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The Picard Boundary Value Problem
for a Third Order Stochastic Difference Equation.

MARCO FERRANTE (*)

ABSTRACT - It is considered the multidimensional third order stochastic differ-
ence equation

where Xi E d ; 1, is a sequence of d-dimensional independent
random vectors, with the Picard boundary condition

We first prove that the boundary value problem admits a unique solution if f
is a monotone application. Moreover we are able to compute the density of
the law of the solution if the random vectors ( ij ) are absolutely continuous.
Thanks to this explicit computation, in the scalar case we prove that the pro-

L1Xi, i = 0, ... , N - 2} is a Markov chain if and only if f is
affine and we provide a simple counterexample to show that a similar strong
condition does not hold in the multidimensional case.

1. - Introduction.

Recently some authors have studied different types of stochastic
differential- and difference equations with boundary conditions (see
e.g. [1], [5], [7]). Among those, the one dimensional second order
stochastic differential equation (SDE) with Dirichlet boundary condi-

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura ed Applicata, Univer-
sita degli Studi di Padova, via Belzoni 7, 35100 Padova, Italy.

This paper was done while the author was visiting the University of Oslo
with a CNR Grant No. 203.01.62.
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tion (B C )

has been studied by Nualart, Pardoux [8]. At the same time the dis-
cretized problem, equivalent to (1.1), i.e. the one dimensional second or-
der stochastic difference equation (SdE) with Dirichlet boundary con-
dition (BC)

has been considered by Donati-Martin in [3] and, with a different tech-
nique, by Alabert, Nualart in [1].

The result, common to (1.1) and (1.2), is the following: under suitable
conditions (usually monotonicity and regularity) over f, that ensure ex-
istence and uniqueness, the solution is a Markov process (chain) if and
only if f is an affine mapping.

To the best of our knowledge, the study of higher order SDE’s and
SdE’s with BC is still completely open and the present paper can be
considered as a first step in the investigation of these problems. We
shall consider the third order SdE with Picard BC

where Xi e is a sequence of d-dimensional independent ran-
dom vectors. The particular choice of the BC will be justified in the fol-
lowing Remark 2.2. We shall prove in Section 2 an existence and

uniqueness result under monotonicity conditions over f. In the third
section we shall assume that the random vector (~2 , ... , ~N -1) is abso-
lutely continuous and we will be able to compute explicitly the density
of the law of the solution (X2 , ... , XN - 1). Thanks to this computation, in
Section 4 we shall prove easily that in the scalar case the solution com-
ply with a suitable Markov condition (see Definition 4.2) if and only if f
is an affine mapping. Furthermore we shall prove that a similar strong
dichotomy does not hold in the multidimensional case.

Although the result is not surprising and has been obtained for
other classes of similar problems, the existence and uniqueness part in-
volves new arguments., Furthermore the technique that we use to

study the Markov property of the solution, developed in [5], seams
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more direct and simpler than those used in the previous papers on the
second order equations [1] and [3].

The extension of the present results to higher order SdE with BC
appears really difficult.

2. - Existence and uniqueness.

Let us consider the following third order SdE

where 4 3 Xn _ 2 def Xn + 1 - 3Xn + 3Xn _ 1 - Xn - 2 is the third order differ-
ence operator, f: R~ is a continuous application and

~ ~n ~n = 2, ... , N -1 1 is a sequence of d-dimensional independent random
vectors. Instead of the customary initial condition

we shall consider in the present paper the Picard BC

REMARK 2.1. Since in the difference case we have that 4X0 =
= X1 - Xo and = X2 - 2X, + Xo , condition (2.2) is equivalent to
fix the value of Xo , X, and X2 .

Let Mm, n denote the set of the m x n real matrices and let Mn =
= Mn, n . In the sequel we shall say that a matrix A e Mn is positive defi-
nite if x T Ax &#x3E; 0 for every x E If~n ~ ~ 0 ~, even if A is not symmetric, and
that is negative definite if - A is positive definite. Trivially a positive
(negative) definite matrix is non singular.
A simple computation shows that the problem of finding a se-

quence ~Xo , ... , XN~ satisfying (2.1)-(2.3) is equivalent to determine a
(N - 2) d-dimensional vector X = (X2 , ... , XN _ 1 ) verifying
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where is the matrix:

where I, 0 e Md are the identity and zero matrices, respectively, a is
the (N - 2) d-dimensional vector (3ai - ao , - ai , 0, ... , 0, aN), where 0
is the d-dimensional zero vector, F: 1E~~N - 2) d ~ ~(N - 2) d iS defined by
F(X ) _ (f(X2), f(X3), ... , f (XN _ 1» and ~ = (~2, ~3 ~ ... ~ ~N - 1 )· If we de-
note by ~3 the symmetric part of the matrix a, i.e. 83 = (1/2)(a + tIT), a
simple computation gives

