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Decreasing Diagonal Elements
in Completely Positive Matrices.

FRANCESCO BARIOLI (*)

All matrices considered in this paper are real matrices (~).
It is well known that a diagonally dominant symmetric matrix with

nonnegative diagonal elements is positive semidefinite; actually, this fact
is an immediate consequence of the Gerschgorin circles theorem.

An analogous result, not equally well known, holds for completely po-
sitive matrices, i.e. for those matrices A that can be factorized in the
form A = where V is a nonnegative matrix. In fact Kaykobad [4]
proved that a nonnegative symmetric diagonally dominant matrix is

completely positive.
Hence, if the diagonal elements of a symmetric matrix A have suffi-

ciently large positive values, then A is positive semidefinite and, if A is
nonnegative, it is completely positive.

In this paper we consider the question arising by assuming the oppo-
site point of view. Let A be a positive semidefinite or a completely positi-
ve matrix; then we will consider the following question: how much a di-
agonal element of A can be decreased while preserving the semidefinite
positivity or, respectively, the complete positivity of A?

We will answer this question concerning positive semidefinite matri-
ces in Section 2; the answer is simple and follows from an inductive test

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata, Universi-
ta di Padova, Via Belzoni 7, 35131 Padova, Italy.

(1) This paper is part of the doctoral dissertation under the supervision of
Prof. Luigi Salce.
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for semidefinite positivity (see [7], Cor. 1.3]), which involves the Moore-
Penrose pseudo-inverse matrix of a maximal principal submatrix.

As to completely positive matrices the answer arises from the con-
nection of the above question with the property PLSS (positivity of least
square solutions) introduced in [7]. More precisely, we will consider in
Section 3 i-minimizabLe matrices (1 ~ i ~ n, where n is the order of the
considered matrix), which are those completely positive matrices such
that the minimal value of the i th diagonal element making the matrix po-
sitive semidefinite makes the matrix completely positive too. We will
show that 1-minimizability is equivalent to property PLSS, that singular
completely positive matrices are i-minimizable for some i, and that com-
pletely positive matrices with completely positive associated graph (see
[5]) are z-minimizable for all i.

Recent results (see [1]) show that completely positive matrices with
cyclic graph of odd lenght are not i-minimizable for any i. Conversely, it
follows from results by Berman and Grone [2] that completely positive
matrices with cyclic graph of even lenght are i-minimizable for all i.
Thus the following problem arises: to find examples of completely positi-
ve matrices with more complicate behaviour with respct to minimizability.

In Section 4 we will investigate excellent completely positive matri-
ces, already introduced in [1], and defined in terms of their graphs,
which are «almost» completely positive. We will give a characterization
of excellent 1-minimizable completely positive matrices, which enables
us to produce several examples of excellent matrices with different be-
haviour with the respect to minimizability.

2. - Minimized positive semidefinite matrices.

We recall the following definitions. A symmetric matrix A of order n
is positive semidefinite if 0 for all vectors x The matrix A
is doubly nonnegative if it is both semidefinite and (entrywise) nonnega-
tive ; it is completely positive if there exist a nonnegative (not necessarily
square) matrix V such that A = VVT.

It is well known that a completely positive matrix is doubly nonnega-
tive and that the converse is not generally true for matrices of order
larger than four.

We will denote by R(A) the column space (range) of the matrix A, by
A+ its Moore-Penrose pseudo-inverse and by rk (A) its rank. For unex-
plained notation we refer to [6].
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Let A be a symmetric semidefinite matrix of order n &#x3E; 1 in bordered
form

In [7] the following result, which provides an inductive test for

semidefinite positivity, was proved:

LEMMA 2.1. The symmetric matrix A in (1) is positive semi-

definite if and only if Al is positive semidefinite, b E R(A1 ) and
a &#x3E; bTA1+ b.

It follows from Lemma 2.1 that the minimal value of t E R such that

the matrix

is positive semidefinite is we will denote it by a,. The

matrix

is called the 1-minimized of A. We say that A itself is 1-minimized if

A = A~ . If 1 ~ i ~ n, the i-minimized of A is the matrix where

Pi is the permutation matrix obtained from the identity matrix by trans-
posing the first and the i th row. The matrix A is said to be i-minirnized if

PiTAPi = (PTiAPi)03BC.
A 1-minimized (or, more generally, an i-minimized) matrix is singu-

lar. This fact is trivial if Al is singular, otherwise it follows from the

equality Det (A ) = applied to A = A,~ .
The converse is not generally true, as the trivial example

shows. Howewer, we have the following result:
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THEOREM 2.2. A singular positive semidefinite matrix n-by-n
is i-minimized for some i ~ n.

