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Global Existence Results for First-Order

Integrodifferential Identification Problems.

ALFREDO LORENZI (*) - ALEKSEY IVANOVIC PRILEPKO(**)

ABSTRACT - We determine sufficient conditions in order that the solutions of ab-
stract first-order linear integrodifferential equations be positive. Then, using
a previouos result concerning the Fredholmness of linear identification prob-
lems related to integrodifferential equations, we prove, for such problems, an
existence, uniqueness and stability theorem. Some applications are given to
the case of materials with memory with unknown sources.

0. - Introduction.

In this paper we consider the identification problem consisting in de-
termining a function [ o, T ] ~ X and an element z E Z (X and Z being
two Banach spaces) satisfying the abstract integrodifferential equation
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the initial condition

and the additional information

Here we limit ourselves to stating that A is a linear closed (un-
bounded) operator, while H, Ho , E and 0 are bounded linear operators.
In particular, we shall consider the cases where (P admits one of the fol-
lowing representations:

HOa 0(u) = u( T ) (final determination);
T

HOb 0(u) = where cv : ( 0, T) - R is a prescribed non-
o

negative, measurable, scalar function (integral information);
T

HOc 0(u) where is a finite and positive Borel mea-
o

sure (measures integral information).

Actually, in the present paper we assume that X is a Banach lattice
and Z a Banach space continuously embedded in X. First we determine
sufficient conditions on the triplet of linear operators (A, H, Ho ) assur-
ing that any solution u to the integrodifferential equation

satisfying (0.2) is positive whenever the pair (g, 1Po) is positive.
Then we determine sufficient conditions on the quintuplet of linear

operators (A, H, Ho , E, 0) assuring the uniqueness of the solution to
problem (0.1)-(0.3).

Finally, suitably combining such a result with the Fredholm charac-
ter of problem (0.1)-(0.3) proved by the authors in [13], we can show the
existence in the large of a unique solution to our identification

problem.
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We now observe that our problem is an inverse problems. As is
well-known, such problems are (generally speaking) ill-posed (cf.,
e.g., Tikhonov-Arsenin [34], Ivanov-Vasin-Tanana [8], Lavrent’ev-

Romanov-Shishatskij [10]).
Our basic task consists in determining suitable and sufficiently gen-

eral conditions concerning the operator A, H, Ho , and the data f,
y0, y1 in order that our identification problem turn out to be well-
posed in the sense of Hadamard (e.g. the solution exists, is unique and
continuously depends on the data).
We note that, when f = 0, the «source» term of our equation (0.1) is a

member of the class of source functions s, which can be represented as
products of two functions, the first depending on time and all the space
variables and the second on a lesser number of variables. Such a class s
was introduced by the second author [18] in 1967 to recover the density
of an unapproachable body in terms of an outer potential of its. The
function class S allows to reduce the problem of recovering a coefficient
entering the differential operators to the problem of determining one of
the two members in a source function in S (cf. also [19]). In [18] the
uniqueness of the solution to the inverse problem in Potential Theory
was proved under suitable assumptions involving the sign and the
monotonicity of the unknown function.

Surveys concerning inverse problems in the case of both inner
= u(to) to E ( 0, T )) and final determinations are the papers by

Prilepko-Orlovsky-Vasin [24], Prilepko-Kostin-Tikhonov [23] (for the

case H = Ho = 0) and Lorenzi [ 11 ] (for the case (H, Ho ) ~ (0, 0 ) ) . Identi-
fication problems with final determination related to the heat equation,
corresponding to problem (0.1)-(0.3) with H = Ho = 0, were investigated
by Iskenderov [7] (E being a scalar function), by Rundell [31] (E(t) = I,
dt E [ 0, T ]). In the case of parabolic equations (H = Ho = 0) and final de-
termination Isakov [6] studied the question of uniqueness of the identifi-
cation problem in the framework of H61der spaces, when E is a function
depending on time and all the space variables, while the unknown coeffi-
cient z is assumed to depend on a space variable only.

