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A Capacity Method for the Study
of Dirichlet Problems for Elliptic Systems

in Varying Domains.

GIANNI DAL MASO - RODICA TOADER (*)

ABSTRACT - The asymptotic behaviour of solutions of second order linear elliptic
systems with Dirichlet boundary conditions on varying domains is studied by
means of a suitable notion of capacity.

Introduction.

Let Q be a bounded open subset of R n and let a: 

- H-1(Q, Rm) be an elliptic operator of the form

where A(x) is a fourth order tensor and ( ~ , ~ ) denotes the scalar product
between matrices. Given a sequence (Qj) of open subsets of ,5~, we con-
sider for every f e (Q, R m ) the sequence (uj) of the solutions of the
Dirichlet problems

extended to S~ by setting uj = 0 on We want to describe the

asymptotic behaviour of (uj) as j ~ 00. As in the scalar case, a relax-
ation phenomenon may occur. Namely, if (uj) converges weakly in
Ho’(Q, Rm) to some function u, then there exist an m x m matrix B(x),

(*) Indirizzo degli AA.: S.I.S.S.A., Via Beirut 4, 34013 Trieste, Italy.
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with 1, and a measure ¡,l, not charging polar sets, such that u is
the solution of the relaxed Dirichlet problem

where, in the second integral, ( ~ , ~ ) denotes the scalar product in R’,
while (.; ) is the duality pairing between and

Hol (Q, R m). Compactness and localization results for the relaxed
Dirichlet problems are established in [8] for symmetric A and B, and
in [4] in the general case.

The problem we consider in this paper is the identification of the
pair (B, ,u ) which appears in the limit problem (0.2). To this aim we in-
troduce a suitable notion of capacity. If K is a compact subset of ,S~ and

E R m , then the a-capacity of K in Q relative to E and n is defined
as

where, for every ~ E u ~ is the weak solution in of the Dirichlet

problem

For every x E Rn let Dp (x) be the closed ball with centre x and radius Q.
Assume that the limit

exists for every X e S~ and for almost every ~o &#x3E; 0 such that De (x) c Q.
Our main result, Theorem 3.7, shows that, if a can be majorized by a
Kato measure ), (Definition 1.1), then for ).-almost every x e S~ there
exists an m x m matrix G( x ) such that
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Moreover, for Rm), the sequence of the solutions
of (0.1) converges weakly in R m ) to the solution u of (0.2) with

B(x) = I and p(E) = j IGldÀ. If a is symmetric, the same
E

result (Theorem 4.3) holds whenever A is a bounded measure.

1. - Notation and preliminaries.

Let be the space of all real m x n matrices ~ = (i)) endowed
with the scalar product

and with the corresponding norm |E|2 = (E, E). As usual, R m is identi-
fied with Let Q be a bounded open subset The case
n = 2 can be treated in a similar way by using the logarithmic poten-
tials. We assume that the boundary 8Q of S2 is of class C 1. The Sobolev
space is defined as the space of all functions u in L 2 ( S~, R "~)
whose first order distribution derivatives belong to 
endowed with the norm

where Du = is the Jacobian matrix of u. The space Rm)
is the closure of Co ( S~, R m ) in H’ (Q, and H -1 (Q, is the dual
of The symbol R’~ will be omitted when m = 1.

For every subset E the (harmonic) capacity of E with respect to

Q is defined by cap (E) = inf f |Du|2dx, where the infimum is taken
0

over all functions u such that ao a 1 almost everywhere in a
neighbourhood of E, with the usual convention inf 0 = + 00 .

A function is said to be quasicontinuous if for every E &#x3E;

&#x3E; 0 there exists a set E c Q, with cap (E) ; E, such that the restriction of
u to QBE is continuous. We recall that for every u e Hol (Q, R m ) there
exists a quasicontinuous function u, unique up to sets of capacity zero,
such that u = it almost everywhere in S~ . We shall always identify u
with u.

By a Borel measure on ,S~ we mean a positive, countably additive set
function with values in [ o, + 00] defined on the a-field of all Borel sub-
sets of S~; by a Radon measure on S~ we mean a Borel measure which is
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finite on every compact subset of S~. By we denote the set of all

positive Borel measures p on S~ such = 0 for every Borel set
E c S~ with cap (E) = 0. If E is ,u-measurable in S~, we define the Borel
measure by (,u LE)(B) _ ,u(E n B) for every Borel set B c S2,
while 03BC|E is the measure on E given for every Borel
subset B of E.

