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REND. SEM. MAT. UNIv. PADOVA, Vol. 100 (1998)

Decreasing Diagonal Elements
in Completely Positive Matrices.

FRANCESCO BARIOLI (*)

All matrices considered in this paper are real matrices .

It is well known that a diagonally dominant symmetric matrix with
nonnegative diagonal elements is positive semidefinite; actually, this fact
is an immediate consequence of the Gerschgorin circles theorem.

An analogous result, not equally well known, holds for completely po-
sitive matrices, i.e. for those matrices A that can be factorized in the
form A =VV7, where V is a nonnegative matrix. In fact Kaykobad [4]
proved that a nonnegative symmetric diagonally dominant matrix is
completely positive.

Hence, if the diagonal elements of a symmetric matrix A have suffi-
ciently large positive values, then A is positive semidefinite and, if A is
nonnegative, it is completely positive.

In this paper we consider the question arising by assuming the oppo-
site point of view. Let A be a positive semidefinite or a completely positi-
ve matrix; then we will consider the following question: how much a di-
agonal element of A can be decreased while preserving the semidefinite
positivity or, respectively, the complete positivity of A?

We will answer this question concerning positive semidefinite matri-
ces in Section 2; the answer is simple and follows from an inductive test

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata, Universi-
ta di Padova, Via Belzoni 7, 35131 Padova, Italy.

(!) This paper is part of the doctoral dissertation under the supervision of
Prof. Luigi Salce.
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for semidefinite positivity (see [7], Cor. 1.3]), which involves the Moore-
Penrose pseudo-inverse matrix of a maximal principal submatrix.

As to completely positive matrices the answer arises from the con-
nection of the above question with the property PLSS (positivity of least
square solutions) introduced in [7]. More precisely, we will consider in
Section 3 i-minimizable matrices (1 <1 < n, where 7 is the order of the
considered matrix), which are those completely positive matrices such
that the minimal value of the % diagonal element making the matrix po-
sitive semidefinite makes the matrix completely positive too. We will
show that 1-minimizability is equivalent to property PLSS, that singular
completely positive matrices are i-minimizable for some 4, and that com-
pletely positive matrices with completely positive associated graph (see
[5]) are i-minimizable for all 4.

Recent results (see [1]) show that completely positive matrices with
cyclic graph of odd lenght are not ¢-minimizable for any i. Conversely, it
follows from results by Berman and Grone [2] that completely positive
matrices with cyclic graph of even lenght are i-minimizable for all i.
Thus the following problem arises: to find examples of completely positi-
ve matrices with more complicate behaviour with respet to minimizability.

In Section 4 we will investigate excellent completely positive matri-
ces, already introduced in [1], and defined in terms of their graphs,
which are «almost» completely positive. We will give a characterization
of excellent 1-minimizable completely positive matrices, which enables
us to produce several examples of excellent matrices with different be-
haviour with the respect to minimizability.

2. — Minimized positive semidefinite matrices.

We recall the following definitions. A symmetric matrix A of order n
is positive semidefinite if x Az = 0 for all vectors x € R". The matrix A
is doubly nonnegative if it is both semidefinite and (entrywise) nonnega-
tive; it is completely positive if there exist a nonnegative (not necessarily
square) matrix V such that A =VVT,

It is well known that a completely positive matrix is doubly nonnega-
tive and that the converse is not generally true for matrices of order
larger than four.

We will denote by R(A) the column space (range) of the matrix A, by
A" its Moore-Penrose pseudo-inverse and by rk(A) its rank. For unex-
plained notation we refer to [6].
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Let A be a symmetric semidefinite matrix of order % > 1 in bordered
form

T
1) A=(“ ’-’).
b A

In [7] the following result, which provides an inductive test for
semidefinite positivity, was proved:

LEMMA 2.1. The symmetric matrix A in (1) is positive semi-
definite if and only if A, is positive semidefinite, be R(A;) and
a=blTA b

It follows from Lemma 2.1 that the minimal value of ¢t € R such that
the matrix

@ A(t) = -t
b A

is positive semidefinite is b"A;"b; we will denote it by a,. The
matrix

a, b
®) A= b A
4 1

is called the 1-minimized of A. We say that A itself is 1-minimized if
A=A, If1<1<n,thei-minimized of A is the matrix (PLAP; )u> Where
P; is the permutation matrix obtained from the identity matrix by trans-
posing the first and the ¢ row. The matrix A is said to be i-minimized if
PTAP,= (P{AP)),.

A 1-minimized (or, more generally, an i-minimized) matrix is singu-
lar. This fact is trivial if A, is singular, otherwise it follows from the
equality Det(A) = Det(4,)(a — b" A, 'b) applied to A=A4,.