In the case of parabolic equations with Dirichlet boundary value con-
ditions and a source function E( t ) z( x ) = e(t, x ) z ( x ) ( e being a scalar
function) subject to final determination, Prilepko-Solovyev [25] show-
ed, in the framework of H61der spaces, the Fredholm character of the
corresponding identification problem under the assumption that e(T, ~ )
is bounded away from zero. In the same paper they proved also the well-
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posedness of that problem under the additional assumptions e(t, x) ; 0,
Dt e(t, x) ; 0, V(t, x) E [ 0, T ] x S~. Later on, in the case of final and inte-
gral determinations, conditions of the same type as the previous ones
were used by Solovyev [32) (in the parabolic case), by Prilepko-
Vasin [29], [30] (for the Navier-Stokes equation) and by Prilepko-
Kostin [20], [21], [22] (in the framework of Sobolev spaces).

The abstract case with H = Ho = 0 and final determination was con-
sidered by the second author [19] (where the general operator E was in-
troduced), by Orlovsky[15], Prilepko-Tikhonov [26], [27], [28] (where
the integral information was introduced).

The case of the identification problem (0.1)-(0.3) with (H, HO)
~ ( 0, 0) was investigated by Lorenzi-Prilepko [13], where the Fredholm
character of such a problem was shown. We recall that the latter case is
important for applications to the theory of heat conduction in materials
with memory (cf., e.g. Lorenzi-Sinestrari [14], and Lorenzi-Paparo-
ni [12], where a rather different additional information 0 was consid-
ered).

The plan of this paper is the following: Section 1 is devoted to show-
ing a positivity result for the solution to problem (0.1’), (0.2); Section 2
proves a uniqueness result for the identification problem (0.1)-(0.3),
while Section 3 proves the existence result for problem (0.1)-(0.3). Fi-
nally, Section 4 is devoted to some explicit parabolic identification

problem.

1. - A positivity result.

First we state some of our basic assumptions, related to the positivi-
ty result, and observe that more precise conditions concerning our data
will be introduced in the sequel:

H 1 X is a Banach lattice with a positive cone X+ [3];
H2 A: (JJ(A): = X (with Y dense in X) is a linear closed op-

erator, whose resolvent set contains the E C:

I arg.1 I  0 1 for some q5 E (a/2, a). Moreover, the resolvent op-
erator (~, - A ) -1 satisfies the estimate

for some positive constant Co ;
H3 Y is endowed with the graph-norm of A;
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H4 T ); 2(y8,p» (for any 8 e [0, a] and some c e
+00]);

H5 Z is a Banach space such that: i) ii) sup(z, 0) e y8,p for
any z e Z and some 0 E ( o, a];

H7 for any 0 e [ o, E E W~-P((0, T ); 2(Z; is an operator-
valued function such that 

We recall that in [13] we have denoted by ya,p (J e (0, 1), p e ( 1, + oo))
the intermediate space between Y and X defined by

denotes the semigroup of linear bounded operators
generated by A. Moreover, we set

We observe that = X and Yl p = Y for any p E ( 1, + 00 ) and we re-
call that is a Banach space when equipped with the norm

In the case where a = n the seminorm has to be dropped
out.

Finally, we introduce the following Banach spaces related to the
quadruplet (s, p, a, T ) E N x ( 1, + (0) x (0, 1) x (0, + oo):
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Then we state some results concerning the resolvents of linear oper-
ator-valued convolution integral equations.

LEMMA 1.1. Let for + (0)
and 0 Ez- [0, 1 ). Then the integral equation

admits, for any f E Lq ((0, T); Yo, P) (q E ( 1, + 00 )), a unique solution
T); represented by

The resolvent kernel J belongs to L p (( 0, T); ~ ( Ye~ p )) and solves the op-
erator-valued convolution integral equactions

LEMMA 1.2. Let H E W1,P«0, T ); 2(y8,p» for some p E ( 1, + (0)
and 8 E [ 0, 1 ]. Then the resolvent kernel J belongs to

W1,P«0, T); and solves the operator-valued integral equa-
tions

PROOF OF LEMMA 1.1. Assume that H, W1,P«0, T); 2(yØ,P».
According to Lemma 2.5 in Lorenzi-Paparoni [12], which extends to our
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operator case, we get the estimates

Hence, the solution to equation (1.8) is given by

Owing to (1.12), we immediately deduce that J belongs to

T ); ~ ( Y8~ p )) . Moreover, it is an easy task to check that J solves
equation (1.9) too.

The remaining part of the proof is well-known.