For every x E R n and &#x3E; 0 we set Ue (x) = fyER": Ix-yi I 
and D, (x) = !7p (x). A special class of measures we shall frequently use
is the Kato space.

DEFINITION 1.1. The Kato space K + (S~) is the cone of all positive
Radon measures 03BC on Q such that

We recall that every measure in K+ (Q) is bounded and belongs to
H -1 ( S~ ). For more details about Kato measures we refer to [10]
and [6].

Let A(x) _ (agp(x», with 1 ~ i, j ~ n and 1 ; a, {3 ~ m, be a family
of functions in C(Q) satisfying the following conditions: there exist two
constants C1 &#x3E; 0 and C2 &#x3E; 0 such that

and let a: be the elliptic operator defined
by

where ADu is the m x n matrix defined by

For fixed x e Q the Green’s function G(x, y ) = G x ( y ) is the solution
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of the problem

where a* is the adjoint operator of a, 3 z is the Dirac distribution at x,
and I is the m x m identity matrix. Since the coefficients are continu-
ous the existence of the Green’s function can be obtained by a classical
duality argument. It is well-known that, as the boundary of Q is of class
~’ 1, there exists a constant Cg &#x3E; 0 such that

This estimate can be proved by using classical regularity results, as
in [1]. For any Rm-valued bounded Radon measure ¡.,t, the solution u of
the problem

can be represented for almost every x E Sz as

If, in addition, 03BC E H -1(Q, R ’), then this formula provides the quasi-
continuous representative of the solution u.

2. Definition and properties of the y-capacity.

We introduce now two notions of capacity associated with the oper-
ator a.

DEFINITION 2.1. R~ and let K be a compact subset of Q.
The capacity of K relative to the operator (t and to the vectors ~
and ?7 is defined by

where, for every ~ E R m , ~c ~ is the weak solution in of the Dirichlet
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problem

We extend u ~ to S~ by setting u ~ = ~ in K. In (2.2) the boundary condi-
tions are understood in the following sense: for every 99 e Co° (Q, R m)
with cp = ~ on K we have u ~ - cp E Ho ( S~BK, R -).

REMARK 2.2. For every V e on K we
have

This can be easily seen by taking u’~ - y, which belongs to
as test function in the equation (2.2) satisfied by u ~ .

REMARK 2.3. The function is bilinear with respect to ~
and t7. Moreover there exist two constants c4 &#x3E; 0 and c5 &#x3E; 0, depending
on n, m, and on the constants cl and c2 which appear in (1.1), such
that

for every compact set K and for every ~, Rm . For the proof see
Proposition 2.7.

Let 03BC E and let B = be an m x m matrix of Borel func-
tions satisfying the following conditions: there exist two constants

C6 &#x3E; 0 and c7 &#x3E; 0 such that

for ,u-almost every x E Q and every ~ 

DEFINITION 2.4. Let ~, For every Borel set E cc S~ the
(B, ,u )-capacity of E in S~ relative to a, ~, and q is defined by
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where, for is the solution of

The existence and the uniqueness of the solution u ~ of problem (2.4) fol-
low from the Lax-Milgram Lemma.

To prove this fact it is enough to take u’’ - which belongs to

Rm) n L;(E, Rm), as test function in the equation (2.4) satisfied
by ul. In particular (2.5) gives

if y = t7 ,u-almost everywhere on E.

REMARK 2.6. If ,u is bounded, then u7 E L~ (E, Rm), thus we may
take u° as test function in the equation satisfied by u and we obtain

We shall compare now the capacity Ca ~ ~‘ with the ,a-capacity CI1 rela-
tive to the Laplacian, introduced in [7], Definition 5.1.

PROPOSITION 2.7. There exist two constants C8 &#x3E; 0 and cg &#x3E; 0, de-
pending on n, m, and on c1, c2 , C6, c7 , such that for every Borel set
EccSz

PROOF. To prove (2.6), let v « _ (u ~)l /~ 1, 0, and v’ = 0 oth-
erwise. Then, using the ellipticity of A and B, for every Borel subset



E cc S~ and for every ~ E R ’ we obtain

m I&#x3E; k|E|2 mEa = 1(f |va - 1|2d03BCo E

~, 1]) I =5 1, 1»~/~ (Cf&#x3E; " E, n, ~))1/2 .
Hence it suffices to prove (2.7) 1]. Let vj be the CIi-capacitary po

CB, 03BCa(E, E, E)  M(f|DuE||Dy|dx + f |uE - E||y - E|d03BC)  Bs E /

+ E f |uE - E|2d03BC + 1 E f |y - E|2d03BC
E E E

For a suitable choice of E the sum of the terms containing uE can be ma
jorized by ~), hence there exists a constant K suet
that

 K|E|2(f |DvE|2dx + f |vE|2d03BC) = K|E|2C03BC(E).BQ JF /
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PROPOSITION 2.8. For every Kato measure Ii, the solution u ~ of
(2.4) corresponding to a Borel subset E small diam-
eter belongs to L 00 (~2, and tends to 0 in L °° (~2, R m ) as the diame-
ter of E tends to zero.

