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Some Conditions

Implying that an Infinite Group is Abelian.

LUISE-CHARLOTTE KAPPE (*) - M. J. TOMKINSON (**)

1. - Introduction.

Following a question of P. Erd6s, B. H. Neumann [13] considered
groups satisfying the following condition:

A group G is an A*-group if every infinite set of elements of G
contains a 2-element such that (x, y) is abelian (or,
equivalently [x, y] = 1).

Neumann showed that a group is an A#-group if and only if it is cen-
tral-by-finite. Corresponding results were obtained by Faber, Laver and
McKenzie [2], who considered conditions in which sets of pairwise non-
commuting elements had size bounded by infinite cardinals. These #-
conditions have also been considered for (x, y&#x3E; being in some other class
of groups (see e.g. [ 1 ], [ 3 ], [ 9 ], [ 12 ], [ 14 ] ).

If Ø(X1, ..., xn ) is some word in n variables then one could define G to
be a iV-group if every infinite set of elements in G contains a set of n
elements {xi, ..., xn} such that Ø(xe(1), ... , 

= 1 for all permuta-
tions ~o of ~ 1, ... , n ~ . A related but stronger condition has been consid-
ered by Rhemtulla and others. A group is said to be a W*-group if, given
infinite subsets Xl , ... , Xn of G, there are elements xi E Xi, i = 1, ... , n ,
such that ~(xc~ 1 ~ , ... , 

= 1 for all permutations e of 11, ... , n 1. It
was noted in [11] that if q5 is the commutator word then every infinite

(*) Indirizzo dell’A.: State University of New York at Binghamton, NY
13902-6000, USA.

(**) Indirizzo dell’A.: University of Glasgow, Glasgow G12 8QW, Sco-
tland.
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W*-group is abelian, and corresponding results have been obtained
for ~ = xn, ~ _ [xl, x2, ... , xn] in [11], y, y] in [16], and

in [10]. A related condition in [8] for the word

~ _ [[x1, x2 ], [x3, x4 ] ) yielded that all such infinite groups were

metabelian. These results suggest that if the word q5 defines a variety W
then an infinite W*-group ought to be a W-group.

In this paper we consider the conditions ~# and W* for various

words q5 which determine the variety of abelian groups and also consider
#- and * -conditions for classes related to these words. In [6] we consid-
ered the 32 words of the form

with u , v , w being taken from the y -1 ~ . It was shown
in particular that a group G where 0,, is a law is abelian, for any
n = 1, 2 , ... , 32 [6; Theorem 5.1]. Some partial results in this direction
were already obtained earlier in [4]. For reference we list the 32 possibil-
ities for [u, v, w] as follows:

In [6] we considered the following 2 conditions for group elements
x, y.

DEFINITION 1.1. Let ~E{1,...,32}. The group elements x, y

satisfy

(i) Cn if and only if

(ii) Dn if and onLy if
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It should be noted that the condition Cn on x , y does not imply
[x, y ] = 1 in most of the cases, and even the stronger condition Dn does
not imply necessarily [ x , y ] = 1 in some of the cases. A summary of these
results from [6] is given in the next section of this paper.

The #- and * -conditions for Cn can now be defined as in the general
case given above and we can also define similar conditions for Dn.

DEFINITION 1.2. Let ... , 32} and let G be a group.

(i) G E Cn # if and onLy if every infinite set of elements in G con-
tains x, y such that 0,,(x, y) = q5,,(y, x ) = 1.

(ii) G E Cn * if and only if, for any two infinite subsets X, Y of G
there is x E X and y E Y such y ) _ ~ n ( y , x ) = 1.

(iii) G E if and onLy if every infinite set of elements in G con-
tains x, y satisfying Dn.

(iv) G E Dn * if and onLy if, for any two infinite subsets X, Y of G
there is x E X and y E Y such that x, y satisfy Dn.

In all of these definitions the condition on x , y is symmetric in x and
y . Longobardi, Maj and Rhemtulla imposed similar symmetry conditions
in their investigations in [11]. The main reason for us is our use of Ram-
sey’s Theorem in Sections 4 and 6. Some results can still be obtained if
we omit the symmetry restriction from the definition of Cn *; in particu-
lar, the cases dealt with in Proposition 2.1 and Section 3 do not require
symmetric conditions. However, for simplicity of notation we do not pur-
sue the question of how far symmetry is necessary in these investiga-
tions and simply give results for the classes defined above.

For the conditions Cn # and one might expect such groups to be
central-by-finite. This is clearly the case whenever Cn or Dn, respect-
ively, imply [x , y ] = 1 (see Proposition 2.1 and 2.2), but it is not so in the
remaining cases as shown in Examples 2.6 and 2.7.

For this reason we focus our investigations on * -conditions. If fur-
ther conditions like solvable-by-finite or an infinite FC-center are im-
posed, then Cn *-groups are abelian for all n (Theorem 3.6 and 3.7).
These lead to a reduction theorem for the general case (Theorem 3.8),
enabling us to show in Theorem 4.10 that an infinite C14*-group is

abelian. As a corollary we obtain that for all those n which imply D14, an
infinite Dn *-group is abelian (Corollary 4.11). For the remaining cases,
namely n = 4 and 30, the corresponding results are obtained in Theorem
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5.5. All this can be summarized in the general result that an infinite
Dn *-group is abelian for n E ~ 1, ... , 32 } (Corollary 5.6).