PROOF OF LEMMA 1.2. The differentiability of J is an immediate
consequence of Lemma 1.1 and well-known properties of convolutions.
Moreover, equations ( 1.10)-( 1.11 ) can be derived using well-known for-
mulas regarding the differentiation of convolutions. 0

Suppose now that u is a solution to the Cauchy problem (0.1)-(0.2),
which we rewrite in the following operator form, * denoting convolu-
tion with respect to time:

where

Apply the operator I + J * to both members in (1.14) and recall the
formula
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Since J(0) _ -H(0) (cf. (1.8)), we derive that u solves the following
Cauchy problem, equivalent to the previous one:

where

We now prove the following Lemma 1.3.

LEMMA 1.3. Let H, Ho satisfy assumption H4. Then for any 8 E
e[0, 6] operator B belongs to Lp((0, T); 2(y8,p»and satisfies the inte-
gral equation

where

PROOF. From (1.8), (1.10), (1.22) we easily derive the assertion. For,
we get the equations

In order to prove the positivity of the solution to problem (1.18)-
(1.19) we make then the additional assumptions:

H10 A + H(0) is the generator of a positive analytic semigroup
of linear operators in ~ (X ).

REMARK 1.1. We note that condition H10 is implied by the two fol-
lowing assumptions H 10a, H10b or H 10a, H 10b’ :

H 10a A is the generator of a positive of linear

operators in ~ (X);

H10b H(0) is positive in L(X);
H10b’ commutes with A, preserves the space Y and 

is positive in ~(X) for any t E [0, + oo).
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In fact, according to H2 and the results in Pazy [16, section 2], we
deduce that A + satisfies H10 and generates the semigroup

This implies is positive in ~ (X ), if H( 0 ) is positive in
~ (X ). On the other hand, if satisfies we easily deduce the
equation

From the positivity of we immediately derive the
positivity of S(t) in 2(X) for any t e [0, + oo).

We now prove

LEMMA 1.4. + (0»satisfy ei-
ther of the properties:

&#x3E; K - H*K &#x3E; 0 in L(X), according as either property ( 1.26a) or property
(1.26b) is satisfied.

PROOF OF LEMMA 1.4. We limit ourselves to dealing with assump-
tion (1.26a).

The hypotheses on H and K and estimate (1.12) imply the conver-
+ 00 

, 

gence of the Hence, we can derive the
equation ’ - °

From (1.12) (with 0 = 0), (1.26a), (1.27) we easily deduce the asser-
tion.
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LEMMA 1.5. Let 2(X» (p e ( 1, + 00» satisfy the
property:

REMARK 1.2. Condition (1.28) is trivially satisfied if

PROOF. Apply the convolution operator S * to both members in

equation (1.9). We get the new equation

Observe then that the operator L = S + S * J satisfies

Recall now that, according to assumption H2, the 
generated by A belongs to Cb ((0, + (0); 2 (X», the space of all opera-
tors-valued functions, which are continuous and bounded in (0, + 00).
From formula (1.24) we deduce that S E Cb (( 0, T ); 2(X» for any T &#x3E; 0.

Hence, according to Lemma 2.5 in Lorenzi-Paparoni [12], we conclude
that the solution L to equation (1.31) is assigned by the formula

where the series converges in Lp ((o, T ); 2(X». From (1.28) and Lem-
ma 1.4 we deduce that L is positive.

THEOREM 1.1. Assume that operator B E LP ((0, T); 
([ o, 1 ]~~ 1 /~ ~) is positive in 2(X) and (1.28) is satisfied. Then for any
pair ( g, E T ); y8,p) x y8,p such that g ; 0, 1/10 ~ 0 problem
(1.18)-(1.19) admits a unique positive solution u, which is classical if
8 E ( o, and strict if 8 e 1 ).

PROOF. Owing to Theorem 29 in Di Blasio [2], the integrodifferen-
tial problem ( 1.18)-( 1.19) is equivalent to the integral equation
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where

Observe that the function v and the linear operator S * B are positi-
ve in X and 2(X), according to our assumptions and Lemma 1.5. This
implies that the solution u to (1.33) is positive.
A standard fixed-point theorem procedure assures the existence of

a unique solution u e C([0, T ]; 

The next Lemma 1.6 gives some sufficient conditions on H in order
that operator B be positive, commute with A + and its convolution
with J be commutative. For this purpose, we need the assump-
tions

H12 A + H(o) commutes with H(t) and H’ (t) - H(t) H(o) + Ho (t)
for all t E [0, T] and for a.e. t e (0, T), respectively.