PROOF. Let E be a Borel subset of S2 and let u ~ be the solution of
(2.4). If u~ e L~ (Q, then the representation formula (1.3) for the
solution of a linear system of second order partial differential equations
gives

where G(x, y) is the Green’s function associated with the operator a
and with the domain S~ . In this case the measure B(u’ - ) )p LE be-
longs to H -1 ( S~, R m ) and (2.8) provides the quasicontinuous represen-
tative of u ~ .

Let us consider the operator T : L’ ( S~, R’) --* L’ (Q, defined

by

Since the functions are bounded, we may apply estimate (1.2) for the
Green’s function and we obtain

As 03BC e K + (Q), the integral in the above formula tends to zero as di-
am (E ) tends to zero, so that for sets E of sufficiently small diameter
the operator T is a contraction, hence it has a unique fixed point w in
L§ (Q, Rm). By (1.3), for f E LI1°O (Q, Rm) the function wf = Tf is the sol-
ution of the Dirichlet problem

so that the fixed point w belongs to and is a solution in the
sense of distributions of Aw = -B(~ 2013 ~)~L-.EB and hence a solution of



266

(2.4). Therefore we conclude that for sets E of sufficiently
small diameter u ~ E L§° (S2, Then, from (2.8), for the quasicontinu-
ous representative of u ~ we have

which implies that where the

coefficient cE is given by C3 C7 SUP f !~ - y 12 - n dfJ. and tends to zero asx E Q E
the diameter of E tends to zero. As u ’ e Ho’(Q, Rm) and u vanishes on
sets of capacity and from the previ-
ous inequality we obtain that tends to zero as the diame-
ter of E tends to zero. m

THEOREM 2.9. is a Kato measure then

for p-aInzost every x e Q and for every ç, 1] e R m.

PROOF. Let x E Q. Since every p e K + (Q) is bounded, by Remark
2.6 we have

By the Besicovitch Differentiation Theorem (see, e.g., [9], 1.6.2),

for ,u-almost every x e Q and for every i, q The conclusion fol-
lows now from (2.9), (2.10), and Proposition 2.8.
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3. y a_convergence.

In order to study the asymptotic behaviour of sequences of solutions
of Dirichlet problems in varying domains we introduce the notion of y’-
convergence and show that under certain hypotheses the y tl-limit can
be identified.

DEFINITION 3.1. Let (Q j) be a sequence of open subsets of S~, let
,u E ~ ( S~ ), and let B be an m x m matrix of Borel functions satisfying
(2.3). We say that y ’-converges to (B, u), and we use the notation

f2i ~ (B, if for ~ Rm) the sequence (uj) of the sol-
utions of the problems

extended by zero on converges weakly in Ho (Q, to the sol-
ution of the relaxed Dirichlet problem

REMARK 3.2. Let p E let B be an m x m matrix of Borel
functions satisfying (2.3), and let v and C be defined by

Then the measure v belongs to and the matrix C satisfies (2.3).

Moreover Q  ~ (B, if and only if ~ (C, v). This shows that,
in Definition 3.1, it is not restrictive to assume I B(x) I = 1 for every x E
E S2. However, it is sometimes useful to consider also matrices B which
do not satisfy this condition.

If m = 1 and cr = - L1, we shall always assume that B(x) = 1 for

every X e S~. In this case we use the notation ~ ~ y-

The following compactness result is proved in [4].
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THEOREM 3.3. For every sequence (Qj) of open subsets of Q there
exist a subsequence a measureu E Wo (S2), and an m x m matrix

of Borel functions satisfying (2.3), such that ~ ,u and

(B, p).

The localization property of the y ’-convergence is also proved
in [4].

PROPOSITION 3.5. Suppose that ~ B and ~ 
If ,u = ’fl and  + 00, then B(x) = B(x) for ,u-almost every x E
e Q.

