical Marcinkiewicz-Stein-Weiss theorem;
we refer the reader to [9].

Suppose that s, u) and l(t, s, u) satisfy a Carath6odory condi-
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tion, and let 0  a  1. We define a function ha of four variables by

this may be considered as a H61der analogue to the Hadamard function.
Assume that the corresponding (generalized) superposition operator

is bounded from the space Lp x Lp into the kernel space ~,(Lp~~ 1 + a&#x3E; , 
We have then

and therefore

The boundedness of the operator (47) implies that

and

These simple calculations are useful and effective in our problem dis-
cussed above; however, they require the computation of the norms of in-
tegral operators between + a) and Lp in terms of their kernels which,
as we already remarked, is not possible.

Here is a pleasant exception, where this can be done; the following
theorem is in fact a direct consequence of the definition of the kernel
class Lq):

THEOREM 6. Suppose that the kernel k(t , s, u) satisfies the follow-
ing three conditions:
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where

for j = 0 , 1, ... , m . T hen

and

6. The case LM.

Whenever one has to deal with operator equations involving strong
nonlinearities (for example, of exponential growth), it is a useful device
to consider these equations not in Lebesgue spaces, but in Orlicz spaces.
The constructions and results of the preceding section carry over to Or-
licz spaces almost without changes. However, since Orlicz spaces have a
more complicated structure than Lebesgue spaces, it is not surprising
that the corresponding calculations become more tedious. Therefore, we
omit the technical details in the following discussion, and present only
some important facts. Detailed information on the definition and the ba-
sic properties of Orlicz spaces may be found in [7,12].

Given two Orlicz spaces and LN, the spaces 2(LM, LN),
x(LM, LN ) and LN ) are defined analogously as before for

Lebesgue spaces. Let us call a pair of Young functions Ml (u) and M2 (u)
admissible if the product Xl X2 of any two functions x, E LMl and x2 E LM2 is
integrable. In this case the Young function M = M1 0) M2 defined by the
formula

generates an Orlicz space LM which is called the O -product of the Orlicz
spaces LMl and LM2. In the same way one can define admissible triples,
quadruples, and n-tuples of Young functions and corresponding 0-prod-
ucts of several factors.
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Let cv be a concave function staisfying the condition

We associate with cv the function of four variables

in case we get of course the function (46). Assume that the
corresponding (generalized) superposition operator

is bounded from .the space LM x LM into the kernel space X(LMw’ LM ),
where = M(cv ~ -1 ~ (~c) ) . Then we have 

~’

where

Of course, here we encounter again the problem of computing the norm
of an integral operator in terms of its kernel, but this time in an Orlicz
space which is still more difficult than in a Lebesgue space (see
e.g. [7,12,13]). However, also in this case we may formulate sufficient
conditions which give a parallel result to Theorem 6 for Orlicz

spaces:

THEOREM 7. Suppose that the kernel k(t, s, u) satisfies the follow-
ing three conditions:

and ’tjJ j (u) are continuous functions such that the corre-
sponding superposition operators satisfy the acting conditions
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the Young functions M(u), Mw(u), Pj(u) and are admissible,
and

for j = 0 , 1, ... , rn . Then

and

The acting conditions (56) are equivalent to the relations

for suitable aj and (j = 0, 1, ..., m). Some formulas useful to calculate
the functions (57) can be found in [3].
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