The converse is not generally true, as the trivial example

1 0
@ ( )
0 0

shows. Howewer, we have the following result:
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THEOREM 22. A singular positive semidefinite matrix n-by-n
is 1-minimized for some i <n.

In order to prove the preceding theorem, we need two lemmas, whose
straightforward proofs are given for sake of completeness.

LEMMA 2.3. Let A be a positive semidefinite n-by-n matrix. Then
its rank coincides with the maximum order of a non-singular principal
submatrix.

ProoF. Let rk(A) = k. Since A is positive semidefinite, there exists
a real n-by-k matrix W such that A = WW7. Since rk (W) =k too, we
can find a non-singular k-by-k submatrix of W. Let it W;. Finally
A'=W,;W{ is a non-singular principal submatrix of A of order k. =

The second result that we need is the following:

LEMMA 24. Let A be a positive semidefinite matrixz in bordered
form (), with vk (A;) =k, and let M a non-singular principal subma-
triz of A, of order k. Then a, = ¢ M ~'¢, where ¢ is the vector obtained by
taking the coordinates of b corresponding to the rows of M.

Proor. The existence of M is ensured by Lemma 2.3. There is no
loss of generality if we consider A in the form

a QT QT
) ¢c M DT|.
d D N

There exists a matrix W, of rank k such that A, = W, W{ and clearly
A,=WWT for WT'= (Wb W), because

a, = QTA1+Q = QT(Wl WlT)+Q = QT(WlT)+ Wb = (W' Q)TW1+I_7-

Thus rk(A4,) =k and the principal submatrix

a,
®) L
is singular and positive semidefinite, thus a,=c"M ~'¢, by Lem-
ma 2l =
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We are now able to give the

Proor oF THEOREM 2.2 Let B the singular positive semidefinite ma-
trix, k = rk(B). There exists a permutation matrix of the form P; for
some i <n, such that A= PJBP;, written in bordered form (1), has
rk(4,) =k.

By Lemma 2.4, there exists a non-singular principal submatrix M of
order k of A;, so that A is cogredient to the matrix

a QT dT
M A*=|c M DT|.
d D N

We will show that this matrix is 1-minimized, hence the matrix B will
be i-minimized. The principal submatrix

a c’
® ( - )
c M

is singular, hence a = ¢’ M ~!¢ and, by Lemma 2.4, this is the minimal
value that makes A* positive semidefinite. =

From the preceding results we get the following

COROLLARY 2.5. Let A be a singular positive semidefinite matrix
in bordered form (1). Then A is 1-minimized if and only if rk(A) =
=rk(A4,).

PrOOF. Assume A 1-minimized. The proof of Lemma 2.4 shows that
W has the same number of columns as W, hence rk(A) = rk(4,). Con-
versely, if rk(A) =rk(A4,), in the proof of Theorem 2.2, M can be
choosen as a submatrix of A; without using the permutation matrix P;,
and one can conclude that A itself is 1-minimized. m

3. - Minimizable completely positive matrices.

Let A be a completely positive matrix of order » in bordered form (1).
An immediate consequence of the fact that the class of the completely
positive matrices of order % is closed in the class of the symmetric matri-
ces of the same order (see [3]) is that there exists a minimal value a,e R
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such that the matrix

© Ao ([a "
‘e 4

is completely positive; obviously a, = a,. The matrix A, is called the 1-ex-
tremized of A. A itself is called an 1-extreme matrix if A =A,. If i <n,
the i-extremized of A is the l-extremized of PfAP; and A itself is an
i-extreme matrix if PTAP; is 1-extreme.

DEFINITION. We say that a completely positive matrix A in bordered
form (1) is i-minimizable if the i-minimized matrix of A is also complete-
ly positive, ie. if (PfAP;), = (PTAP;),.

DEFINITION. We say that a completely positive matrix A in bordered
form (1) is totally minimizable if it is i-minimizable for all i < n; equiva-
lently, if all the matrices cogredient to A are 1-minimizable.

The apparently new notion of 1-minimizable completely positive ma-
trix is equivalent to the notion of «property PLSS» already introduced
in [7], and simply called «property (P)» in [6]. Recall that the sym-
metric non-negative matrix A in bordered form (1) satisfies property
PLSS if there exists a nonnegative matrix V; such that A4, =V, VT
and Vi*b=0.

ProposSITION 8.1. A completely positive matrix A in bordered form
(1) is 1-minimizable if and only if it satisfies the property PLSS.

ProoF. Let A satisfy the property PLSS. Then A, also satisfies this
property; hence, by ([7], Theorem 2.1), A, is completely positive.