It is easy to see that the matrix - 21B is positive definite. In fact we
have that - 2 8 can be factorized as the product WWT, where We
E M~N _ 2~ d is the following triangular matrix:

Since det w = 1, -2~B is positive definite and therefore a is negative
definite.
We shall now prove an existence and uniqueness theorem for equa-

tion (2.4) under more general assumptions and derive the result for
(2.1)-(2.3) as an immediate corollary.
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Let a, ~ e RP, and let us consider the following set of

hypotheses:

/TT-B 
e Mp is negative definite , ’

(H.1~ 
F: RP is a continuous and monotone map

(let us recall that a mapping F is said to be monotone if

were (-, -) denotes the scalar product in RP).
The following result holds:

THEOREM 2.1. Under (H.l), equation (2.4) admits a unique sol-
ution.

PROOF. Existence: Following the same lines of the proof of Lem-
ma 3.1 in [ 1 ], we shall prove that, for every E E Rp, there exists a
vector X E RP verifying equation (2.4). Let us fix i e RP and define
1/J ç ( .): RP - RP by

it will be sufficient to prove that there exists X~ such that 1jJ ç (Xç) =
- 0.

From the assumptions over F and over the matrix a we obtain:

where A &#x3E; 0 is the smallest eigenvalue of the matrix - (1/2)(Q + aT).
From (2.7), we obtain that there exists 6 &#x3E; 0 such that

and an immediate application of Lemma 4.3, pag. 54 in Lions [6] ensures
that there exists X~ such that = 0.

Uniqueness: Let X and Y be two solutions of (2.4). We have
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and, by (H.1),

if X# Y. This clearly implies that X* Y and the theorem is

proved. 0

From Theorem 2.1 it is immediate to obtain the following result for
the SdE with Picard BC (2.1)-(2.3)

COROLLARY 2.1. If the map f in (2.1) is monotone, then (2.1)-(2.3)
admits a unique solution.

REMARK 2.2. It is not difficult to see that a result similar to

Corollary 2.1 holds considering equation (2.1) with the Picard BC

We obtain in this case that (2.1)-(2.10) is equivactent to (2.4), where
X = (X1, ... , XN _ 2 ), a is substituted by

acnd the vector a is substituted by a’ = ( - ao , 0, ... , 0, aN -1, aN -
- 3AN - 1 ). From (a + + we deduce that (2.1 )-(2.10)
admits ac unique solution if - f is monotone.

On the other if we consider the generic Picard BC

it is not difficult to prove that (2.1)-(2.12) is equivalent to (2.4), with
X = (Xl , ... , Xi _ 1, Xi + 1, . ~ ~ , XN -1 ) and the matrix a replaced by

where Bl E M(i - ld is the submatrix of (2.11) formed by the first
(i - 1 ) d rows and columns, B2 E M(N - i - 1) d is the submatrix of
(2.5) formed by the first (N - i - 1 ) d rows and columns and
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o e M(i - is the zero matrix. In this case it is impossible to
prove a result similar to Theorem 2.1 and monotonicity conditions over
f do not ensure uniqueness, even in the linear case, where an explicit
computation can be carried out.

To conclude notice that the same kind of restrictions in the Picard
BC are present in many papers on difference equations of order greater
then 2 (see e.g. Peterson [9]).

REMARK 2.3. Previous Theorem 2.1 and Corollary 2.1 provide an
existence and uniqueness result also for the forth order SdE with Pi-
card BC

not difficult to prove that (2.13) is equivalent to (2.4) with cr e M(N - 3)d
equal to the matrix - 2m defined in (2.6), a = ( ao - 4al’ aI, 0,
... , 0, aN _ 1, aN - 4 aN -1 ) and X = (X2 , X3 , ... , XN _ 2 ). Therefore it will
be sufficient to assume that - f is a monotone map.

3. - Absolute continuity.