LEMMA 1.6. Assume that for some Ho E
E W1, p((0, T); £(X» enjoy properties Hll, H 12 and the following:

where Bl is defined by (1.22). Then operator B is positive in 2(X) and
satisfies

REMARK 1.2. Condition (1.35) is trivially satisfied if

PROOF. The solution B to equation (1.21) is given by the formula

where the series converges in LP ((0, T); 2(X». Hence, from Lemma
1.4 we conclude that B is positive in 2(X). In order to show that B satis-
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fies (1.36)-(1.37), observe that Hll implies the equations

Whence and from (1.13) we easily derive (1.36).
Finally, H12 and (1.39) immediately imply (1.37).

We can now prove now Theorem 1.2 concerning the resolvent of the
Cauchy problem (1.18)-(1.19).

THEOREM 1.2. Let assumptions Hl-H4, H7-H12, (1.28), (1.35) be
satisfied. Then the operator-valued function

where the operator B is defined by formula (1.20), belongs to

2(X; C([ 0, T ]; X)) and R(t) is positive in ~(X) for any t E [ 0, T ]. More-
over, for any E ya + p and g E L P ([ 0, T ]; ya, P) (a E ( 0, 1 )B ~ 1 /~ro },
p E ( 1, + 00» satisfying

problem (1.14)-(1.15) admits ac unique solution u e Ul: f given by

PROOF. First we observe that R(t) is positive in 2(X) for any t E
e [0, T ] according to Theorem 1.1 and Lemmas 1.5, 1.6. Then we note
that formulas (1.41)-(1.42) are easily implied by equations (1.34)-(1.35)
and the equivalence between problems (1.18)-(1.19) and (1.33). The
membership of the function u in the Banach space pointed out is a con-
sequence of the following relationships concerning operator l~ (cf. Lem-
ma 2.5 in Lorenzi-Paparoni [12], which applies also to the present oper-
ator case):

for some positive constants Mo and M1.
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We conclude this section by proving Lemmas 1.7 and 1.8 which give
some sufficient conditions on the pair (H, E) in order that operators
E’ - B ~ E and (I + J ~) E be positive in ~(X)..

Lemmas 1.7 and 1.8 will be used in Section 2, only, but we prove
them here, since their proofs are very similar to the ones of Lemmas 1.5
and 1.6.

LEMMA 1.7. Assume that for some 

T ); £(X» satisfy the 

where

Then operator E’ - B * E is positive in £(X).

REMARK 1.3. Condition (1.47) is trivially satisfied if

PROOF. Apply the convolution operator ~ E to both members in
equation (1.21). We get the new equation

Hence operator L : = E’ - B ~ E satisfies (cf. (1.21))

From assumptions (1.47) and Lemma 1.4 we deduce that L is positive in
2(X)..

LEMMA 1.8. Assume that for 
e W1,P«0, T); 2(X» satisfy the property:



64

Then

REMARK 1.4. Condition (1.52) is trivially satisfied if

PROOF. The assertion is an immediate consequence of Lemma 1.4,
formula (1.13) and the following equation

2. - A uniqueness result.

In order to prove the uniqueness of the solution to the identification
problem (0.1)-(0.3) we need to introduce

DEFINITION 2.1. Two elements z, w belonging to a Banach lattice X
are called disjoint if, and only if, inf ( I z I , I wi) = 0. An operator L e
e 2(Z; X) is said to preserve disjointness if, and only if, inf = 0

implies 

We now write down some additional properties concerning opera-
tors A, B, H, Ho, E:

H13 there exists an (at most) denumerable subset F* in the cone Xt
of positive functionals on the Banach lattice X such that

is a positive operator;

and E - H * E are positive operators in

preserves disjointness;
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H20 A + H(0) admits an inverse (A + ~(0)) ~ which is negative in
2(X). 

’

REMARK 2.1. If we assume that ~,S( t ) ~t , o is an equibounded, posi-
tive, analytic semigroup of linear operators in ~ (X), we can drop out in
H20 the requirement concerning the negativity of A + H( 0). For, from
Corollary 1 in [35, chapt. 9] we deduce that the resolvent of A + H( 0)
contains (at least) the half plane RA &#x3E; 0 and the following relationships
hold

On the other hand, since A + is invertible, we can find r &#x3E; 0 such
that A - A - is invertible for any A e (0, r).

