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Extensions of Unbounded Topological Spaces.

ALESSANDRO CATERINO - STEFANO GUAZZONE (*)

Introduction.

A method of compactification of locally compact spaces has been pro-
posed in [1]. This method is based on the concept of essential semilattice
homomorphism (ESH for short). More precisely, let X be a locally com-
pact (non-compact) Hausdorff space and a compact Hausdorff space.
Let 1B be an (open) basis of K closed with respect to finite unions, and let
Nx be the family consisting of the empty set and the open subsets of X
which are not relatively compact. A map z : with for

every 0, is an ESH if the following conditions hold:

X - ~z( K) ~ ,N’x - ~ ~ } ;
ESH2) if U, then the symmetric difference

If Tx is the topology of X and 
F compact}, then Tx U 8 is a basis for a topology on the disjoint union
X U K. This new space is a Hausdorff compactification of X with remain-
der K. It is denoted by X U K and is called an ESH-compactification of X.

In this paper we present a natural generalization of the construction
above. We say that a topological space X is locally bounded with respect
to a family (of «bounded» sets) FXC 2x (which is closed under finite

(*) Indirizzo degli AA.: Dipartimento di Matematica dell’UniversitA, Via Van-
vitelli 1, 06100 Perugia, Italy.
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unions and subsets) if every point of X has a bounded neighborhood. We
note that, if is the family of the relatively compact subsets of X (resp.
the relatively Lindel6f subsets of a T3-space X), we have that local
boundedness with respect to trx is equivalent to local compactness (resp.
local Lindel6fness) of X.
We construct dense extensions of unbounded spaces, which we call B-

extensions. By adding some requirements, mainly local boundedness of
the space, we obtain Hausdorff B-extensions. This construction is ob-
tained with a method similar to the one used to obtain E,SH-compactifi-
cations. This method can be applied, for instance, to construct Lindel6f
extensions of non-Lindelof locally Lindel6f spaces. As a final remark, we
mention that Theorem 2.3 of this paper appears to be a generalization of
a Tkachuk’s result (see [8], Proposition 1).

1. - B-extensions with respect to a boundedness.

An extension of a topological space will mean a dense extension.
We recall that a non-empty family of subsets of a space X is said to

be a boundedness in X if 9~ is closed with respect to finite unions and
subsets (see [5]). Elements of ~ are called bounded sets of X. Every
subset of X not in ~ is called unbounded.
A space X with boundedness ~ is said to be locally bounded if every

point of X has a bounded neighborhood. If X is T3 , this is equivalent to
say that the family of the closed bounded neighborhoods of each point of
X is a neighborhood base.

We remark that, for a given space X, the family ex = is

compact} is a boundedness in X, as well as 2x= is Lindel6fl.
Clearly, a space X is locally compact iff X is locally bounded with respect
to ex.

A space X is said to be locally Lindelöf if every point of X has a Lin-
del6f neighborhood. If X is T3 , it is equivalent to say that every point of X
has a Lindel6f closed neighborhood (or to say that the family of the
closed Lindel6f neighborhoods of every point of X is a neighborhood
base). Hence, a T3-space is locally Lindel6f iff X is locally bounded with
respect to 2x.

In [8] Tkachuk defines a space X to be locally Lindelbf if every point
of X has an open Lindel6f neighborhood. If X is T3~, the two definitions
are equivalent. In fact, if x E X and U is a Lindel6f neighborhood of x,
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then there exists f E C(X, [ 0 , 1]) such that f(x) = 0 and f (XB U) = 1.
Hence

and f -1 ( [ o , 1 ) ) is Lindel6f since it is an FQ contained in a Lindelbf
subspace.

We remark that Z can be chosen to be a zero-set neighborhood of the
point x. In fact, it is sufficient to consider the map g = ( 2 f - 1 ) V 0.

Therefore, a locally Lindelbf Tj-space X is locally bounded with re-
spect to the boundedness

We note that, if X is locally bounded with respect to a boundedness lsx,
then If lsx is also closed with respect to countable unions, then
2xc trx too.

If aX is an extension of X, then there is a natural boundedness in X
associated to aX. In fact, if we define

then is a boundedness in X. We remark that if aX is T3 and aXBX
is closed, or aX is T2 and aXBX is compact, then X is also locally bounded
with respect to 

Now, let X be an unbounded space with respect to 5x and let Nx be
the collection consisting of the empty set and the unbounded open sub-
sets of X. Let ~3 be a basis for the open subsets of a topological space Y,
and assume that and ~3 is closed with respect to finite unions.