We have not obtained a result for Cn *-groups for all values of n . Al-
though D14 seemed to be the weakest of the Dn-conditions [6; Proposi-
tion 4.8] we do not have results corresponding to Lemmas 4.3 and 4.5 for
all values of n . Similar results can be obtained in some cases. For

example, we have such results for n = 1, 20, 23, and 30, and so have been
able to construct similar proofs that Cn *-groups are abelian for those
values of n . The proof for C1 *-groups is given in Section 6. There are, of
course, fewer implications between the (symmetrized) Cn-classes than
between the classes Dn and so a result like Corollary 5.6 for Cn * would
require most of the 32 cases to be dealt with individually.

2. - Elementary results and two counterexamples.

In this section we summarize results obtained in [6] for the condi-
tions Cn and Dn , n = 1, ... , 32 . We show that for those values of n for
which Cn or Dn imply [x, y] = 1, we obtain results similar to those of B.
H. Neumann, namely groups satisfy or if and only if they are
central-by-finite, and Cn * or Dn * if and only if they are abelian. We
conclude this section with two counterexamples of groups which satisfy

but are not central-by-finite, and n is a value for which Dn does not
imply [ x , y ] = 1. Our first result does not require the symmetrized #-
and * -conditions.

PROPOSITION 2.1. Let S = {17, 18, 19 , 21, 22 , 29}. and the

ordered pair (x, y ) satisfies Cn , then [ x , y] = 1. Furthermore, any infi-
nite is central-by-finite and any infinite Cn *-group is

abelian.

PROOF. By Proposition 2.1 in [6] it follows that [x, y] = 1 if the or-
dered pair ( x , y ) satisfies Cn , for n e s.

Now let G be an infinite ~Cn #-group, n e ,S , and X an infinite subset of
G. Then there exist x , y E X such that 0 n (X, y ) = 1. Hence, by the above,
[x, y ] = 1. Thus, by Neumann’s result, G is central-by-finite.

Finally, let G be an infinite Cn *-group, and X , Y infinite sub-
sets of G. Then there are ye Y such that 95 n (X, y) = 1. By the
above we have [x, y] = 1. Thus G is an A*-group, and hence abelian by a
result from [11].
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PROPOSITION 2.2. Let S = {23, ... , 28, 31, 32 }. and the ele-
ments x , y satisfy Dn, then [x, y] = 1, but Cn alone does not imply
[x, y] = 1. Furthermore, any infinite is central-by-finite,
and any infinite Dn *-group is abelian.

PROOF. It follows by Propositions 2.2, 2.3, 2.4 and 2.5 of [6], respect-
ively, that if x , y satisfy E ,S , then [ x , y ] = 1, but Cn alone does not
imply [x , y ] = 1. The rest of the results therefore follow as in Proposi-
tion 2.1.

Propositions 3.1 to 3.4 in [6] can be summarized in the following
proposition.

PROPOSITION 2.3. Let S = ~ 1, 2, 3, 5, 6, 7 , 10 , 12, 13, 15, 16}. For
condition Dn is equivalent Furthermore, D1 does not im-

ply [x, y] = 1.

The next proposition is a consequence of Proposition 3.5 in [6].

PROPOSITION 2.4. Conditions D8, D9 and D11 are equivalent and
they do not imply [x, y ] = 1.

The last proposition of this section summarizes results from [6] which
can be found there in Corollaries 3.6, 4.2, 4.4, 4.6, 4.7 and 4.9.

PROPOSITION 2.5. Between the nonabelian D-conditions D1, D4,
D8, D14, D20 and D30 we have exactly the following implications:

Our next two examples show that a Dn #-group need not be central-
by-finite if Dn is a condition which does not imply [x, y] = 1, i.e.

n=1,4,8, 14,20,30.
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EXAMPLE 2.6. There exists an infinite Dn#-group G, n =

=1, 4, 8, 14, which is not central- by-finite.

PROOF. Let A be an elementary abelian 3-group of infinite rank and
G = A x (g), the split extension of A by (g), where (g) is cyclic of order 2
such that gag = a -1 for all a E A . Obviously Z(G) = 1, hence G is not cen-
tral-by-finite. By Proposition 2.5, Dl implies D4, D8, and D14. Thus it
suffices to show that G is a D1#-group. Let X be an infinite set in G.
Since G = A U Ag , then either A n X or Ag rl X is infinite. If A n X is in-
finite, then clearly there are x, y e X satisfying Dl since A is abelian. If
Ag n X is infinite, it suffices to show cg) = 1 for all b , c E A .
Now O1(bg, cg) = [[bg, cg], cg][cg, bg] = [b-1c, cg]·bc-1 = b3c-3 =1,
proving our claim. Hence G is a 

To facilitate the calculations in our next example and in some of the
upcoming lemmas, we write a = [x, y ] and consider the near-ring oza of
mappings of a into G’ generated by the elements of G acting by conjuga-
tion on a . Frequently we will suppress the a and write y ) = 0 instead
of afix, y) = 1. For further details see [6] and [15; 1.5].

EXAMPLE 2.7. There exists an infinite H, n = 20 , 30 ,
which is not central- by-finite.

PROOF. Let A = X (Vi» be a direct product of infinitely many
four-groups so that A is an elementary abelian 2-group. Let H = A &#x3E;Q ~ h ~
be the split extension of A by (h), where ~h) is a cyclic group of order 3
such that h -1 ui h = vi and h -1 vi h = ui vi . Obviously Z(H) = 1, hence H
is not central-by-finite. Let X be an infinite set in H. Since H = A U
U Ah U Ah -1, then at least one of A n X , Ah n X , Ah -1 n X is infinite. If
A n X is infinite, then clearly there are x , y E X satisfying D20 or D30,
respectively, since A is abelian.