Finally, from the relationship

we easily deduce that (A + 1 is negative in 2(X).

THEOREM 2.1. Let properties Hl-H20 be satisfied. Then the sol-
ution (u, z) to problem (1.18)-(1.19), (0.3) is unique in U,2: f x Z.

PROOF. Let (u, z) E x Z be a solution to the linear problem
(1.18)-(1.19), (0.3) with f = 0 and yo = y 1 = 0. Represent z as

where z + = sup (z, 0) and z - - sup (z, 0). According to assumption H5
we deduce that z + , Z - e Y0, p for some 0 e (0, a). Consider then the sol-
utions Ul e and U2 E U8; T to the following Cauchy problems, where

z2=z- and j=1,2:

According to Theorem 1.1, Lemmas 1.6, 1.8 and assumptions H5, H16
we deduce that uj is positive ( j = 1, 2 ).

Then from (2.3) and the uniqueness of the solution to problem (1.18)-
(1.19) (with g = Ez and yo = 0) we deduce the equation u(t) = 
- u2 (t) for any t E [ 0, = 0, then (P(ul) = O(u2) = 95, where
95 E Y.

Using a standard procedure we can prove that uj’ is once more dif-
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ferentiable and solves the Cauchy problem

at least in a classical sense, since (I + e T); and
E y8,p ( j = 1, 2) according to H7 and Lemma 1.1. More precisely,

taking advantage of Theorem 29 in Di Blasio [2], we can prove that
~/ E C([o, T ]; n W1~ p ((0, r]; 

Introduce then the functions vj = uj’ - B * uj ( j = 1, 2). From (2.4),
(2.5), (2.7), (2.8) and Lemma 1.6 we easily deduce that vj solves the
Cauchy problem

Observe then that, owing to Lemma 1.7, assumption H16 implies
that [E ’ ( t ) - is positive for a.e. t e ( o, T ). Moreover, taking
the limit as t ~ 0 + in (1.53), we easily deduce 0. Applying
Theorem 1.1 we deduce that vj is positive.

Applying operator 0 to both members in (2.4) and using H6
and H15, we get the equations

Consequently, from equations (1.13), (2.6) we derive the inequal-
ities

Recalling that and z2 = z - , from (2.11) we immediately
obtain
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by virtue of assumptions H14, H16, H19 and Lemma 1.8. Since

operator - [A + is positive owing to H20, we 0.
Observe then that from Theorem 1.2 we derive the representation

u, = R * ( I + J * ) Ez + . Moreover, from the definition of 0, Theorem 1.2
and assumption H14 we deduce the relationships

Hence, we get O(R *(I + J *) Ez +) = 0. From assumption H17 we de-
rive the equation

for some r E ( o, T ]. We introduce now the following basic lemma,
whose proof is postponed:

LEMMA 2.1. Let X+ andu denote the positive cone of a Banach Lact-
tice X and a positive measure, respectively. Let E * be a subset in the
cone X + of the positive functionals enjoying property H13. Then

From Lemmas 1.8, 2.3 and the continuity of the integrand in (2.14)
we derive

Taking the limit as s - r - and recalling that Y is dense in X, we
get

Then, from (1.53) we deduce

This implies

Then, from assumption H18 we derive z + = 0. Likewise, we can show
that ~’ == 0. Hence we get z = 0.
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Finally, from the Cauchy problem (1.18)-(1.19) (with z = 0, f = 0,
yo = y i = 0) we deduce u=0.

b

PROOF OF LEMMA 2.1. From f (t ) dt = 0 it follows
a

Since

we deduce

Observe, then, that, owing to H13, the set E = U F* (t e (0, T):x* E F*

f(t), x*&#x3E; # 0} is a denumerable union of null sets. Hence m(E) = 0. This
implies

By virtue of H13 we deduce f(t) = 0 Vt E (a, b)BF,. 0

We conclude this section by proving the following lemma basic for
our applications.