In this section we shall assume that the random vectors Ei are abso-
lutely continuous. Thanks to this assumption, we shall prove that the
law of the solution to (2.1)-(2.3) is itself absolutely continuous and we
shall compute explicitly its density. Again we shall consider first the
problem (2.4) and derive as a corollary the result for (2.1)-(2.3).

and, when (2.4) admits a unique solution X(E) for each E
fixed, let us denote by 0: RP - the 

LEMMA 3.1. Under (H.1), assuming that ~ is an absolutely contin-
uous p-dimensional random vector with density ~,( ~ ) &#x3E; 0 a. e. and F E
E C1 (RP), the unique solution X of (2.4) is an absolutely continuous ran-
dom vector with density

PROOF. It is sufficient to prove that 0 is a C 1 global diffeomor-
phism onto RP. From the monotonicity of F, we obtain that VF is
non negative definite and therefore, by the assumption on a, that
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det (a - 0. This implies that ø -1, defined by

is a C 1 local diffeomorphism. It is immediate to check that 0 is a bijec-
tion form RP into itself and the result is therefore proved. 0

Let us now derive the result for the model (2.1)-(2.3) as a corollary of
previous Lemma 3.1. We shall denote here by 0 the application from
l~cN - 2~ d into itself that maps ~ _ ( ~ 2 , ... , ~ N -1 ) into the unique sol-
ution to (2.1)-(2.3) and we shall make the following assumption:

(H.2) { ~2 , ... , ~N -1 ~ are independent d-dimensional absolutely con-
tinuous random vectors with densities &#x3E; 0 a.e., 2 ~ I 5
~ N - 1, respectively.

COROLLARY 3.1. monotone and { ~ 2 , ... , ~ N -1 ~
satisfy (H.2), then the unique solution of (2.1)-(2.3), X = (X2 , ... , XN -1 ),
is an absolutely continuous random vector with a. e. strictly positive
density

(xo = ao , Xl = al , XN:= aN) where, putting D(x) = - 31 - the ma-
trix-valued maps Bi’s are recursively defined by:

PROOF. The only nontrivial part is the computation of det (a -
- VF(x)), where here cr is the matrix defined in (2.5) and
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and, by the assumption on a and f, that det (a - 0. Applying a
standard procedure to compute explicitly the determinant of the ma-
trix (see e.g. [2]), we obtain easily that it is equal to
N- I

Tj where the matrices Bi’s are recursively de-
i=2

fined by (3.2). Note that 0 because a - is non singu-
lar.

4. - Markov property.

In the present section we want to investigate the Markov property
of the solution to the Picard boundary value problem (2.1)-(2.3). We
first need to define the two Markov properties which are relevant in
our framework.

DEFINITION 4.1. We shall say that a sequence of random vectors
{X0, ..., XM} is a Markov chain (Me) if for every the a-

fields a(Xo , ... , Xm - 1) and a(Xm + 1, ... , XM) are conditionally inde-
pendent given 

DEFINITION 4.2. We shall say that a sequence of random vectors
a third-order Markov chain (3rd-Mc) if the process

~(Xi , = 0, ... , M - 2} ~ a Markov chain.

Let us recall an easy characterization of the Markov property in
terms of a factorization property.

LEMMA 4.1. ... , XM ~ be a sequence of random vectors and
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let X = (Xo , ... , XM) have an absolutely continuous law with density
~o o (xo , ... , XM). Then ~Xo , ... , XM ~ is a Mc if and only if, for every
0  rrL  M, there exist two meacsurable functions g, (xo , ... , xm) and
g2 (Xm, ... , xm) such that

Let us consider, for a while, the initial value problem (2.1)-(2.2). It is
immediate to prove that, for each continuous application f, (2.1)-(2.2)
admits a unique solution X = (X3 , ... , XN) and, under (H.2), that X is
absolutely continuous with density

(xo = a, x, = a + ~8, x2 = a + 2@ + y). A natural question for the

present problem is whether or not the solution ..., XN} is a 3rd-
Mc. is a Mc if and only if

~=0,...,~V20132} is a Mc, an easy application of
Lemma 4.1 gives that the solution to (2.1)-(2.2) is a 3rd-Mc for every
continuous map f.

Is the same result true in the case of the Picard boundary value
problem (2.1)-(2.3)?