Now suppose Ah n X is infinite. It suffices to show that uh , vh for all
u , v E A satisfy Dn , n e {20, 30}. Set x = uh , y = vh . Then y = wx with

and since w has order 2. Fur-

thermore, since x has order 3, and a x 2 = w x + 1. Similarly,
a y = w +x2 and a y 2 = w x + 1. Observing that H is metabelian and H ’ has
exponent 2, the 8 conditions for D20, namely (4.1.1 )-(4.1.4) and (4.1.1a)-
(4.1.4a) of Proposition 4.1, and the 4 conditions for D30, namely (4.3.1)-
(4.3.4) of Proposition 4.3 in [6], can be verified in a straightforward but
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lengthy manner. As an example we give here the verification of (4.1.1)
which can be stated 1 in .Na . By the above we have 

a , Thus (4.1.1 ) holds. It follows that all x , y E Ah
satisfy Dn , n E ~ 20 , 30 ~ . A similar argument shows that all x, YEAh -1 1

satisfy Dn , n E {20, 30 ~ . It follows that H is a D20~-group as well as a
D30*-group.

3. - A reduction theorem.

In this section we show that an infinite Cn *-group is abelian if fur-
ther conditions are imposed on the structure of the group. In particular,
a Can *-group, n E=- 11, 2, ... , 32}, which is solvable-by-finite or has an in-
finite FC-center is abelian (Theorem 3.6 and 3.7). These results are

proved in the following sequence of lemmas which also provide us with a
reduction theorem for the general case (Theorem 3.8). As we will see in
the proofs these results do not require the symmetrized * -condi-
tion.

The proof of the first lemma is straightforward and thus omitted
here.

LEMMA 3.1. Any infinite section of a Cn *-group is also a Cn *-

group.

LEMMA 3.2. If N is an infinite normal subgroup of the Cn *-group
G, then G/N is abelian.

PROOF. Let x, y E G. Consider the infinite sets xN and yN. Since G
is a Cn *-group, there exist elements nl , n2 E N such that

Øn(n1x, n2 Y) = 1. Hence 0 n (Nx, Ny) = 1 in G/N. Thus ~ n is a law in
G/N, and so G/N is abelian by Theorem 5.1 in [6].

LEMMA 3.3. An infinite FC-group in the class Cn * is abelian.

PROOF. Let x, y E G and let C = CG(x) n CG(y). Then [G: C]  00, so
that C is an infinite FC-group and thus by Lemma 8.4 in [17] it contains
an infinite abelian subgroup A . Now consider the infinite sets Ax and
Ay . Since C is a Cn *-group, there are elements a, b E A such that
Øn(ax, by) = 1. But [ax, by] = [x, y]. If On is the word [u, v, w][y, x]
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with [ u , v , w] a word in x , y , and if [ u ’ , v ’ , w ’ ] is the corresponding
word in ax, by, then [u’ , v’ , w’] = [u, v, w]. y) = 1, and
so 15,, is a law in G. By Theorem 5.1 of [6] it follows that G is

abelian.

LEMMA 3.4. If G is a Cn *-group with infinite center Z then G is
abelian.

PROOF. By Lemma 3.2, G/Z is abelian and so G is nilpotent of class at
most two. Let x, y E G and consider the infinite sets Zx and Zy . Since G
is a Cn *-group, there are elements z1, z2 E Z such x, z2 y) = 1.
Hence [x, y] = Z2 Y] = [u, v, w]. But [u, v, w] = 1 since G has

class two and so [x , y ] = 1 for all x , y e G . 0

LEMMA 3.5. Let A be an infinite abelian normal subgroups of the
Cn *-group G. Then A ~ Z(G), and hence G is abelian.

PROOF. Suppose g qt CG (A) so that CA (g) ~ A and A B CA (g) is an infi-
nite set. Let Øn be the word [u, v, w][y, x]. If w = x let X =

= A B CA (g ) and Y = Ag ; let X = Ag and Y = A B CA (g).
Then, for any x eX and y E Y, we have [x, y ] ~ 1. But [ u , v] E A (since
one of u , v is in A B CA (g )) and w E A so that [u , v , w ] = 1. Therefore, for
any and y E Y, ~ n ( x , y ) ~ 1, contrary to 0

THEOREM 3.6. Let G be an infinite solvable-by-finite Cn *-group,
n E ~ 1, ... , 32 ~. Then G is abelian.

PROOF. There is an infinite solvable normal subgroup ,S in G. We
prove the theorem by induction on the derived length d of S.

Let A = ,S ~d -1 ~ . If A is infinite then it follows from Lemma 3.5 that G
is abelian. If A is finite, then, by induction, G/A is abelian. Thus G is fi-
nite-by-abelian and so is an FC-group and the result follows from Lem-
ma 3.3.

THEOREM 3.7. Let G be an infinite Cn *-group, 2, ... , 32 ~.
If FC(G) is infinite, then G is abelian.

PROOF. By Lemma 3.3, FC(G) is abelian and so, by Lemma 3.5, G is
abelian.
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For the general situation in which we consider infinite Cn *-groups
without further restrictions these results are most usefully combined in
the following reduction theorem.

THEOREM 3.8. Suppose that there exists an infinite nonabelian
Cn *-groups. Then there exists an infinite nonabelian Cn *-group G with
FC(G) = 1 and G having no abelian normal subgroup.