LEMMA 2.2. be defined as in HOa)-c) and assume that w and
Ii satisfy the properties:

(2.24) cv( t ) ~ m &#x3E; 0 a.e. in a left neighbourhood of t = í E ( 0, T],

Then 0 satisfies H 17.

PROOF. HOa) trivially coincides with u(T) = 0: hence we
Choose r = T.

HOb) 0(u) = 0 and u E C([ 0, T ]; X+ ) imply (by virtue of Lemma
2.1 and the positivity of w)

From (2.24) and (2.26) we deduce u(i) = 0.

HOc) 0(u) = 0 and u E C([ 0, T ]; X+ ) imply (by virtue of Lemma
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2.1 and the positivity of p)

From assumption (2.25) we deduce that there exists a sequence c

c (1: - ê, r) converging to r such that

We have thus proved that = 0 .

3. - Solving the identification problem (0.1)-(0.3).

In order to apply Theorem 2.1 in [13], which assures that unique-
ness implies existence we have to choose Z = ya + ’IP’, p and to identify
the operator-valued B in [13] with HA + Ho . Moreover, we have to add
to our previous assumptions Hl-H20 the following ones, which imply
hypotheses H 1, H3-H 10 in [13, Section 1] with B = HA + Ho :

where So is the analytic semigroup generated by A and is the
scalar continuous function defined by

We recall that (? (Xi ; X2) and Cb«O, T ]; denote, respectively,
the Banach spaces of all compact linear operator from X, to X2 and of all
Y0, p-valued functions which are continuous and bounded on (0, T ].
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REMARK 3.1. We observe that our assumption H2 is weaker than
the corresponding H2 in [13]. However, this change does not affect at
all the Fredholm result proved in [13].

REMARK 3.2. We note that our assumption H26 is stronger in com-
parison with H8 in [13], but this gives place to no additional trouble,
since it is satisfied also in [13, Section 6].

REMARK 3.3. Assumptions H27 and H28 imply that the linear op-
erator K(u) = AO(u) - O(Au) belongs to ~( UQ; ~ ; (cf. H9
in [13, Section 1]). 

’

REMARK 3.4. We observe that, instead of assumption H10
in [13], which in our case reads as the linear operator

admits acn inverse

we assume the simpler hypothesis H28.

We can now state our existence result.

THEOREM 3.1. Let assumptions Hl-H6, H8-H29 and (1.28) hold
and assume

Then problems (0.1)-(0.3) admits a unique solution (u, z) E !7~ x Z.

We premise the proof of Theorem 3.1 with the following Lemma 3.1,
whose proof will be given at the end of this section.

LEMMA 3.1. Let assumptions H10a and H29 hold. Then OSO E
E p ).

PROOF OF THEOREM 3.1. Using (almost) the same notations as

in [13, Sections 4, 5, 6], we can rewrite problem (0.1)-(0.3) in the equiva-
lent form

where
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We recall that operators W3 and W4 are defined by the formulas

where

Moreover, operators a and ~C are solutions to the following operator
equations, respectively:

(3.13) + H(t) + Ho (t)A -1 +

We now observe that operator Q, defined by (3.4), is a solution to the in-
tegral equation
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Hence, we deduce the representation

From (3.3) and (3.16) we deduce the equation

Owing to (3.16) and assumption H29, equation (3.17) can be rewritten in
the equivalent fixed-point form

where

Since, owing to Lemma 6.1 in [13], A -1 E it is immediate
to check that W5 Then, arguing as in [13, Section 6] and
taking advantage of Lemma 3.1, we deduce that 
Consequently, Hence, according to Theorem
2.1 in [13], equation (3.18) admits a unique solution for any choice of the
triplet ( f, satisfying H8-9 and (3.2).

This concludes the proof of our theorem.

PROOF OF LEMMA 3.1. Consider the identity

We observe also that, owing to Lemma 6.1 in [13] and to Remark 3.1,
So (t) E e (Yg + P) for any t E R+ and So E Cb ((0, T ]; ya + P). Then
by virtue of Lemma 6.2 in [13] from any bounded sequence {zm} c
c Y’ + p , we can extract a subsequence {zmk} C {zm} and a function
~co E Cb«O, T ]; such that

This implies
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Hence

We have thus proved that the belongs to

dn E N.

Finally, according to H29, we deduce in
as n - + oo. This, along with (3.20) and a classical result

in Functional Analysis, implies that 

We conclude this section proving the following Lemma 3.2.