In order to prove the preceding theorem, we need two lemmas, whose
straightforward proofs are given for sake of completeness.

LEMMA 2.3. Let A be a positive semidefinite n-by-n matrix. Then
its rank coincides with the maximum order of a non-singular principal
submatrix.

PROOF. Let rk (A) = k. Since A is positive semidefinite, there exists
a real n-by-k matrix W such that A = Since rk ( W) = k too, we
can find a non-singular submatrix of W. Let it Wl. Finally
A’ = WI Wi is a non-singular principal submatrix of A of order k. m

The second result that we need is the following:

LEMMA 2.4. Let A be a positive semidefinite matrix in bordered
form ( 1 ), with rk (A 1 ) = k, and let M a non-singular principal subma-
trix of A, of order k. Then a, = where c is the vector obtained by
taking the coordinates of b corresponding to the rows of M.

PROOF. The existence of M is ensured by Lemma 2.3. There is no
loss of generality if we consider A in the form

There exists a matrix W, of rank k such that A1= W, Wi and clearly
A~, = VVW T for ( W1+ b Wf), because

~ = bTAl+b = = Wi+6 

Thus rk (A~ ) = k and the principal submatrix

is singular and positive semidefinite, thus by Lem-
ma 2.1. 1
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We are now able to give the

PROOF OF THEOREM 2.2 Let B the singular positive semidefinite ma-
trix, k = rk (B). There exists a permutation matrix of the form Pi for
some i ~ n, such that written in bordered form (1), has
rk (A 1 ) = k.

By Lemma 2.4, there exists a non-singular principal submatrix M of
order k of Ai , so that A is cogredient to the matrix

We will show that this matrix is 1-minimized, hence the matrix B will
be i-minimized. The principal submatrix

is singular, hence a and, by Lemma 2.4, this is the minimal
value that makes A * positive semidefinite.

From the preceding results we get the following

COROLLARY 2.5. Let A be a singular positive semidefinite matrix
in bordered form (1). Then A is 1-minimized if and only if rk (A) =
= rk (Ai ).

PROOF. Assume A 1-minimized. The proof of Lemma 2.4 shows that
W has the same number of columns as Wi, hence rk (A) = rk (Ai ). Con-
versely, if rk (A) = rk (A1 ), in the proof of Theorem 2.2, M can be
choosen as a submatrix of Al without using the permutation matrix Pi ,
and one can conclude that A itself is 1-minimized.

3. - Minimizable completely positive matrices.

Let A be a completely positive matrix of order n in bordered form (1).
An immediate consequence of the fact that the class of the completely
positive matrices of order n is closed in the class of the symmetric matri-
ces of the same order (see [3]) is that there exists a minimal value a, E R
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such that the matrix

is completely positive; obviously ae ; a, . The matrix A, is called the 1-ex-
tremized of A. A itself is called an 1-extreme matrix if A = Ae . If i  n,
the i-extremized of A is the 1-extremized of P T APi and A itself is an
i-extreme matrix if PTAPI is 1-extreme.

DEFINITION. We say that a completely positive matrix A in bordered
form (1) is i-minimizable if the i-minimized matrix of A is also complete-
ly positive, i.e. if (PiT APi)e.

DEFINITION. We say that a completely positive matrix A in bordered
form (1) is totally minimizable if it is i-minimizable for all i ~ n; equiva-
lently, if all the matrices cogredient to A are 1-minimizable.

The apparently new notion of 1-minimizable completely positive ma-
trix is equivalent to the notion of «property PLSS» already introduced
in [7], and simply called «property (P)» in [6]. Recall that the sym-
metric non-negative matrix A in bordered form (1) satisfies property
PLSS if there exists a nonnegative matrix VI such that Al = VI V(
and Vl’ 0.

PROPOSITION 3.1. A completely positive matrix A in bordered form
(1) is 1-minimizabLe if and onLy if it satisfies the property PLSS.