The answer is negative in most cases and the reason lies in the fact
that in general the determinant that appears in (3.1) does not factorize.
Anyway in the scalar case (i.e. d = 1) we can give a complete character-
ization of the problems, whose solution is a 3rd-Mc. In fact we shall
prove that in this case the process solution to (2.1)-(2.3) is a 3rd-Mc if
and only if the application f is affine. Conversely in the multidimension-
al case (i.e. d &#x3E; 1) a similar strong dichotomy does not hold, as it hap-
pens for other classes of SDE and SdE with BC already considered in
the literature (see e.g. [4]). This will be proved by means of a coun-
terexample at the end of this section.

Let us consider from now on (2.1)-(2.3) with d = 1. If f is monotone
and (H.2) holds, we have in this case that the unique solution X =
= (X2 , ... , XN _ 1 ) is an absolutely continuous random vector with a.e.
strictly positive density (3.1), where the Bi’s, defined by (3.2), are here
real-valued maps. We are able now to prove the main result of the

present paper:

THEOREM 4.1. Let N ~ 7, f E C3 (R), f’(x) ~ 0 for every x e R and
assume ... , ~N -1 ~ satisfy (H.2). Denoting by ... , 

the unique solution to (2.1)-(2.3), ~X2 , ... , XN _ 1 ~ is a 3rd-Mc if and
only if f is an affine map.
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PROOF. Thanks to hypotheses (H.2) and Lemma 4.1, ~X2 , ... , 
is a 3rd-MC if and only if, for each 2  m  N - 3, there exist two mea-
surable functions gl , g2 such that

Let us first assume that f is affine; from (3.1)-(3.2) we obtain that there
exists a constant K such that:

and (4.1) is satisfied.
Let us now assume that (4.1) holds and fix rn = 3. Since the À/s are

strictly positive a.e. and the Bi’s in (3.1) are nonzero (so B2 has a con-
stant sign), we have that there exists two measurable functions hl , h2
such that

Since

and D( ~ ) is a strictly negative function, form (4.2) we obtain that

where kl = hID -1. It is easy to prove (see [1] and [5]) that (4.3), joint
with the regularity of the function f, implies the following analytical
property

Let us proceed by contradiction and assume that there exists x e R
such that f "(x) ~ 0. Without loss of generality we can assume that

&#x3E; 0 and that f is strictly increasing on an open neighbourhood U of
x. From (4.4) and choosing x2 = x, we obtain
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for each ( x3 , ... , XN -1) E This implies that:

Choosing now x3 = x, from (4.5) we obtain

3 on UN - 4 , we deduce that f’(x4) = 0, dx4 E U, which leads
to a contradiction. By the regularity of B4 we can therefore assume that
there exist open subsets V4 , ... , VN - 1 of U such that B4 1 ~ - 3 on V4 x
x ... x VN _ 1. From (4.6) we deduce

A simple computation shows, denoting ci = (3 + Bi 1 ), that

Again, since X6E V6 c U, we have

and, differentiating with respect to x4 , we obtain

As before we can assume that there exist open subsets Wi c Vi for
i = 5, ... , N - 1 such that
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Differentiating now with respect to x5 , we conclude 
for z5 e W5 c U, which clearly leads to a contradiction.

REMARK 4.1. Notice that, for each d ~ 1, if the application f is
then the solution to (2.1)-(2.3) is a 3rd-Mc. In fact, in this case,

the matrix-value function D( x ) = - 31 - constant and there-

fore all the Bi’s, defined in (3.2), are constants.

A simple generalization of the trivial sufficient condition of Remark
4.1 is that given by the triangular case. Let us recall the definition of a
triangular map (see [4]):

DEFINITION 4.3. We say that a map f from into itself is trian-
gular if, for each i E ~ 1, ... , ... , zd) depend onLy on the 
variables.

Let us now assume that the map f in (2.1) is triangular and belongs
to C 1. It is immediate to see that in this case the Jacobian matrix 
is a lower triangular matrix (this property justifies the name). Since
the set of the lower triangular matrices is a ring, we obtain that the
matrices Bi’s, defined in (3.2), are lower triangular and

XN -1) depends only on for each m E ~ i, ... , d}.
Therefore, if every f is linear in the last variable, i.e. f (xl , ... , 
- a i (x1, ... , = 0). and 0, then (2.1)-(2.3) admits a

N-1 i

unique solution which trivially is a 3rd-Mc, being fl |det Bi| = const.
i=2

Since in this case the functions a i’s are completely free of constraint,
this clearly implies that it is impossible to have in the multidimensional
case a strong dichotomy similar to that of the scalar case.
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