LEMMA 3.2. Let operator 0 be defined by HOc, where fl is a positive
and finite Borel measure satifying

Then assumption H29 is satisfied.

PROOF. Under assumption H2 we deduce that So satisfies

for some positive constant M. Then we note that for any z e 
1, according to Lebesgue’s dominated convergence

theorem, the following relationships hold true:

where we have set

We have thus proved that assumption H29 is satisfied.

REMARK 3.5. If 0 is defined by HOa or HOb, obviously 0 satisfies
H29 by virtue of Lemmas 3.1 and 3.2.



74

4. - Some applications.

We consider in this section the explicit operator

related to an open, bounded, connected set Q CR" of class C’2 + a
(5e(0,l)).
We assume

where the satisfy the uniform ellipticity condition

for some positive constantu. Moreover, we choose
 + 00) and

where v denotes the outward normal unit vector on aSZ.
We recall that X is a Banach lattice when equipped with the usual

order relation 0 in X ~ f ( x ) ; 0 for a.e. x e Q).
Using Lemma 3.8.1 in [33], we easily deduce that A satisfies as-

sumptions H2.
Moreover, according to the results in Grisvard [5], we derive the fol-

lowing equations for the intermediate spaces:

Then, recalling that the functions y - max( y, 0) and y ~ max ( - y, 0)
are Lipschitz continuous, we deduce that assumption H5 is satisfied if
we choose 0 = a + 1/p’, when 0  6 + 1/p’  1/2, and 0 E (0, 1/2),
when 1/2  or+  1.



75

We also assume that the linear operators H, Ho , E admit the
representations

where I is the identity operator and h, ho , e denote scalar functions
satisfying

As far as the functional 0 is concerned, we assume that it admits
one of the representations HOa-HOc.

Whence and from (4.7)-(4.8), it is an easy task to check that assump-
tions H6, H 10-H 12, H14-15, H23-H28 are satisfied. Further, we observe
that H13 is trivially satisfied when F * reduces to the positive function-
al generated by any positive constant function.

Assumption H16 is implied by the following:

Then we note that assumption H17 is nothing but Lemma 2.2: hence we
have to require that kernel w and measure y satisfy properties (2.24)
and (2.25), respectively. In order to derive H18 with the same r related
to Lemma 2.2 we require that the pair ( h, e ) satisfy the inequality

Then, we observe that the linear operator ~l defined in H19, in our case,
is the multiplication operator by the function q5(x) = * e( ~ , x)] I, ,
where

Consequently, ~l preserves disjointness.
We now note that properties H10, H20, H21 are implied by (4.2) and

the following condition, = Yo (cf. Gilbarg-Trudinger [4, Sec-
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tion 8]): o

When 6D(A) = Y1 we must assume (cf. Chicco [1, Corollary 2])

Owing to equations (4.5)-(4.6) and Lemma 3.1 in [13], property H25 is
satisfied owing to (4.8).

Then we observe that property H29 unconditionally holds, when 0
is defined by HOa, HOb, while we need the additional assumptions
p(0) = 0 when (P is defined by HOc. Finally, we observe that in our
case assumption H28 is implied by the following condition (cf.
(4.14))

The next Lemma 4.1 exhibits some sufficient conditions on the pair
(h, e) assuring that condition (4.16) is satisfied.

LEMMA 4.1. Let the pair (h, e) E C([ o, T ]) x C([ o, T ] x S~) satis, fy
either of the conditions:

Then (h, e) satisfies (4.16) with k defined by (4.14).

REMARK 4.1. The first two conditions in (4.17b) are trivially satis-
fied if we assume
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PROOF OF LEMMA 4.1. From (4.14), assumption (4.17a) and Lemma
1.4 we easily derive the chain of inequalities

Since 0 is a linear positive operator, we deduce

Reasoning as above and taking (4.11) into account, from assumption
(4-18b) we derive the inequalities

which imply

It remains to investigate under which assumptions on functions 
ao , h the basic condition (1.28) is satisfied. For the moment we take

only the trivial case h 5 0 in [ o, T ] into account. The more general case
h * h ~ 0 will be dealt with in the second part of this section in the one-
dimensional case, only, and under the assumption 6D(A) = Y2.