We say ,1X: ~3 -~ ,NX, with yr(~/) ~ 0 for every U # 0, is a
B-map, if it satisfies the following conditions:

B1 ) is a cover of Y, then XB i U n(Ui)e5x;
B2 ) if U, then 

1,eA

In the following, a B-map ill - N x, with ill closed with respect to
unions of cardinality  a, will be also called an a-B map.
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Now, a topological extension of X can be constructed by means of a
B-map. If Tx is the topology of X and s = ~ U U (,~( U) BF) : U E 33,

then Tx U s is a basis for a topology on the disjoint
union X U Y. To prove this, it is sufficient to imitate the proof given
in [1] (see p. 852).

The set X U Y, endowed with the topology generated by Tx U s, will
be denoted by X U Y and will be called a B-extension of X.

We observe that X is open in X U Y, and the topologies of the sub-

spaces X, Y coincide with the original topologies. U E M, then
Hence .7l( U) BF ;e 0 for every F E It follows that X is dense

in XUY.

If X is a space with boundedness we say that a continuous map
f : X --~ Y is B-singular (with respect to ffx) if, for every non-empty
U E TY, f -1 ( U) is unbounded in X. We note that, if f: X - Y is B-sin-
gular, is a B-map.

If 9~ is a boundedness in X, then is also a

boundedness and one has that F E lsx iff If’ E ~x.
A boundedness Sx with the property that F E Sx iff F E ~x (that is
~x) will be called a closed boundedness. Clearly, Cx, 2x, Z2x and

are closed boundednesses.

Now, B-map, then n = n m 5X’ defined U) = .7l( U)
for every U E M, is also a B-map and we have that X U Y = X U Y. In fact,

implies lfx and the closed unbounded subsets with re-
spect to are just the closed unbounded subsets with respect to 
Hence, every B-extension of X can be considered as a B-extension with
respect to a closed boundedness. Therefore, we can assume, without re-
striction from the stand point of B-extension, that every boundedness we
consider is a closed boundedness.

Now, let aX be a B-extension of X. We show there is a maximal

boundedness 311x and a B-map such that aX = X U Y.

PROPOSITION 1.1. Let aX = X U Y be a B-extension of X, with B-
map .7r = 7rB, Then ffxc and there is a .7l’ = 7r , Xx(aX)
such that aX = X U Y. If Y is compact, then fix = (aX).

PROOF. then is an open neighborhood of Y
that does not meet A. Hence ClxA = and so A E 
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Now, we observe that if ~ ~ then Otherwise
would be a non-empty

open subset of aX contained in aXBX. Therefore, we can consider the
B-map defined by for every Since

Xx (aX), then we have Tx u Y. On the other hand, every basic

open of X U Y of the form U = U U n( U) BF is also open in

aX = X U Y, because F = Clx F = Clax F. Hence Tx u Y = Tx u y.

Now, suppose that Y is compact and let For every

Y E Y, there is a basic open containing y such that
is a finite subfamily of

that covers Y, then

We note that, if is a B-map and X U Y is T2-compact, then

~x = Xx(aX) = ex. Moreover, if X is T2-locally compact and Y is T2-com-
pact, then the B-maps (with respect to ex) are exactly the ESH’s as de-
fined in [1]. In fact, let x : be such that E ex and n(U U
U V) d (TC( U) U E ex for every U, V E If U = I Ui C 83 is a cover

of Y is a finite subcover of Y, then 

If X is a space with boundedness then the relation defined by
A --- B iff AdB E ~ is an equivalence relation in 2x. Finite unions and in-
tersections are compatible with it. Moreover, if 9~ is closed under unions
of cardinality y, then one has that also unions of cardinality y are com-
patible with --- .

PROPOSITION 1.2 (see Prop. 1.1 in [2]). Let X be a locally bounded
space with respect to ffx. If n _ ~ ~, ~: is a B-map, then every
map ir’: such that Jr( U) E for every U E ~3, is also a

such that X U Y = X U Y.

PROOF. It is easily seen that 7r’ is a B-map such that 
Txuy. 
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Now, we will see that the Hausdorff property of X U Y is ensured un-

der the assumption that X is locally bounded, namely that X is locally
bounded with respect to a closed boundedness.