PROOF. Let f E H -1 (Q, Rm) and let u be the solution of the relaxed
Dirichlet problem (3.1 ). Then we have

In particular, since  + ~ , this equality holds true for every v E
E Co (Q, R m). So, varying v, we obtain that (B - B)u = 0 p-almost
everywhere in S~ .  + 00, the set of all solutions u of (3.1)
corresponding to different data f E H -1 (Q, R m ) is dense in Hol (Q, 
This implies that B = B p-almost everywhere in 

THEOREM 3.6.  + 00, and Qj ~ (B, 
then for every x e S~ there exists a countable set N(x) c R such
that

PROOF. Let us fix It is proved in [7] that there exists a
countable set N1(x)cR such that for 

Then, applying Theorem 3.3 to the sequence = we

obtain that there exist a subsequence, still denoted by the same index j,
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and an m x m matrix B of Borel functions satisfying (2.3) such
that

Now we apply the localization result (Theorem 3.4) to the sequence
(Qj) and we obtain

The same localization result applied to the sequence S~~ gives

hence B = B ,u-almost everywhere in Ue (x) by Proposition 3.5. On the
other hand, since ,u(Q)  + oo, for every x E Sz there exists a countable
set N2 (x) c R such that ,u(aDe(x» = 0 for all o E (0, dQ(x»BN2(x). To-
gether with the previous results this implies that

Let Kj = De (x)BQj = QB Qj and let Uj be the weak solution in Qj of the
problem

As usual we extend uj to Sd by setting Uj = ; on Kj . Let cp e Co (Q, 
with cp = ~ on Dp (x), and let Zj = uj - Then zj is the solution of the
problem

where f is the element of defined by (f, v) = -
- Dv) dx. By Definition 3.1 the sequence (Zj) converges weakly
Q
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in to the solution z of the problem

This implies that converges weakly in to the solution u l
of (2.4) corresponding to ~ = ~ and E = Dp (x). Consequently 
converges to ADu ~ weakly in Let us fix now y e
e Co° (Q, Rm) with y = 1/ on Then, by Remarks 2.2 and 2.5,

and the conclusion follows from the weak convergence of
m

Given a family o of real numbers, we say that ess lim f. = a if
’Q 0

for every neighbourhood V of a there exists a neighbourhood U of 0
such that f. e V for almost every Q E U. Let (Qj) be a sequence of open
subsets of S~. For every closed ball De (x) c Q and for E Rm
we define

We are now in a position to prove the main result of the paper.

THEOREM 3.7. Assume that there exists a measure A e (Q)
such that

for every closed ball D~ (x) c Q and for every ~ E R 1. Assume, in addi-
tion, that for every x E S2
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Then there exists an m x m matrix G(x) of bounded Borel functions
such that

for ),-almost every x E Q and for every g, t7 E R m . Let B and f.l be defined
by

with the convention that the m x m identity matrix I. Then B
a

satisfies (2.3) and Qj -~. (B, ,u).

REMARK 3.8. Theorems 3.3 and 3.6 imply that every sequence 
has a subsequence which satisfies (3.4). Therefore condition (3.3) is the
only non-trivial hypothesis of Theorem 3.7.

REMARK 3.9. For every closed ball let

If there exists a measure such that 
then the estimates in Remark 2.3 imply that (3.3) is satisfied v4th 1 re-
placed by This condition is satisfied, for instance, in the periodic
case with a critical size of the holes (see [5]) and for the sequences of do-
mains considered in [11] and [12].

PROOF OF THEOREM 3.7. Let us fix x E Q. From the compactness
result (Theorem 3.3) we obtain that there exist a subsequence, still de-
noted by (0j), and a pair (B,03BC), with B satisfying (2.3) and 03BC e M0 (Q),

d

such that Qj - 03BC and Qj yQ (B"u). Let us e Q. By Theorem
5.15 in [7] for almost every Q E (0, ds2 (x)) we have cap (De -

The first estimate in Remark 2.3 gives
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and passing to the limit we get

Applying now Theorem 2.3 in [3] we get that fi is absolutely continuous
with respect to A and that the density IdA)(x) is bounded, hence
p, E K + (,S~). Let

with the convention that 0/0 is the m x m identity matrix I. Then

As B satisfies (2.3) 03BC-almost everywhere, B satisfies (2.3) ,u-almost
s - -

everywhere. Since Qj yQ- (B,03BC) and I -almost

everywhere in Q, by Remark 3.2 we have also Qj ~ (B, ,u ).
Let us prove now (3.5). Applying Theorem 3.6 we obtain that

CQ (De (x)B92j, ~, ~) - (De (x), ~, 1]) for almost every e e (0, ds2 (x)).
Thus

for almost every Q E (0, and for every E, n E Rm. We may now
apply Theorem 2.9 and the Besicovitch Differentiation Theorem to
obtain

for every and for A-almost every x E S2 such that

(dp-/dÀ)(x) &#x3E; 0. Since 
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I we obtain that

for A-almost every x E Q such that (dJi IdA)(x) = 0. This concludes the
proof of (3.5).

