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A Note on Groups with Hamiltonian Quotients.

R. A. BRYCE - JOHN COSSEY (*)

ABSTRACT - The norm x(G) of a group G is the subgroup of those elements which
normalise every subgroup of G. An ascending series of subgroups may
be defined in a familiar way by iteration, even transfinitely. It is known that,
in a 2-group G, every section is abelian or Hamiltonian, and
only the top-most section can ever be Hamiltonian. We produce what may be
the first example of a non-Hamiltonian 2-group in which this top section is
Hamiltonian.

1. - Introduction.

The norm of a group G is the subgroup of elements normalising
every subgroup of G. An ascending series of subgroups may be defined
by iteration: write and, for 
:= This definition can be extended transfinitely in the
usual way. Since x(G) is Dedekindian (it normalises all of its own sub-
groups) it is, by a result of Dedekind [4], either abelian or Hamiltonian,
and that is a direct product of a quaternion group of order eight and a
periodic abelian group without elements of order 4. Schenkman [9]
shows that K(G) c ~ 2 ( G ). A result of Baer [1] says that G = K(G) if G is a
2-group and K(G) is Hamiltonian. It follows that, for a 2-group G, if ever
a factor is Hamiltonian, then x i + 1 ( G ) = G. However, it
seems to be difficult to find non-Hamiltonian 2-groups having a Hamilto-
nian factor in this series. In this article we construct one such example,
proving the following theorem.

(*) Indirizzo degli AA.: Department of Mathematics, The Australian National
University, Canberra, ACT 0200, Australia.
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THEOREM 1.1. Let G be a 2-groups with the following properties:

(a) Hamiltonian;

(b) no proper section of G also has property (a).

Then G is of order 27 up to isomorphism, there is just one such
group.

We have as an almost immediate corollary.

COROLLARY 1.2. In a 2-groups X suppose that x2 (X) = X. Then

X/K(X) is Hamiltonian if and only if X has a section isomorphic to the
group G.

These results make no assumptions about finiteness, though local
finiteness is an immediate consequence of the fact that x2 (G) = G. Since
in a nilpotent group the norm coincides with the Wielandt subgroup, this
result may be thought of as a step towards the classification of 2-groups
with Wielandt length 2. For odd primes p the classification of p-groups
with Wielandt length 2 has been completed by Ormerod [8], who shows
that such groups may be described in terms of groups of class 2 and a

small number of exceptions. The difficulties for 2-groups are known to be
considerable and, in a sense, Theorem 1 adds to them.

The restriction to groups of length 2 in Theorem 1 seems difficult to

remove. What we have been able to do, however, is to reduce the general
problem to one concerning finite 2-groups.

THEOREM 1.3. Let j be a limit ordinal, and i a non-negative inte-
ger. There is a 2-group G in which is Hamiltonian if and
only if there is a finite 2-group H for which HIK i (H) is Hamiltonian.

2. - Proof of Theorem 1.1.

First notice that x(G) is abelian or else, by the theorem of Baer [1],
x(G) would be G. Since G/x(G) is Hamiltonian there is a pair of elements
x , y for which [ x , Y] Hence there is an element c of G for which

From property (b) it follows at once that G = ~ x , y , c ~.
Since G is a finitely generated nilpotent 2-group it is finite. Note also
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that t : _ [x, y , c] # 1. In particular this means that hence

c ~ ~ 2 ( G ), and therefore by Schenkman [9].
A minimal normal subgroup Z of G is central and of order 2, say Z =

- ~ z ~. Now Z c and, by property ( b ), all commutators in the group G/Z
are in its norm. Hence t = c r z for some integer r satisfying 0 ~ r  o(c).
Note that z cannot be a power of c, or else we contradict the choice of c.
Hence

Moreover if (z’) is another minimal normal subgroup of G then, for some
s satisfying 0 ~ s  o(c), we have t = c s z ’ . Since = z -1 z ’ , by (1) we
must have r = s, and then z = z’. In other words

(2) G has a unique minimal normal subgroup .

By the theorem of Schenkman [9] x( G ) c ~ 2 ( G ) and therefore G ’ c

(3) is abelian and is of exponent 2 .

We are also able to prove that

(4) G has class exactly 3, and y 3 ( G ) has exponent 2 .