The proof of the following statement is straightforward (see the

proof of Prop. 1 in [1]).

PROPOSITION 1.3. Let X and Y be Hausdorff spaces. If X is locally
bounded with respect to a (closed) boundedness ~X and 1C = Tx is a

then X U Y is a Hausdorff space containing X as a dense
subspaces. 

With an argument suggested by the last part of the proof of Prop. 1.1,
one can also prove the following proposition.

PROPOSITION 1.4. If aX = X U Y is Hausdorff, with 1C = ~c ~, ~-, and

Y is compact, then X is locally bounded with respect to ffx.

THEOREM 1.5. Let aX be a T4-extension of X such that aXBX is
closed and 0-dimensionaL. Then aX is a B-extension of X.

PROOF. We denote by ~3 the basis of Y = aXBX consisting of the
clopen subsets of Y. If U E li§, by the normality of aX, we have that there
is an open subset A of aX such that A n = U and aX~A is a
neighborhood of YBA. In fact, U and YBU are closed (and disjoint) in aX.
For every U E ~3, choose such a set A. Observe that, if B is another subset
of aX that satisfies the same conditions, then 

Moreover, implies that if U ~ ~ then
A n Hence, we can define x = x(,,,x) by setting ~( U) _
= A n X. We note that X is locally bounded with respect to 

Now, we check the B-properties of x. First, suppose that 
is a cover of Y of members of li§. Since every Ui U 1C( Ui) is open in aX,

then. " is closed in aX and so it belongs

to 

Let U, If then O n (aXBX) =
= U U V and aX~O is a neighborhood of V). Therefore,
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Now, suppose and Then

implies and so 7r(U) E 

Finally, we show that aX = X U Y. Obviously, Now, let T

be an open subset of aX and suppose y E T n Y. Choose Uy E B such that
y E Uy and Uy c T. Clearly, 7r( Uy) B T has no adherence points in T (that is
open in aX). Also, ;r(Uy) BT has no adherence points in YBT. In fact,

Therefore, Fy = n(Uy) BT E and we have

Hence,

and so

2. - Lindel6f and other special extensions.

The proof of the next theorem is routine (see Proposition 1 in [1]).

THEOREM 2.1. Let X be a locally bounded T2-space with respect to a
(closed) boundedness ~xc Xx (hence X is locally Lindelöj) and let Y be a
Lindelöf T2-space. If 7r = ,~ ~, Sx is a B-map, then X U Y is a Lindelöf
T2-space. 

’~

If X is a Hausdorff space, locally bounded with respect to ex, and Y is
compact and T2 , then X U Y is a T4-space.

Now, we investigate regularity and normality of X U Y when X is lo-

cally Lindel6f and Y is Lindelbf. Of course, we suppose that X and Y are
T3-spaces.

THEOREM 2.2. Let X be a locally bounded with respect to a
(closed) boundedness ex. Assume that every F E ~x is contained in
an open subset A E ~x. If Y is a Lindelöf T3-space and Sx is an

w 1-B map, then X U Y is a T4-space.
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PROOF. In view of Proposition 1.3 and Theorem 2.1 we have only to
show that X U Y is regular.

Let I be a neighborhood of x E X in X U Y. If U1 = Clx Ul c I n X and
U2 = Sx are neighborhoods of x in X, then V = Ul n U2 c I is a
closed bounded neighborhood of x in X. Hence V is also a closed neigh-
borhood of x in X U Y.

jr

Now, let x E Y with x E U U BF1. By hypotheses, there is an open
subset Al of X such that Fi c Ai c A1 and G1 = AlE Sx. By the regularity
of Y, there exist W, W, E 83 such that x E W c W c W, c W, c U. If y E

E YB U c YB Wl, let Vy e 1B be such that x E Vy c YB Wl. Since YB U is closed
and Y is Lindel6f, then the open of YB U has a countable

and one has

Now imply . Denote

by A2 an open subset of X such that F2 c A2 c A2 and G2 = A2 E ~x .
Since V n W = 0 we have that n(V) n x(M0 E ~x. If we set G3 =

= 7r(V) then one has n BG3 ) _ ø. Now, we claim

that

Suppose

and .7r(V) U A, U A2 is an open neighborhood of z that does not meet
WUn(W)B(G1UG2UG3).