PROOF. Let A satisfy the property PLSS. Then A~ also satisfies this
property; hence, by ([7], Theorem 2.1), A~ is completely positive.

Conversely, let A be 1-minimizable. By ([7], Proposition 1.2), there
exists a nonnegative matrix VI and a nonnegative vector v such
that:

From the equalities

and from the uniqueness of the least square solution of the linear system
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V1 x = b, there follows that v = Vl+ b. Thus Vl+ b ~ 0 and property PLSS
holds. 0

The class of totally minimizable matrices is quite large, as the follow-
ing result shows. Recall that a graph T is called compLetely positive if
every doubly nonnegative matrix A whose associated graph T(A ) equals
r is completely positive. Kogan and Berman [5] proved that a graph is
completely positive if and only if it does not contain a cycle of odd length
larger than three.

PROPOSITION 3.2. The class of totally minimizabte matrices con-
tains all the completely positive matrices with completely positive
graphs.

PROOF. Let A be a completely positive matrix such that its graph
r(A) is completely positive. Let B the i-minimized matrix of A for some
i ~ n. Obviously r(B) is completely positive, thus B, which is obviously
doubly nonnegative, is completely positive.

The connection between singularity and minimizability is illustrated
in the following

PROPOSITION 3.3. Let A be a singular completely positive matrix
in bordered form (1). Then A is i-minimizabLe for some i ~ n and is

1-minimizable if rk (A ) = rk (Ai ).

PROOF. By Theorem 2.2, A is i-minimized for a certain i; let A * =

PTAPI. A * is completely positive and 1-minimized, so it is obviously
1-minimizable, hence A is i-minimizable. Furthermore, if rk (A ) _
= rk (Ai ), by Corollary 2.5 it follows that A is 1-minimizable.

We conclude this section with a result providing the construction of a
completely positive singular matrix (hence i-minimizable for some i ~ n)
which fails to be 1-minimizable; this matrix is obtained by bordering in a
suitable way a non-singular not 1-minimizable completely positive ma-
trix. Such a matrix does exists (see Example 4.6).
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PROPOSITION 3.4. Let C be a non-singular completely positive ma-
trix of order n &#x3E; 1 in bordered form

which is not 1-minimizable. Then there exists a completely positive
matrix A obtained by suitably bordering the matrix C

which is not 1-minimizacble, but is i-minimizacbLe for some 1  i ~ n.

PROOF. There exists a matrix V ~ 0 such that Let VT =
= (vi Vi ). Then rk (kJ = rk ( C) = n and rk ( V1 ) = rk(Ci) = n - 1. Let
W T = (vi Vi v), where v is a nonnegative vector of the column space

Obviously rk (WT) = n. Let now A = IVIV . Then A is completely
positive of order n + 1 and rank n, and has the form (11) for d = d =

and e = vT v. By Proposition 3.3, A is i-minimizable for some i. As-
sume, by way of contraddiction, that A is 1-minimizable; then the 1-mini-
mized matrix All of A is completely positive, hence the its submatrix

is completely positive too. By Lemma 2.4, all = hence we reach
the contraddiction, since C is not 1-minimizable.

4. - Minimizability of excellent completely positive matrices.

A cycle of even length is a bipartite graph, hence it is a completely
positive graph; therefore, in view of Proposition 3.2, a cyclic completely
positive matrix of even order is totally minimizable.

Cyclic doubly nonnegative matrices of odd order which are not com-
pletely positive can be easily produced (see [3]). In [1] it is proved that a
doubly nonnegative cyclic matrix A of odd order is completely positive if
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and only if Det (A ) ; 4 hl h2 ... hn , where the hi’s are the non-zero ele-
ments over the main diagonal. It follows that such a matrix cannot be
singular and consequently, given any i ~ n, it is not i-minimizable.

In this section we study a family of completely positive matrices, con-
taining the cyclic ones, which provides more interesting examples with
respect to minimizability.

In [1] doubly nonnegative matrices A = in bordered form (1)
have been considered satisfying the following properties:

3) The graph T(A1 ) associated to Al is completely positive.

The graph T(A ) associated to the matrix A is obtained from the graph
7"(Ai) by adding one more vertex, connected with only two vertices of
T(A1 ), which are not connected each other. We will say that such a graph
is an excellent graph, and that a doubly nonnegative matrix A satisfying
the preceding properties is an excellent matrix.