Note that G is generated, modulo K(G), by elements u whose square is
not in x(G). This is because a Hamiltonian 2-group is generated by ele-
ments of order 4. Now for every such element u, and some element v of
x(G), [x, y] = U2V. Hence [x, y, u] = [v, ul E ~ 1 (G). It follows that all
commutators of weight 4 in G are trivial, and so G is of class at most 3. It
is of class exactly 3 since, by the choice 1. That Y 3 (G) is of
exponent 2 now follows from (3): commutators and squares com-

mute.

Next we prove that

(5) G’ has exponent dividing 4 .

To see this we argue as follows. For all elements u, v in G we have from

(3) that

A corollary of this is that fourth powers in G are central:

(6) is of exponent 4 .
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For,

for all elements u, v E G, by (4), (5).
Next observe that [c, and (c~) are central, and subgroups of

(c), and therefore, by (1),

and

We now prove that

(8) u 4 = t whenever

First of all we show that if the order of such an element is 2a then a ; 3
and u 2a-l = t. For some k E x(G),

since, by (7), c commutes with every element of x( G ). This shows, in par-
ticular, that It then follows that [G, since, in the
Hamiltonian group all involutions are central. Hence

and the right side is a power of u, which must be at least ~c 4. If u has or-
der 2a, then t = 2G 2a -1. Since c~ ~ 3 .

Suppose now that u, v and uv are, all three, elements of order 4 mod-
ulo K(G), that u , v have orders 2a, 2b respectively, with b ; a -&#x3E; 3, and
that a is as small as possible. Suppose that b &#x3E; a. Write w = Re-

calling (3), we find

Therefore, using (3), (5),

Then w , v , wv would be a valid triple with a smaller value of a, a
contradiction.

Therefore a = b ~ 3. If a &#x3E; 3 then we have
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and so

using (3), (5), another contradiction, so a = 3. Finally, to complete the
proof of the first part of (8), we note that if g is an arbitrary element of G
whose square is not in K(G), then one of ug or vg has the same property,

Then note 
= [ y , r]. This completes the proof of (8).

Since G/x( G ) is Hamiltonian and can be generated by the images of
x , y , c, it suffices to show that is not generated by the images of
x, y. In the course of the proof of (8), we showed that c 2 E x(G). Hence, if
G = (~, y) K(G), then c E K(G)([x, y]~ c ~2(G), a contradiction.

The next step is to prove

From (7) and (8): 
whence [c, u]2 = 1. But then [c 2, U] = [c, u]2 [c, u, c] = 1. Since G is
generated modulo K(G) by elements whose squares do not lie in K(G), we
conclude that and therefore, by (1), that C2 = 1.

(11) x(G) has exponent 2 .

The elements of x( G ), all have the form

where f , g , h , i , j are each either 0 or 1, and where exactly two of
e , , f , g are equal to 1. It now follows from (8), (10) that every element of

is of order at most 2.

Now write U = K(G) and M = U(c). Both may be regarded as mod-
ules over Z2 , the field of two elements, for the group G/M which is, of
course, isomorphic to As such M is monolithic with unique minimal
submodule ,S = ~ t ~. We aim to show that

Firstly note that U is a monolithic module for the group G/MG ’, which is
isomorphic to C2 x C2. Hence U is isomorphic to a submodule, of Loewy
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length at most 2, since U c ~ 2 ( G ), of the regular Z2 ( G/MG ’ ) module. This
means that U: S’ ~ ~ 4. It suffices therefore to find a pair of elements of
U which are independent modulo S.

To this end note that, for every element U E GBMG ’ ,

We see also that [c, u] is not in ,S. For, [c, u] E S means that [c, U] =
= [ c , whence CU = cu2 and therefore 1 = [ c , u ] = [ c , a contradic-
tion. Now if [ c , x] and [ c , y ] were dependent modulo we would have
[ c , x ] [ c , y ] E ,S. From this we would get which would mean that

[ c , yx -1 ] E S, again a contradiction. This completes the proof of (12).

This also completes the proof of the first part of the theorem since
now, from (9), (12), 1 G I = 27. For the second part we rely on the library
of groups of order 27 (Newman and 0’Brien [7]) to prove the existence
and uniqueness of a group with the properties (a) and (b). There are
2328 groups in the list and, rather than try to search them all, we use
some of the properties that we have found to eliminate non-starters. An
outline of the steps used in this search follows.