Finally, let U U 7r(U) BF1 and z E Y. Then z E V and V U 7r(V) is an
open neighborhood of z that does not meet W U jr(W)BG3. *

By the way, we note that, in the previous theorem, if ~x is closed un-
der countable unions, it is sufficient to assume that x is a B-map (in place
of a) 1-B map).

Let us see the theory at work in the following example. It also shows
that Lindelbf extensions of locally Lindel6f spaces are not always
compactifications.

EXAMPLE 2.3. Let E be an uncountable set, viewed as a discrete

space, and consider the canonical projection,
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with ,S the Sorgenfrey line. Then X is a non-Lindelof locally Lindelbf
space, which has a Lindelbf non-compact B-extension aX = X U ,S, with
respect to the B-map 

n

M is not relatively Linde16f) .

In fact, for every f -1 ( U) = has a closure U x E =
= x q : q E E’}, namely U x E has a partition in an uncountable family
of non-empty open sets. is not relatively Lindel6f and f is B-
singular. By definition ,S is closed as a subset of aX, therefore aX is not
compact. On the other hand, X is obviously therefore has T2-com-
pactifications, and in each of them the remainder is not closed, since X is
not locally compact. From Theorem 2.2, we know that X U Y is a

T4-space. 
If a space X is T3 2 , we have already observed that X is locally bound-

ed with respect to Z2x. Since for every F E Z2x there is an open A e Z2x
containing F, we have the following result.

THEOREM 2.3. Let X be a locally Lindel6f T3!-space and let Y be a
Lindeldf T3-space. If x = x 8, Zex is an w 1-B then X U Y is a Lindelbf
T4-space. 

’~

In the previous theorem, if X is a locally Lindelbf T4-space, Z2x can
be replaced by 2x. In fact, we have the following proposition.

PROPOSITION 2.4. If X is a locally Lindelöf T4-space then Z2x = 2x.

PROOF. Let F E 2x. For every y E F, let Uy be an open neighborhood
of y with Lindel6f closure. The open cover I Uy of F has a countable

m

Then the open subset
m

of X contains F and

is contained in , that is Lindelbf. Now, by the normality of X,

there is f E C(X , [ 0 , 1 ] ) such that

1 ) ) is Lindelbf because it is a cozero-set contained in the
Lindel6f set U’. 0

Now, let X be non-Lindel6f locally Lindelbf , and 
T3!, let x = ,x be the map defined by x( oo) = X. Then X that
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is T4, is just the «single-point Lindel6fication- considered by Tkachuk
in [8].

If X is T3 , but not and x = is defined by = X then

X U{oo} is a Lindel6f T2-extension of X, that is not T4.
We observe that, by Theorem 2.2, it follows that a T3-space X is local-

ly Lindelbf and if and only if X is locally bounded with respect to
z2x -

If aX is a T2-extension of a space X with I = n, then X is locally
bounded with respect to If aX is also Lindel6f, then c

c ~x and so X is locally Lindelbf. Now, we show that aX is a B-extension of
X. This result could be proved in a way similar to that of Theorem 1.5.
Here, a slightly different proof is presented, which will be useful to
prove the next theorem.

PROPOSITION 2.5. Let aX be a T2-extension of a space X with
I = n. Then X is locally bounded with respect to and aX

is a B-extension of X.

PROOF. Let Y = ... , and let Ul , ... , Un be mutual-
ly disjoint open neighborhoods ... , in aX. Since 

for every i, we can define by setting

It is easily seen that a is a B-map. Now, we show that X U Y = aX.

Clearly Conversely, let A be an open subset of aX. If A c X,
then A is obviously an open subset of X U Y. Suppose yk for some k.

Since yi -% Clx(Uk BA ) for every i = 1, ... , n, we get
Fk = Clx(Uk BA) = Clx(Uk BA) E Hence, if A n (aXBX) =

... , yk~ ~, then we have

and A is open in X U Y.

Now, we characterize the spaces that have a T2-extension with finite
remainder (compare [6]).
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THEOREM 2.6. A Hausdorff space X has a T2-extension aX with
I I = n iff X is locally bounded with respect to a boundedness 
and there exist n mutually disjoint unbounded open sets AI, ... , An c X
and a bounded set F c X such that

PROOF. The proof of the above proposition shows that the condition
is necessary. Conversely, suppose that the condition holds. If y1, ... , yn
are n points not in X and Y = ~ yl , ... , we define by

... , 
= Ail U ... U A~ . Then n is a B-map and aX = X U Y is a

T2-extension with [ =~. ’

From Prop. 1.1, it follows that in a Hausdorff space X, the existence
of a boundedness with the properties as in in Theorem 2.6, implies
that = for a suitable T2-extension aX of X.
A consequence of Theorem 2.6 and Theorem 2.1 is the following.