In the preceding notation, let us denote by A - the matrix obtained
from A by substituting equivalently, substituting the vec-
tor b by the vector Q1 - !!.2, where bl = 0 0 ... and b2 -
- ( 0 0 ... 0 In [1], part of the following result was proved.

THEOREM 4.1. Let A be an excellent doubly nonnegative n-by-n
matrix with n &#x3E; 2 in bordered form (1), with b = (~i 2 0 0 ... O ~3 n )T . The
following facts are equivalent:

1) A is completely positive;

2) A - is positive semidefinite;

3) The vector (10...00)~q/’R~’~ 1 belongs to the column space
R(A1 ) of A1 and a ; a~ - 4~3 2 ~i n a, where a is the element in the first row
aud last colurrzn of A1+ .

PROOF. For 1) ~ 2) see [1]. For 2) ~ 3), observe that, by Lemma 2.1,
A - is positive semidefinite if and only if b1 - and a a

~ (bi - bT ) A1+ (bl - !!.2). But since b = bl + Q2 E b E R(A1 ) if
and only if b1 E R(A1 ) (or equivalently if and only if
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. Moreover, we have:

We must remark that it is not possible to eliminate in Theorem 4.1
the hypothesis that A is doubly nonnegative, since there are symmetric
nonnegative matrices A with Al positive semidefinite and b eR(A1),
which fail to be positive semidefinite, and such that A - is positive
semidefinite. This happens (by using the preceding notation and with A
in bordered form (2.1)) when a &#x3E; 0 and &#x3E; a &#x3E; 

On the other hand, in the hypothsis of Theorema 4.1, if a ~ 0, the condi-
tion a &#x3E; a, - is automatically verified, since a ~ a, . An immedi-
ate consequence of this remark is the following

COROLLARY 4.2. Let A be an excellent completely positive matrix
od order n &#x3E; 1 in bordered form (1), with b = (fi 2 0 0 ... 0 13 n)T, and let
a be the element in the first row and Last coLumn of Then

1) 

2) A is 1-minimizable if and onLy if a ; 0.

PROOF. 1) is an immediate consequence of Theorem 4.1.
2) If A is 1-minimizable, then ae = a~ , hence a ~ 0 by point 1). Con-

versely a ~ 0 and point 1) imply a, = a, 0

We give now some examples of excellent matrices with different be-
haviour with respect to 1-minimizability.

EXAMPLE 4.3. Consider the following symmetric matrix with excel-
lent associated graph
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The principal submatrix Al (obtained from the last four rows and

columns) is singular and completely positive, and the vector b =

- ( 1 0 0 eR(A1), hence A(a) is doubly nonnegative for a ~ bT A1+ b.
Howewer, the matrix A(a) is not completely positive for any value of a,
since, according to Theorem 4 the vector ( 1 0 0 0 )T does not belong to
R(A1 ).

EXAMPLE 4.4. Consider the following symmetric matrix with excel-
lent associated graph

In this case the principal submatrix Al is non-singular and complete-
ly positive, so the vectors b = ( 1 0 0 1 )T and bl = (1 0 0 belong to
R(A1 ), hence A(a) is doubly nonnegative for a ; = 7. Moreover,
the element a in the first row and last column of A1+ equals 1, hence A(a)
is completely positive and 1-minimizable for all a ~ 7. If 7 &#x3E; a ~ 3 =

= 7 - 4 ~ 2 ~i n a, A is not doubly nonnegative and A - is positive semidefi-
nite.

EXAMPLE 4.5. Consider the following symmetric matrix with excel-
lent associated graph

In this case Al is non-singular and completely positive, so b =



24

- ( 1 0 0 1 )T and bl = ( 1 0 0 Of belong to hence A(a) is doubly non-
negative for a ~ = 3. Moreover a = -1, hence A(a) is completely
positive if and only if a ~ a~ - 4 a = 7 and one can conclude that A is not
1-minimizable.

EXAMPLE 4.6. Consider the following completely positive cyclic ma-
trix of order 5

which is not i-minimizable for any i. A factorization of C = W T is ob-
tained for

Using Proposition 3.4, one can see that, setting W T = where

b = (0 0 0 1 1 )T, the following completely positive matrix

is singular, hence i-minimizable for some i, but it is not 1-minimiz-

able.
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