Firstly the fact that G has three generators reduces the list to 833
groups. The fact that G’ is isomorphic to C4 x C2 x C2 further reduces it
to 122 groups. Since an element g of G has order 8 if and only if

g ~ ~ G ’ , c), a group of order 32, there are 96 elements of order 8 in G.
This reduces the list to four groups. Since there is an elementary abelian
subgroup of order 8 not containing c, there are at least eight elements of
order 2. This reduces the list to two groups. Finally the centre of G is of
order 2, leaving a unique candidate. This group, which we call T, is num-
ber 801 in the library. By calculation we find, indeed, that Q8 X
x C2. (Newman and O’Brien have an unpublished routine for doing
this.) o

A power-commutator presentation of T is the following. The gen-
erators are x2 , ... , x7, and the relations are
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and all commutators of pairs of generators not listed are trivial,
and the group made of class 3.

The proof of Theorem 1.1 gives enough properties of the group we
sought, to enable it to be identified by computer. However we have not
much insight into its structure. We are grateful to the referee for sug-
gesting a method of construction which does give more insight. The con-
struction we now give is a variation on his; we suppress most of the
details.

We begin with two copies of the «nameless» group of order 16 with a
cyclic subgroup of order 8 (Huppert [5] Satz 1.14.9 (3)). Let Hi =
= (nj , si : n g = s 2 = 1, = ( i = 1, 2 ). Set H = Hi X H2 and de-
fine automorphisms a, fl of H as follows: a(ni ) = ni si, a(si ) = si
(i = 1, 2), P(nl) = s, ni , = n2 and P(S2) = s2 . It is easy to
check that a and P are commuting automorphisms of H of order 2 so that
A = (a, 0) is elementary abelian of order 4. We let K be the semi-direct
product of H by A, and in K we take M = sl , s2 , a) and N =

= (n12nis2) _ ~ni (n2 ~3)2 s2 ~. It is easy to see that N is normal in H and
contained in M. Our claim is that M/N = h and that K(M/N) =

s2 N, The proof of this seems non-trivial and was confirmed
for us by Newman by computer.

3. - Proof of Theorem 1.2.

Let j be a limit ordinal and P be a p-group with the following
properties:

(13) (i) ~~ (P) = P ; (ii) ~ k + 1 (P)l~ ~ (P) has finite exponent (k  j ) .

The existence of such a group is guaranteed by an example of

McLain [6] in which the upper central factors are all elementary abelian.
We use this group to prove the following result.

LEMMA 3.1. Let K be a finite p-group, P a group satisfying (13),
and write Let k be an 

(a) If k is a limit ordinal then

(b) In general there is a positive integer n = n(k) such that
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PROOF. We start by proving ( b ) when 1~ is finite. The case k = 0 is
clear. When k = 1 it is easy to see that ~ 1 (W) ç ~ 1 (P)x; and the second
inclusion holds is nilpotent by a result of Baum-
slag [2]. Now suppose that k &#x3E; 1 and that (b) is already established for k;
that is for some positive integer n.
Then

for some positive integer m, whence

as required to complete the induction, proving ( b ) when is finite.
It follows that

and proving (a) when j = cv.
We prove (a) by induction over the limit ordinals i  j. Let ko be a

limit ordinal satisfying (o  and suppose that ( a ) is true for all limit
ordinals  ko . Let 1 be the union of all these limit ordinals ko. If 1 = ko
then, by induction,

Next suppose that l  ko. Then ko = I + w. Let N = Cl(P)K. Then, by
= N. By what we proved 

and hence ~ i + ~, (W) _ ~ L + ~, (P)x, as required to complete the induction
and the proof of (a).

The proof of ( b ) is completed similarly.

In a very similar way we prove the following lemma.

LEMMA 3.2. Suppose that W is the group defined in Lemma 3.1
and let k be an 

(a) I, f k is finite then

(b) If k is a limit ordinal then



9

PROOF. Part (a) follows from Schenkman’s result [9]. From (a) we
deduce that

and therefore ~ ~, ( G ) = Kw(G). This proves (b) in the case k = w.
Again we write 1 for the union of all the limit ordinals less than a limit

ordinal If ko = 1 then

On the other hand if 1  ko then ko = 1 + cv. By = 

so

and = This completes the induction and thereby the
proof of Lemma 3.