COROLLARY 2.7. A Hausdorff space X has a Lindelof T2-extension
aX with ( = n iff X is locally bounded with respect- to a bounded-
ness and there exist n mutually disj oint unbounded open sets
Ai, ... , and a bounded set such that

Now, we give an example of a Lindelbf T2-extension of a locally
Lindelbf space X that cannot be obtained as a B-extension with respect
to 2x.

EXAMPLE 2.8. Let E be a discrete non countable space, and let

E = ,S U T be a partition with S countably infinite. Consider further a two
points set Y = ~ c~ , b ~ disjoint from E, ,S = S U ~ a ~ the one-point com-
pactification of S, the Lindelbf one-point B-extension of T,
with respect to defined by ~c( ~ b ~ ) = T. Then, the topological
sum L = ,S + T is T2 Lindel6f and E is dense in L. But L, that is a B-ex-
tension of E with respect to the boundedness XE(L), cannot be obtained
as a B-extension of E with respect to the « Lindelof » boundedness CE. In
fact, 2E, and, from Prop. 1.1, we have that if .7r’ = is a

B-map such that L = E U Y then tfE = XE(L).
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We recall that a space X is said to be [0, K]-compact if every open
cover of X of cardinality £ K has a subcover of cardinality  0. If 0 = OJ,
then X is said to be initially K-compact, and if then X is said to

be finally 0-compact. Lindel6f spaces are exactly the finally oi 1-compact
spaces.

For a space X, x) _ {A c X : A is [ 0, K]-compact} is a bounded-
ness in X. We say that a space X is locally [0, K]-compact if every point of
X has a [ 9 , K]-compact neighborhood. As in the Lindel6f case, if X is T3 ,
then X is locally [ 8 , K]-compact if and only if X is locally bounded with
respect to ex( 0, K).

Proposition 2.1 can be easily generalized to [ 8 , K]-compact case.

PROPOSITION 2.9. Let X be a locally bounded T2-space with respect
to a (closed) boundedness K) (hence X is locally [0, K]-com-
pact) and let Y be a [ B, K]-compact T2-space. GX is a B-map,
then X U Y is a [ 8, K]-compact T2-space.

Theorem 2.2 can be generalized to finally 0-compact case in the fol-
lowing way.

THEOREM 2.10. Let X be a Locally bounded T3-space with respect to
a (closed) boundedness SX C Cx(0, K), with K. Assume that every
F’ E gx is contained in an open subset A E Sx. If Y is T3 and .7r = ,~ ~, its
a O-B then X U Y is a 

Finally, Theorem 2.3 and Corollary 2.7 have similar generalizations
to the finally 0-compact case.

REFERENCES

[1] A. CATERINO - G. D. FAULKNER - M. C. VIPERA, Construction of compactifica-
tions using essential semilattice homomorphisms, Proc. Amer. Math. Soc.,
116 (1992), pp. 851-860.

[2] A. CATERINO, ESH which induce 03B2N, Rend. Mat. Univ. Trieste, 25 (1993),
pp. 57-66.

[3] R. E. CHANDLER, Hausdorff Compactifications, Marcel Dekker, New York
(1976).



135

[4] U. N. B. DISSANAYAKE - K. P. R. SASTRY, Locally Lindelöf spaces, Indian J.
Pure Appl. Math., 18 (1987), pp. 876-881.

[5] S. T. HU, Boundedness in a topological space, J. Math. Pures Appl., 28 (1949),
pp. 287-320.

[6] K. D. MAGILL Jr., N-points compactifications, Amer. Math. Monthly, 72
(1965), pp. 1075-1081.

[7] S. A. NAIMPALLY - B. D. WARRACK, Proximity Spaces, Cambridge University
Press, Cambridge (1970).

[8] V. V. TKACHUK, Almost Lindelöf and locally Lindelöf spaces, Izvestiya VUZ.
Matematika, 32 (1988), pp. 84-88.

Manoscritto pervenuto in redazione il 26 settembre 1996

e, in forma revisionata, il 27 dicembre 1996.