PROOF. Let H be an infinite nonabelian Cn *-group. By Theorem 3.7,
FC(H) is finite. Hence G = H/FC(H) is an infinite c~n *-group. Also G is
nonabelian, for otherwise H would be finite-by-abelian and hence

FC(H) = H. Also FC(G) = 1, since FC(H) is finite. If A is an abelian nor-
mal subgroup of G then, by Lemma 3.5, A must be finite, but then
A  FC(G) = 1.

4. - The class of C14*-groups.

In this section we will show that an infinite C14*-group is abelian
(Theorem 4.10). As corollaries we obtain that infinite D14*-groups, and
with it all Dn *-groups for those values of n, where Dn implies D14, are
abelian. Our results in the remaining sections will require Ramsey’s
Theorem which we will quote as Theorem 4.1 in the form used here.
(see [17; Theorem 7.1]).

THEOREM 4.1. Let S be an infinite set and suppose that the family
[Sl’ of 2-element subsets of ,S is expressed as a union of n subfamilies
[,S ]2 =A 1 U ... U L1 n, where n is finite. Then there is an infinite subset T
of S and an integer k, such that 

We also require a version of Ramsey’s Theorem for ordered pairs of
elements of S. Again we state this only in the form required here.

COROLLARY 4.2. Let S be an infinite set and let P(x, y) be some
statement about the ordered pair (x , y ) such that whenever X and Y are
infinite subsets of S, there are elements x E X and y E Y such that

P(x, y ) is true,. Then 8 contains an infinite x2 , ... ~ such
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that one of the following is true:

(i) is true whenever i  j ;

(ii) is true, whenever i  j .

PROOF. Take an infinite countable subset S2, ... ) of S . De-
fine the three subsets d 1, L1 2 , d 3 of [ C]2 as follows:

~ si , sj eL11 if i  j and P( si , is true,

e L12 if i  j and si) is true,

if P( si , and si ) are both false.

By Theorem 4.1, there is an infinite subset T 

Si2’ for some k = 1, 2 or 3. Considering X =
X3, X5, ...} and Y = ~ x2 , ~4~6~ -"} we see that there are i , j with
true and 

E L11 1 for all i , j and so Xj) is true, whenever i  j . If
[ T ]2 c d 2 , then is true, whenever 

One application of this result will use the condition C14 applied to the
pair ( x 2 , y ) simultaneously with the pair ( x , y ). We begin by considering
the implications of this pair of conditions.

LEMMA 4.3. Let x, y E G satisfy the following two conditions

Then

PROOF. Write a = [x, y ] and consider the near ring X,. First we
show (i). In .Na (4.3.1) can be written as
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Similarly, (4.3.2) becomes x + 1 = x -1 + x - 2 - x - 4 - x - 3 , and, multiply-
ing from the right, we obtain

We observe that (4.3.3) yields the following reduction formulas for pow-
ers of x :

Repeated applications of (4.3.5) and collection of terms lead to x 5 + x 4 =
= x 3 - 2 x 2 . Substituting into (4.3.4) yields - 2 x 2 + x + 1 = x 2 . By using
(4.3.3) and collecting terms we arrive at

and subsequently

By (4.3.5) and (4.3.7) we obtain X3 = 3 - 2 x . Therefore x 4 = 3 x - 2 x 2 =
= 3 x - 2. But also x 4 = x 2 ~ x 2 = x 3 - x 2 . By the above and using (4.3.7),
this leads to x 4 = x - 4 . Hence 3 x - 2 = x - 4 and so

and subsequently ~=3-2.r=5. Using (4.3.5) and the above leads to
x 5 =x - 9, but also ~=~’~=.~-4.r=.r+3 so that .r+3=~-9,
giving 12 = 0 in X,. That is [~ y]12 = 1 in G.

Next we turn to (ii). The usual commutator expansion gives [~ y] =

- 1 + x + 1 by replacing x n , n = 2 , ... , 5 , by their linear expressions ob-
tained in the proof of (i). Repeated use of (4.3.7) and (4.3.8) leads to

That is [x6, y] = 1 in G.
YG - v’~ 

Finally we prove (iii). If [x 3 , y ] = 1, then Com-

bining this with (4.3.3) gives 2 x 2 + 2 = 0 . Using (4.3.6) yields 4 = 0 in 
That is [x, y]4 = 1 in G .

The results given in part (i) and (ii) of Lemma 4.3 are best possible as
the following example shows.
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EXAMPLE 4.4. There exists a group G = (x, y) of order 72 satisfy-
ing (4.3.1) and (4.3.2) with x having order 6 and [x, y] having order
12.

PROOF. Let where Q is the quaternion group Q =
= a, b|a4 = 1, a2 = b2, b-1 ab = a-1&#x3E; and C3 = c|c3 = 1&#x3E;. Let G be the
split extension of H by a cyclic group (x) of order 6, where x induces the
following automorphism of order 6 on H:

( x , y ) satisfies (4.3.1) and (4.3.2) with x having order 6 and [ x , y ] having
order 12.

LEMMA 4.5. Let G be a C14*-group and let A be an abelian sub-
group o, f G. Then either A s = ~ a s ~ a is finite or A s ~ Z(G).