We are now in a position to prove Theorem 1.3. Firstly if G is a 2-
group in which is Hamiltonian, then the group H : = 
satisfies H/xi (H) = G/Kj+i(G) and hence is Hamiltonian. We show that
H has a finite subgroup L with L/Ki(L) Hamiltonian. Since H is nilpotent
by Schenkman [9] it is enough to find a finitely generated subgroup L of
H for which is Hamiltonian.

To do this we prove the following lemma.

LEMMA 3.3. Let H be a locally finite group of finite norm length
i + 1, and suppose that Co is a finite subset of H for which Co n xi (H) _
6 There is a finite subgroup L of H for which Cog LBxi (L).

PROOF. We define finite subsets Ct ( 0 ; t ~ i ) of H inductively as fol-
lows. Suppose that Ct has been defined for some t in the range [0,~-1]
and that it has the property

Note that Co satisfies this. For each c E Ct there is an element d = d(c)
of H with the property that, for no r ~ 0, is the element in

We define Ct + 1 : c E Ct , r ; 0 ~. By definition
Ct + 1 satisfies (14). Ct + 1 is finite because H is locally finite.

Now let L : _ ~ c , d(c): c E Ct , 0 ; t S I). We show that L has the prop-
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erty sought. To do this we prove, by induction on i - t, that

We have from (14) that Ci ~b. This just means that Ci,
and hence (15) is true for t = i. Suppose that 0  t ~ i, and that (15) has
been proved for it. Since none of the elements r &#x3E;-

~ 0) is in t(L), we deduce that no c E Ct _ 1 is in t + 1 (L). That is (15) is
verified for t -1. This completes the induction.

The particular case i = 0 gives that Co n Kj(L) = ø, as required. 0

To return to the matter in hand: if H is a locally finite 2-group of
norm length i for which H/xi (H) is Hamiltonian, choose elements c, x, y
to satisfy and write Then Co n

0. Hence, by Lemma 3.3, there is a finite subgroup L of H with
Co 0. It follows that is also Hamiltonian.

This completes one direction of the proof of Theorem 1.3.
For the other direction we use the Lemmas 3.1 and 3.2. So suppose

that H is a finite 2-group in which H/ K i (H) is Hamiltonian. Let W be the
group constructed in Lemma 3.3. Then B := Kj(W) = ~j(W) is the base
group of W, and = Bxi (H). Therefore W/Kj+i(W) = H/xi (H) is
Hamiltonian.

COROLLARY 3.4. Let i be a non-zero ordinat and G a group. of norm
length i + 1. Then G/x i ( G ) Q8 only if i is a limit ordinal. Moreover if i
is a non-zero limit ordinal there is a group G for which G/x i ( G ) °E-

== Q8.

PROOF. For, if G is a group of norm length i + 1, and i is not a limit
ordinal, then X : = has norm length 2. 
is Hamiltonian then, by Theorem 1.1, the group r embeds in X: suppose
for simplicity that T c X. Then X/K(X) 2rK(X)/K(X) = T/(T f1 x(X ) )
which maps homomorphically onto FIK(R) C2. Hence X/x(X) is

not quaternion. This takes care of the first claim. The second claim fol-
lows from Lemmas 3.1, 3.2, choosing K = Q8 in Lemma 3.1.

4. - Final comments.

The motivation for investigating this question comes from the arti-
cle [3]. There we defined a canonical factor group of a group G
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dual, in some loose sense, to the norm of the group. To be precise (3( G) is
defined by

It is a normal subgroup of G, modulo which all subgroups are normal.
Hence is Dedekindian. We proved that the Baer property [1] is
dualised in that, in a 2-group, is Hamiltonian only if fl(G) = 1. The
descending series is obtained by iteration in the usual way. Then

is Hamiltonian only if = 1. We constructed 2-

groups of length i + 1 and with Hamiltonian for arbitrary finite i;
and proved that, in every such group, the derived length is tightly
bounded in terms of I {3 i ( G) I.

The present article begins an attempt to prove «dual» results for the
norm.

We acknowledge the computation done for us by M. F. Newman and
E. A. 0’Brien in searching their library of groups of order 27.
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