4. The symmetric case.

If the operator ci is symmetric, then the a-capacity can be obtained
ð

by solving a minimum problem. If Qj yq- (B, p), with  + 00,
then the matrix B is symmetric (see [8], Corollary 5.4). In this case we
have

for every measureu e J1Zo (Q), for every ~ E 7!~, and for every Borel set
E CC Q.

REMARK 4.1. Assume that C~, and B are symmetric. If p i 5 ,u 2 , then
~, ~ ) for every Borel set E cc Q and every

E E Rm.

This monotonicity property of the capacity with respect to the mea-
sure allows us to extend the derivation theorem to any bounded mea-
sure in 

THEOREM 4.2. Assume that (~ is symmetric. Let ,~, v E 

with v(Q)  +00, and let B be an m x m syrnmetric matrix of Borel
junctions satisfying (2.3). For every x E Q and for every; E R m let

(with the convention that 0/0 = 1).
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Assume that there exists ~ e B { 0 } such that

Then It(Q)  + 00, ,u is absolutely continuous with respect to v,
and

Moreover, the lim inf in the definition of f is a limit for v-almost every
x e Q and for every ~ E R m .

PROOF. For every x e S~ let

The estimates in Proposition 2.7 give

thus f1 E L, (S~) and f, (x)  + 00 for every x E S~. Then from Proposition
2.3 in [3] we deduce that 1’-( Q)  + 00 and that p i.e., p(E) =

- fl dv for every Borel set E c S~. By Proposition 2.5 of [2] there exist a
E

measure and a Borel function g : S~ -~ [ o, +00] such that
,u gA. For every k E N let = k~. Since gkÀ belongs to
K + ( S~ ), Theorem 2.9 implies the existence of a subset E1 of S~ such that

= 0 and
.1

Since A + v is a bounded measure on Q, by the Besicovitch Differentia-
tion Theorem there exists a set E2 such that (A + v)(E2) = 0 and
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By (4.2) and (4.3) we have fl (x)  +00 and f (x, ~ )  + 00 for every
x E Q and for every ~ e R m . Let E = E1 U E2 . For x E QBE and ~ E R m
we have

So, for every Borel set F c QBE and for we have

hence

for every Borel set F c S~. Passing now to the limit as k - + 00, by the
monotone convergence theorem we have

for every Borel set and Thus, fl (x)(B(x) ~, 1) 5
; f(x, ~ ) for v-almost every and for Since

by the Besicovitch Differentiation Theorem we obtain f(x, 1) 5
; f, (x)(B(x) ~, ~) for v-almost every x e S~ and for every So
we proved for every ~ and v-almost
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every x E Q. Moreover, by the Besicovitch Differentiation Theorem for
v-almost every x e S~ and for every ~ E we have

and this completes the proof.

The hypotheses in Theorem 3.7 can be weakened by using the mono-
tonicity of the a-capacity and the previous result.

THEOREM 4.3. Assume that a is symmetric and that there exists a
bounded Radon measure ~, on Q such that

for every closed ball De (x) c Q and for every E e Rm. Assume, in addi-
tion, that for every x e Q there exists a dense set D c (0, dQ (x)) such
that

Then there exists an m x m symmetric matrix G(x) of bounded Borel
functions such that

for A-almost every x e Q and for every ~ e R m . Let B and ~e be defined
by

with the convention that 0/0 is the m x m identity matrix I. Then

f.l E B satisfies (2.3), and Qj yaQ- (B, u).
PROOF. Since Ca(’,~~) is an increasing set function,

a’ (D, (x), ~, ~) and ~, ~) are increasing functions hence
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(4.4) implies that a ’ (De ( x ), ~, ~ ) = a"(De ( x ), ~, ~ ) for almost every Q E
e (0, As in the proof of Theorem 3.7, we obtain that

a 
-

Qj yaQ- (B,03BC), with ji absolutely continuous with respect to A. Since
(dji IdA)(x) is bounded, we have ji(Q)  + 00. Let G(x) =

have ,u e The conclusion follows now by repeating the same ar-
guments as in Theorem 3.7, the only difference being that now we apply
Theorem 4.2 instead of Theorem 2.9.
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