PROOF. Suppose A 6 is infinite; then certainly A 2 = ~ a 2 ~ a is in-

finite. Let g e G; we show that A 6 ~ CG (g). For each element x E A 2 ,
choose an element b eA such that b 2 = x . This gives an infinite subset B
of A such that the elements b 2 , b e B, are distinct. Let S be an infinite
subset of B . Consider the infinite sets X = S and 
The C14*-condition shows that there are elements b , ceS such that
[ b -1, cg , b -1 ] = [ b , cg]. But A abelian implies

Since every infinite subset ,S of B contains an element b satisfying (4.5.1),
it follows that if b -1 ] = [ b , g ] ~ then B B C is finite.
Now let T be any infinite subset of C2 = {b21 b E C}. By considering the
infinite sets T and Tg we see that there are elements d 2 , e 2 E T such that
[d -2, e2g, d -2] _ [d2, e2g], and hence

It follows b-1]=[b,g] and [b-2,g, b-2]=
= [ b 2 , g ] ~ then jSBD is finite. For each deD, we have [ d 6 , g ] = 1, by
Lemma 4.3, and since A s = B s = ~ b s ~ b E B } and B BD is finite, it follows
that A ~ BA 6 n CG (g) is finite. Now A 6 infinite implies that A ~ n CG (g) =
= A 6 and so for any 
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COROLLARY 4.6. Suppose that G is an infinite nonabelian C14*-
group. If A is an abelian subgroup of G, then A 6 is finite.

PROOF. If A 6 were infinite, then it would be central contrary to Lem-
ma 3.4.

COROLLARY 4.7. Suppose that G is an infinite nonabelian C14*-
group. Then G is periodic and has no infinite abelian (2, 
group.

PROOF. If G contained an element g of infinite order then (g)6 would
be infinite, contrary to Corollary 4.6. If G contained an infinite abelian
{2, 3}’-subgroup A then A 6 = A would be infinite, again contradicting
Corollary 4.6.

The next stage in our proof is to reduce to the consideration of a
12, 3 }-group.

LEMMA 4.8. Suppose that G is an infinite nonabelian C14*-group
with FC(G) = 1. Then G is a ~ 2 , 

PROOF. If G is not a {2, 3}-group then it contains an element u of
prime order p &#x3E; 3 and u has infinitely many conjugates. It follows from
the C14*-condition and Theorem 4.1 that this set of conjugates contains
an infinite subset S such that [ x -1, y, = [ x , y ], for all x , 
This is the first occasion where we have required the symmetry in x , y in
the definitions of Cn * . Let X and Y be two infinite subsets of ,S . Since
the elements have order p # 2, the squares of the elements are distinct.
So X 2 is infinite and applying the C14*-condition to X2 and
Y gives elements x E X and y e Y such that

Therefore (4.8.1 ) satisfies the hypothesis on P(r, y ) in Corollary 4.2 and
so ,S contains an infinite set of elements {x1, x2, ... ) such that either ( 1 )
[xi-2, Xj, .r,’~] = [x2, whenever i j, or (2) [x2-2, Xj, x2-2] _ [x2, 
whenever i &#x3E; j . Lemma 4.3 shows that either ( 1 ) [ x 6 , Xj] = 1, whenever
i  j , or (2) [ x 6 , Xj] = 1, whenever i &#x3E; j . Since xi has prime order p &#x3E; 3 , it
follows that Xj] = 1 for all i , j and ...) is an infinite ele-
mentary abelian p-group, contrary to Corollary 4.7. Therefore G is a
{2,3}-group. *
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The main step which remains is to show that G is locally finite, which
we achieve by showing that G has exponent 6.

LEMMA 4.9. Suppose that G is an infinite nonabelian C14*-group
with FC(G) = 1. Then G has exponent 6.

PROOF. By Lemma 4.8, G is a {2, 3}-group and so we have only to
show that G has no elements of order 4 or 9.

Suppose first that G has an element u of order 4. Then u2 has order 2
and u 2 has infinitely many conjugates. Therefore there is an infinite set
C of conjugates of u whose squares are distinct. If C contained an infinite
commuting subset, then the elements of this set would generate an
abelian subgroup A of exponent 4 with A 6 = A 2 being infinite. This is
contrary to Corollary 4.6. By Theorem 4.1, C must contain an infinite
subset S of pairwise noncommuting elements. The C14*-condition and
Theorem 4.1 show that contains an infinite subset T such that

[ x -1, y , x -1 ] = [x, y ] ~ 1, for all x , ?/ e 7B If X and Y are infinite sub-
sets of T then the set X 2 = {x2|x E X} is also infinite and by the C14*-
condition there are elements x E X and y E Y such that

The equations of (4.9.1) therefore satisfy the hypothesis on P(x, y) in
Corollary 4.2 and so T contains an infinite X2, ... ~ such that
either

whenever i  j , or

whenever i &#x3E; j .

Lemma 4.3 together with the fact that each xi has order 4 shows that
either (1) [ x 2 , xil = 1, whenever i  j , or (2) [ x 2 , = 1, whenever i &#x3E; j .
In both cases ...) is an infinite elementary abelian 2-group.

In case (2), consider the group H = ~x1, x2, x3 , x4 , ... ~. This

is a C14 *-subgroup with infinite central By
Lemma 3.4, H is abelian and so x2 ] = 1, contrary to the choice of the
set ,S .

In case (1), fix g = xk; then for each i we have g, xi- 1 = Ixi, g].
For each integer L &#x3E; k , consider the infinite sets and

By the C14*-condition there are integers i , j &#x3E; L such that
[Xi-2, Xj2 g, Xi-2] = [x2, x2g]. But since [x2, = 1, this reduces to

[Xi-2, g, xi-2 ] = [x 2, g]. By Lemma 4.3, g] = 1 and so g] = 1. It
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follows that there are infinitely many integers i &#x3E; k such that [ x 2 , =

= 1. We can therefore obtain an infinite subset {y1, y2, ...} Of f Xl, x2 , ’" }
such that [ y 2 , Yj] = 1, whenever i &#x3E; j . Thus we have case (2) again and
we obtain a contradiction. Therefore G has no elements of order 4.