Conversely, let A be 1-minimizable. By ([7], Proposition 1.2), there
exists a nonnegative matrix V; and a nonnegative vector v such
that:

A =ViV{ b=Viv brAb=1"0.
From the equalities
Il = v"v = b"A" b = b" (Vi V)" b =
=b" (VI Vit b =" (V) Vit b = Vi b3

and from the uniqueness of the least square solution of the linear system
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Vix = b, there follows that » = V" b. Thus V" b = 0 and property PLSS
holds. =

The class of totally minimizable matrices is quite large, as the follow-
ing result shows. Recall that a graph I is called completely positive if
every doubly nonnegative matrix A whose associated graph I'(4) equals
I' is completely positive. Kogan and Berman [5] proved that a graph is
completely positive if and only if it does not contain a cycle of odd length
larger than three.

ProprosITION 3.2. The class of totally minimizable matrices con-
tains all the completely positive matrices with completely positive
graphs.

ProoF. Let A be a completely positive matrix such that its graph
I'(A) is completely positive. Let B the i-minimized matrix of A for some
1 < n. Obviously I'(B) is completely positive, thus B, which is obviously
doubly nonnegative, is completely positive. =

The connection between singularity and minimizability is illustrated
in the following

PRrROPOSITION 3.3. Let A be a singular completely positive matrix
in bordered form (1). Then A is i-minimizable for some i <mn and is
1-minimizable if rk (A) = rk(4,).

ProOF. By Theorem 2.2, A is i-minimized for a certain ¢; let A* =
=PTAP;. A* is completely positive and 1-minimized, so it is obviously
1-minimizable, hence A is ¢-minimizable. Furthermore, if rk(4) =
=rk(4,), by Corollary 2.5 it follows that A is 1-minimizable. =

We conclude this section with a result providing the construction of a
completely positive singular matrix (hence i-minimizable for some 7 < n)
which fails to be 1-minimizable; this matrix is obtained by bordering in a
suitable way a non-singular not 1-minimizable completely positive ma-
trix. Such a matrix does exists (see Example 4.6).
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PRrOPOSITION 3.4. Let C be a non-singular completely positive ma-
trixz of order n>1 in bordered form

(10) C= a ¢
C C]

which is not 1-minimizable. Then there exists a completely positive
matric A obtained by suitably bordering the matrix C

a cf d
(11) A=lec ¢ d
d df e

which is not 1-minimizable, but is i-minimizable for some 1 <i<mn.

PROOF. There exists a matrix V=0 such that C=VV7’. Let V7=
=(; V). Then rk(V) =rk(C)=n and rk(V;) =rk(C;) =n — 1. Let
WT= (v, V{ v), where v is a nonnegative vector of the column space
R(V). Obviously rk (W7) = n. Let now A = WW. Then A is completely
positive of order n + 1 and rank #, and has the form (11) for d = v7v, d =
=V,v and e = v"v. By Proposition 8.3, A is i-minimizable for some i. As-
sume, by way of contraddiction, that A is 1-minimizable; then the 1-mini-
mized matrix A, of A is completely positive, hence the its submatrix

a, cT
12 o=
@) (g Cl)

is completely positive too. By Lemma 2.4, a, = ¢" C;"'¢c, hence we reach
the contraddiction, since C is not 1-minimizable. =

4. - Minimizability of excellent completely positive matrices.

A cycle of even length is a bipartite graph, hence it is a completely
positive graph; therefore, in view of Proposition 3.2, a cyclic completely
positive matrix of even order is totally minimizable.

Cyeclic doubly nonnegative matrices of odd order which are not com-
pletely positive can be easily produced (see [3]). In [1] it is proved that a
doubly nonnegative cyclic matrix A of odd order is completely positive if
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and only if Det(A) =4h,hy... h,, where the ks are the non-zero ele-
ments over the main diagonal. It follows that such a matrix cannot be
singular and consequently, given any ¢ <, it is not i-minimizable.

In this section we study a family of completely positive matrices, con-
taining the cyclic ones, which provides more interesting examples with
respect to minimizability.

In [1] doubly nonnegative matrices A = (a;) in bordered form (1)
have been considered satisfying the following properties:

D 2,0 =0y 2=0;
2) b=(B200 ...0 B,)7 with B, =0=8,;
3) The graph I'(A,) associated to A, is completely positive.

The graph I'(A) associated to the matrix A is obtained from the graph
I'(A,) by adding one more vertex, connected with only two vertices of
I'(A,), which are not connected each other. We will say that such a graph
is an excellent graph, and that a doubly nonnegative matrix A satisfying
the preceding properties is an excellent matrix.

In the preceding notation, let us denote by A = the matrix obtained
from A by substituting 8, by —f,, or, equivalently, substituting the vec-
tor b by the vector b —b,, where b;=(8,00 ...0)7 and b,=
=(00 ...0 B8,)". In [1], part of the following result was proved.