We now consider the following parabolic integrodifferential identi-
fication problem: determine a pair of functions u: [0, T] x Q - R and
z : such that
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where j e { 0, 1 } is flxed and

Taking advantage of the abstract Theorem 3.1, from the results
proved in this section, we deduce the following existence theorem.

THEOREM 4.1. Assume that operator O is assigned by either HOa
or HOb or HOc and let the functions ai, j, ao , h, ho , e, co and the positi-
ve Borel measures ,u satisfy properties (4.2), (4.3), (4.8), (4.10), (4.12),
(4.15), (4.17a), (2.24), (2.25), (3.24) and the following

Assume further that the data f, 1jJ o , 1jJ 1 satisfy properties H8-H9. Then
each of the identification problems (4.23)-(4.26) ( j = 0, 1) admits a
unique solution (u, z) E U,2, " X which continuously depends
on the data with respect to the norms related to assumptions H8-
H9.

We now consider now condition (1.28) in the more general case
h * h &#x3E; 0 under the following restrictions: n = 1, Q = (0, 1) (l &#x3E; 0), j =
= 1, we are given the Neumann boundary conditions and the coefficients
of the operator A, rewritten in the simpler form

are assumed to enjoy the following properties:

Consequently, proving (1.28) is equivalent to proving that the solution
u to the Cauchy-Neumann problem

is positive for any positive g, when the positive part of the function h is
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assumed not to vanish everywhere in [ 0, T ] and to satisfy some addi-
tional requirement. More exactly, we can prove the following Theorem
4.2.

THEOREM 4.2. Assume that coefficients aj ( j = 0, 1, 2) satisfy
properties (4.30), (4.31) and the positive part h + of the function h E
e C([ 0, T ]) satisfies the bound

where

Then for any g E LP(Q;R+) the solution to problem (4.32)-(4.34) is

nonnegative.

PROOF. First we introduce the functions b E C3 ([ o, 11) and
v: ( o, T ) x (0, 1 /2 ) - R defined, respectively, by

Taking advantage of properties (4.30), it is easy to check that v solves
the following Cauchy-Neumann problem
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where

We note that, owing to definitions (4.36), (4.37) and (4.45), functions a
and 9 are nonnegative on [0, 11.

Let G the Green function related to problem (4.40)-(4.42). Then (cf.
Polozhiy [17]) the solution v is represented by

From formulas (4.39) and (4.45) we deduce that a sufficient condition for
u to be positive for any positive g is that G should satisfy the following
bound

In order to derive such a result we recall that the Green function Go for
the operator Dt - /32 Dl, with {3 = 1/(2b(l)), related to the half-strip
R+ x (0, 1/2) and the homogeneous Neumann conditions, is given (cf.
Polozhiy [17]) by

where

Obviously, we get
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We now look for the Green function G, related to problem (4.40)-
(4.42), in the form

Since G satisfies the boundary conditions (4.50) and solves the differen-
tial equation

where 3 denotes the Dirac delta concentrated at the origin, we deduce
that cp is a solution to the Volterra linear integral equation

Since Go and a are positive, from well-known results (cf. Ladyzhen-
skaya-Solonnikov-Ural’ceva [9]) we obtain that equation (4.53) is

uniquely solvable and

Consequently, owing to representation (4.51), it suffices to prove,
instead of bound (4.46), the following:

Consequently, it suffices to show that the following bound holds true:
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From (4.35) we easily derive the following inequalities, which show the
positivity of the terms between curly brackets in (4.56):

This concludes the proof of the theorem.

We conclude this section by stating the existence and uniqueness
theorem for our identification problem in the case when h may be posi-
tive.

THEOREM 4.3. In addition to the hypotheses listed in Theorem 4.1
assume that n = 1, A is defined by (4.29) with 6D(A) = Y2 and coeffi-
cients aj ( j = 0, 1, 2) enj oy properties (4.30). Moreover, assume that h
satisfies properties (4.35) and (4.9) (instead of (4.28)). Then the identifi-
cation problem (4.23)-(4.26) with j = 1 admits a unique solution

(u, z ) E U,2,, f x which continuously depends on the data with
respect to the norms related to assumptions H8-H9.

PROOF. It is a straightforward consequence of the analysis devel-
oped in the first part of this section and of Theorem 4.2 assuring that
the validity of the basic assumption (1.28).
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