Now suppose that G has an element x of order 9. Then X3 has order 3
and x3 has infinitely many conjugates. Using the same argument as in
the previous case we obtain an infinite set T of pairwise noncommuting
conjugates of x and then an infinite such that

r; , = 1 for all i , j and either (1) [Xi-2, X j, xi- 2 ] =
- [ x 2 , whenever i  j , or (2) [Xi-2, X j, xi- 2 ] _ [ x 2 , whenever

i &#x3E; j.
If and [xi-2 , xj, xi-2] = [xi2, xj], then, by

Lemma 4.3, x~ ] 12 = 1 and [ x 6 , = 1. Since xi has order 9 , we have
= 1 and, by (iii) of Lemma 4.3, [Xi’ x~ ]4 = 1. But G has no ele-

ments of order 4 so [xi, = 1. The equation xi, x~-1 ] = is

equivalent to = so [xi, = [xi, 
x~ ]2 + 2x2 = 1. Therefore [xi, = 1 for all i, j and so (X 1 3, X 2 3, its

an infinite central subgroup of the C14 *-group (ri , x2, ... ~. By Lemma
3.4, ~2 ~ - -) is abelian contrary to the choice of T . Hence G has no ele-
ments of order 9 either.

Now we are ready to prove the main result of this section.

THEOREM 4.10. An infinite C14*-group is abelian.

PROOF. If there is an infinite nonabelian C14*-group then, by Theo-
rem 3.8, we can choose a counterexample G with FC(G) = 1. By Lemma
4.9, G has exponent 6 and so is locally finite [5; 18.4.8], and by Burnside’s
Theorem [5; 9.3.2] it is also locally solvable.

Let H be any countably infinite subgroup of G; then H = PQ = ~P,
where P is a 2-group and Q is a 3-group [7; p. 22]. Since P has exponent 2
it is abelian. If Q is finite then H is abelian-by-finite and so is abelian by
Lemma 3.5, and hence Q is abelian. If Q is not abelian then it is infinite
and so is not central-by-finite. Hence Q contains an infinite set S of pair-
wise noncommuting elements. Since Q is a C14*-group, Theorem 4.1
shows that S has an infinite subset ,S1 such that [x -1, y , x -1 = [r , y ] ~
~ 1, for all x, y E 81. We can write ,S1 as the disjoint union of two infinite
sets X and Y and consider the infinite sets X 2 and Y. By
the C14*-condition, there are elements x E X and ye Y such that

[ x - 2 , y , x - 2 ] = [X2, y ] . Since Q has exponent 3, [ x 3 , y ] = 1 and so, by
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(iii) of Lemma 4.3, [ x , y ]4 = 1, and hence [x, y ] = 1, a contradiction.
Therefore Q is abelian. Thus, by Ito’s Theorem [15; 8.5.3], H is

metabelian, and so by Theorem 3.6, H is abelian. Since H was an arbit-
rary countably infinite subgroup of G it follows that G is

abelian.

We have now immediately the following corollary.

COROLLARY 4.11. An infinite D *-group is abelian, for n =

=1,8, 14,20.

PROOF. By definition, any D14*-group is a C14*-group, and hence
abelian by Theorem 4.10. Proposition 2.5 implies that every infinite Dn *-
group, n = 1, 8 , 20 , is a D14*-group, and hence abelian by the
above.

5. - The class of D4*-groups.

In this section we show that in the remaining cases, i.e. n = 4, 30, in-
finite Dn *-groups are abelian. As stated in Proposition 2.4, neither D4
nor D30 imply D14. Thus we cannot use Theorem 4.10 to prove our claim.
However, by Proposition 2.4, D30 implies D4. Thus it suffices to prove
our claim for n = 4. First we recall some relevant results from Proposi-
tion 4.5 in [6].

LEMMA 5.1. If 2/} satisfies D4, then

Our proof that an infinite D4*-group is abelian is similar in structure
to that for C14*-groups but is slightly easier because of the additional in-
formation contained in the above result.

LEMMA 5.2. Suppose that G is an infinite nonabelian D4*-group.
If A is an abelian subgroup of G then A 6 is finite.

PROOF. Suppose that A 6 is infinite and for each x E A 6 choose b E A
such that b 6 = x . This gives an infinite subset B of A such that the ele-
ments b 6 , b E B , are distinct. Given any element g E G and let X be any
infinite subset of B . Consider X and Y = Xg By the ~4*-
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condition, there are elements b , c E X such cg ~ satisfies ~4 . In
particular [ b 6 , cg] = 1 and hence [ b s , g ] = 1. Thus every infinite subset
of A 6 contains an element of CG (g). Therefore A 6 BA 6 fl CG (g) is finite
and hence A s ~ CG (g ). It follows that A s ~ Z( G ), contrary to Lemma
3.5. 

LEMMA 5.3. Suppose that G is an infinite nonabelian D4*-group
with FC(G) = 1. Then G is a {2, 

PROOF. By Lemma 5.2, G has no elements of infinite order. If G is
not a {2, 3}-group it contains an element x of prime order p &#x3E; 3 and x

has infinitely many conjugates. By Theorem 4.1 and the D4*-condition
there is an infinite set S of conjugates of x such that each, v) 
satisfies ~4 . By Lemma 5.1 we have [u 6, v] = 1, but since u has order p
this implies that [ u , v] = 1. is an infinite elementary
abelian p-subgroup, contrary to Lemma 5.2.