THEOREM 4.1. Let A be an excellent doubly nomnegative n-by-n
matrixz with n > 2 in bordered form (1), with b= (8, 00 ... 0 B,). The
following facts are equivalent:

1) A is completely positive;
2) A~ 1is positive semidefinite;

3) The vector (10 ... 00)" of R*~! belongs to the column space
R(A;) of Ay and a = a, — 483, a, where a is the element in the first row
and last column of A;".

ProoF. For 1) « 2) see [1]. For 2) < 3), observe that, by Lemma 2.1,
A~ is positive semidefinite if and only if b, —b,eR(4;) and a=
= (b — bl) AT (b; — by). But since b = b, + bye R(A,), b; — bye R(A,) if
and only if b, eR(A;) (or equivalently b,e R(4;)), if and only if
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b=(10 ...00)" eR(A,). Moreover, we have:
O —b2) A (b1 —b2) = b A" by + DI A b, — 2] A by =
=b{ A b+ b A b+ 2] AT b 4 bf AP =0, —4B5,a. W

We must remark that it is not possible to eliminate in Theorem 4.1
the hypothesis that A is doubly nonnegative, since there are symmetric
nonnegative matrices A with A; positive semidefinite and b e R(4,),
which fail to be positive semidefinite, and such that A~ is positive
semidefinite. This happens (by using the preceding notation and with A
in bordered form (2.1)) when o >0 and b"A;*b >a > bTA;* b —4B,8,a.
On the other hand, in the hypothsis of Theorema 4.1, if a = 0, the condi-
tion a = a, — 48,8, a is automatically verified, since a = a,. An immedi-
ate consequence of this remark is the following

COROLLARY 4.2. Let A be an excellent completely positive matrix
od order n > 1 in bordered form (1), with b= (8, 00 ... 0 8,)7, and let
a be the element in the first row and last column of A;". Then

1) a, = max(a,, a, —4B:8,2);

2) A is 1-minimizable if and only if o = 0.
ProoF. 1) is an immediate consequence of Theorem 4.1.

2) If A is 1-minimizable, then a, = a,, hence a = 0 by point 1). Con-
versely a =0 and point 1) imply a,=a,. =

We give now some examples of excellent matrices with different be-
haviour with respect to 1-minimizability.

ExaMPLE 4.3. Consider the following symmetric matrix with excel-
lent associated graph

@ 1 0 0 1)
12 2 1 0
(13) Ao=10 2 5 3 1
01 3 2 2
1 0 1 2 11
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The principal submatrix A; (obtained from the last four rows and
columns) is singular and completely positive, and the vector b=
=(1001)"e R(A,), hence A(a) is doubly nonnegative for a = bT A" b.
Howewer, the matrix A(a) is not completely positive for any value of a,
since, according to Theorem 4 the vector (1 0 0 0)7 does not belong to
R(A)).

ExaMpLE 4.4. Consider the following symmetric matrix with excel-
lent associated graph

J

(14) A(a) =

o o ~ o
O O
== DN = O
L ==
DD = = O -

In this case the principal submatrix A; is non-singular and complete-
ly positive, so the vectors b= (1 0 0 1)" and b, = (1 0 0 0)7 belong to
R(A,), hence A(a) is doubly nonnegative for a = b7 A;* b = 7. Moreover,
the element a in the first row and last column of A;* equals 1, hence A(a)
is completely positive and 1-minimizable for all ¢ =7. If 7T>a=3 =
=T7—-48,8,0a, A is not doubly nonnegative and A ~ is positive semidefi-
nite.

ExaMPLE 4.5. Consider the following symmetric matrix with excel-
lent associated graph

(@ 1 0 0 1)
1110 0
(15) Aw=10 1 2 1 1
0 0 1 2 3
1 0 1 3 6

In this case A; is non-singular and completely positive, so b =



24 Francesco Barioli

=(1001)"andb, = (1 00 0)" belong to R(A, ), hence A(a) is doubly non-
negative for a = b A, b = 8. Moreover a = —1, hence A(a) is completely
positive if and only if @ = a, — 4a =7 and one can conclude that A is not
1-minimizable.

ExaMpPLE 4.6. Consider the following completely positive cyclic ma-
trix of order 5

2 1 0 0 1)
1210 0
(16) c=10 1 2 1 0
00 1 2 1
1 0 0 1 2

which is not i-minimizable for any i. A factorization of C = VVT is ob-
tained for

amn

<
Il
©C O O H
© O M= = o
S H = o o
= =)
- o o o

\ /

Using Proposition 3.4, one can see that, setting WT= (V'b) where
b=(0001 1), the following completely positive matrix

2 1 0 0 1 1)
1 210 0 0
8 A—wwr_ |0 1 2 1 00
00 1 2 1 1
100 1 2 2
1 00 1 2 2

is singular, hence i-minimizable for some %, but it is not 1-minimiz-
able.
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