LEMMA 5.4. Suppose that G is an infinite nonabelian 
with FC(G) = 1. Then G has exponent 6.

PROOF. Suppose first that G has an element x of order 4. Then x2 has
order 2 and has infinitely many conjugates. Therefore there is an infinite
set C of conjugates of x whose squares are distinct. If C contained an in-
finite commuting subset then this subset would generate an abelian sub-
group A with A 6 = A 2 being infinite, contrary to Lemma 5.2. By Theo-
rem 4.1, C contains an infinite subset S of pairwise noncommuting
elements.

Applying Theorem 4.1 again with the D4*-condition, we obtain an in-
finite subset T of ,S such that, v ~ satisfies D4, for all u , v E T . In par-
ticular (U 2 T) is an infinite central subgroup of T). It follows
from Lemma 3.5 E T) is abelian, contrary to the elements of T
being pairwise noncommuting. Therefore G has no elements of order 4.

Now suppose G has an element x of order 9. As above, we obtain an
infinite set W of pairwise noncommuting conjugates of x such that
[ u s , v ] = 1, for all u , v E W. Since u has order 9 it follows that [ u 3 , v] =
= 1, for all u, v E W. Now E W) is an infinite central subgroup of

E W) and we again obtain a contradiction to the elements of W be-
ing noncommuting.
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We are now ready to prove the main result of this section.

THEOREM 5.5. An infinite On *-group, n = 4, 30, is abelian.

PROOF. Let n = 4. If there is an infinite nonabelian D4*-group then,
by Theorem 3.8, we can choose it to have FC(G) = 1. By Lemma 5.4, G
has exponent 6 and so is locally finite. If H is any countably infinite sub-
group of G then H = PQ = QP where P is an elementary abelian 2-sub-
group and Q has exponent 3. As in the proof of Theorem 4.10, we have
only to show that if Q is infinite then it is abelian. 

’

If Q is infinite and nonabelian then it contains an infinite set ,S of
pairwise noncommuting elements. By the D4*-condition there are ele-
ments x , y E S such that I x, y ~ satisfies ~4 . Since x 3 = 1, it follows from
(ii) of Lemma 5.1 that [ x , y ]2 x = 1 and, since [x, y ] e Q has order dividing
3, this implies that [ x , y ] = 1. This contradiction shows that Q is abelian.
Hence H = PQ is metabelian and hence abelian, by Theorem 3.6.

Finally, let n = 30. By Proposition 2.5, condition D30 implies D4.
Therefore, by the above, it follows that an infinite D30*-group is

abelian.

The following corollary is an immediate consequence of Theorem 5.5
and Corollary 4.11.

COROLLARY 5.6. For any n E ~ 1, ..., 32 }, an infinite Dn *-group is
abelian.

6. - The class of Cl*-groups.

In this section we will show that an infinite Cl*-group is abelian. The
proof follows along the same lines of the one given in Section 4 for C14*-
groups, but it is much simpler, since we can reduce it to a 2-group. By
Proposition 2.3 there are 10 other Dn-conditions equivalent to Dl . How-
ever, there are only 5 of them, namely n = 2 , 3, 5, 6, 13, where the sym-
metrized Cn-condition remains equivalent to the symmetrized Cl-condi-
tion. In all of these cases we are able to show that infinite Cn *-groups
are abelian.
We start with a lemma analogous to Lemma 4.3, where we will use

the Cl condition applied to the pair (x, y 2 ) simultaneously with the pair
(x~ y).
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LEMMA 6.1. Let x, y E G satisfy the following two conditions

Then

PROOF. Write a = [x, y ] and consider the near ring First we

show (i). In 3Za (6.1.1) can be written as

Similarly, (6.1.2) becomes

Now (6.1.3) implies 3 y = 6 . Substitution into (6.1.4) leads to 3 y 2 = 3 y .
Multiplying by y -1 from the right yields 3 y = 3. Using (6.1.3), we obtain
3 = 0, or a 3 = 1, proving (i). The second claim follows from observing
[~~ y2] = a3.

LEMMA 6.2. Let G be a Cl*-group and let A be an abelian sub-
groups of G. Then either A 2 = ~ a 2 ~ finite or A 2 ~ Z(G).

PROOF. Suppose A 2 is infinite. Let g E G ; we show that A 2 ~ CG (g).
For each element x E A 2 , choose an element b E A such that b 2 = x . This
gives an infinite subset B of A such that the elements b 2 , b E B , are dis-
tinct. Let ,S be an infinite subset of B . Consider the infinite sets X = S

and The C1 *-condition shows that there are ele-

ments b , such that [ cg , b , b ] _ [ cg , b]. But A abelian implies

Since every infinite subset S of B contains an element b satisfying (6.2.1),
it follows that if b , b ] = [g , b I I then B B C is finite. Now
let T be any infinite subset of C 2 = ~ b 2 ~ b E C}. By considering the infi-
nite sets T and Tg we see that there are elements d 2 , e 2 E T such that
[e2g, d2, d2] _ [e2g, d2], and hence
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It follows that if and [g , b 2 , b 2 ] _
- [g , then B B D is finite. For each d E D , we have [ d 2 , g] = 1, by
Lemma 6.1, and since A 2 = B 2 = {b21 and B BD is finite, it follows
that A 2 BA 2 f1 CG (g) is finite. Now A 2 infinite implies that A 2 n CG (g) _
= A 2 and so A 2 ~ CG (g ), for any g e G.. 

,

COROLLARY 6.3. Suppose that G is an infinite nonabelian Cl*-
group. If A is an abelian subgroup of G, then A 2 is finite.

PROOF. If A 2 were infinite, then it would be central contrary to Lem-
ma 3.4.

COROLLARY 6.4. Suppose that G is an infinite nonabelian C1 *-

groups. Then G is periodic and has no infinite abelian 2’-subgroup.

PROOF. If G contained an element 9 of infinite order then (g)2 would
be infinite, contrary to Corollary 6.3. If G contained an infinite abelian
2’-subgroup A then A 2 = A would be infinite, again contradicting Corol-
lary 6.3.

The next stage in our proof is to reduce to the consideration of a 2-
group.

LEMMA 6.5. Suppose that G is an infinite nonabelian C1 *-group
urith FC(G) =1. Then G is a 2-group.

PROOF. If G is not a 2-group then it contains an element u of prime
order p # 2 and u has infinitely many conjugates. It follows from the
Cl*-condition and Theorem 4.1 that this set of conjugates contains an in-
finite subset ,S such that [ x , y , y ] = [x, y ], for all x , y E ,S . Let X and Y
be two infinite subsets of ,S . Since the elements have order p ~ 2 , the
squares of the elements are distinct. So y2 yl is infinite and
applying the Cl*-condition to X and y2 gives elements and y E Y

such that

The equations of (6.5.1 ) therefore satisfy the hypothesis on y ) in
Corollary 4.2 and so S contains an infinite set of elements {x1, X2, - - - I
such that either (1) Xi2, = Xi2], whenever i j, or (2)
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Xi2, = whenever i &#x3E; j . Lemma 5.1 shows that either (1)
[x 2, = 1, whenever t  j , or (2) xil = 1, whenever i &#x3E; j . Since xi
has prime order p ~ 2, it follows that [xi, = 1 for all i, j and so

x2, ... ) is an infinite elementary abelian p-group, contrary to Corol-
lary 6.4. Therefore G is a 2-group.

The next step is to show that G has no elements of order 4.

LEMMA 6.6. Suppose that G is an infinite nonabelian C1 *-group
with FC(G) = 1. Then G has exponent 2.

PROOF. By Lemma 6.5, G is a 2-group and so we have only to show
that G has no elements of order 4.

Suppose first that G has an element u of order 4. Then u2 has order 2
and u 2 has infinitely many conjugates. Therefore there is an infinite set
C of conjugates of u whose squares are distinct. If C contained an infinite
commuting subset, then the elements of this set would generate an
abelian subgroup A of exponent 4 with A 2 being infinite. This is contrary
to Corollary 6.3. By Theorem 4.1, C must contain an infinite subset S of
pairwise noncommuting elements. The Cl*-condition and Theorem 4.1
show that S contains an infinite subset T such that [ x , y , y ] = [ x , y ] ~ 1,
for all x , y E T . If X and Y are infinite subsets of T then the set y2 =

- ~ y 2 ~ lye YI is also infinite and by the Cl *-condition there are elements
x E X and y E Y such that

The equations of (6.6.1) therefore satisfy the hypothesis on P(x, y ) in
Corollary 4.2 and so T contains an infinite subset {x1, X2, ...} such that
either

, whenever i  j, or

, whenever i &#x3E; j .

But Lemma 6.1 implies that [x, y]3 = 1 and, since G is a 2-group,
[x, y ] = 1 contrary to the choice of ,S .

Now we are ready to prove our final result.

THEOREM 6.7. An infinite n = 1, 2 , 3 , 5 , 6 , 13 , is

abelian.



208

PROOF. First let n = 1. If there is an infinite nonabelian Cl*-group
then, by Theorem 3.8, we can choose a counterexample G with FC(G) =
= 1. By Lemma 6.5 and 6.6, G is a 2-group without elements of order 4,
hence is abelian, a contradiction. We conclude that there are no non-
abelian infinite Cl*-groups.

Turning to the other values of n , we observe that conditions C2 and
C3 can be rewritten as [x , y -1, y -1 ] = [ x , y - 11. Thus (x , y -1 ) satisfies
Cl iff (x, y) satisfies C2 or C3, respectively. Similarly, C5 can be rewrit-
ten as [y, x, x] _ [y, x]. Thus (y, x) satisfies Cl iff (x, y) satisfies C5.
Finally, C6 and C13 can be rewritten as [ y , x -1, x -1 ] = [ y , x -1 ]. Thus
( y , satisfies Cl iff (x , y ) satisfies C6 or C13, respectively.

Suppose now that G is a C2*-group. We have to show that for any in-
finite subsets X and Y of G there exist x e X, y E Y such that 0 1 ( x , y ) =

_ ~ 1 ( y , x) = 1. Let X , V be any infinite subsets of G. There exist x E
such that ~ 2 ( x , v ) _ ~ 2 ( v , x ) = 1, or equivalently

~ 1 (x, v -1 ) _ ~ 1 (v -1, x) = 1. Now for any subset Y of G there exists a
subset V such that Y = V -1= ~ w -1; w E Thus if v E V, then v -1 E Y.
Set y = v -1 and we conclude ( x , y ) satisfies C 1. Hence C2* implies C 1 * .
Similar arguments show that Cn * , n = 3 , 5, 6, 13, implies Cl* ..
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