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A Capacity Method for the Study
of Dirichlet Problems for Elliptic Systems
in Varying Domains.

GIANNI DAL MAaso - RobicA TOADER (*)

ABSTRACT - The asymptotic behaviour of solutions of second order linear elliptic
systems with Dirichlet boundary conditions on varying domains is studied by
means of a suitable notion of capacity.

Introduction.

Let 2 be a bounded open subset of R" and let @: Hj (2, R™) —
— H 1(2,R™) be an elliptic operator of the form

(Qu, v) = J(ADu, Dv)dx,
2
where A(x) is a fourth order tensor and (-, -) denotes the scalar product
between matrices. Given a sequence (£2;) of open subsets of £, we con-

sider for every fe H ' (£2, R™) the sequence (u;) of the solutions of the
Dirichlet problems

u;e H (Q,,R™),
0.1) g

duj =f in Q I
extended to Q by setting u; =0 on Q\Q;. We want to describe the
asymptotic behaviour of (u;) as j — . As in the scalar case, a relax-

ation phenomenon may occur. Namely, if (%;) converges weakly in
H} (2, R™) to some function u, then there exist an m X m matrix B(x),

(*) Indirizzo degli AA.: S.I.S.S.A,, Via Beirut 4, 34013 Trieste, Italy.
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with |B(z)| = 1, and a measure u, not charging polar sets, such that « is
the solution of the relaxed Dirichlet problem

weH}(2,R™ NLZ(L2,R™),
0.2) j(ADu, Dv)dx + J(Bu, v)du = (f, v),
Q Q

Vve H} (2, R™) NLZ(2, R™),

where, in the second integral, (-, -) denotes the scalar product in R™,
while (-, -) is the duality pairing between H '(2,R™) and
H} (2, R™). Compactness and localization results for the relaxed
Dirichlet problems are established in [8] for symmetric A and B, and
in[4] in the general case.

The problem we consider in this paper is the identification of the
pair (B, u) which appears in the limit problem (0.2). To this aim we in-
troduce a suitable notion of capacity. If K is a compact subset of Q and
&, n e R™, then the d-capacity of K in £ relative to & and # is defined
as

Co(K, &, n) = ] (ADut, Du") dz ,
QK

where, for every { e R™, u® is the weak solution in 2\K of the Dirichlet
problem

ute H'(Q\K, R™), ut=¢ -on 9K, ut*=0 on 99,
[ @Dut, Doz =0, wweH}(@\K R™).
AN\K

For every x € R" let D, (x) be the closed ball with centre x and radius o.
Assume that the limit

jlier Ca(D,(\2;, &, 1) = a(D,(x), &, 1)

exists for every x € 2 and for almost every ¢ > 0 such that D, (x) c Q.
Our main result, Theorem 3.7, shows that, if @ can be majorized by a
Kato measure A (Definition 1.1), then for A-almost every x e Q there
exists an m X m matrix G(x) such that

. a(Dg (x)! g’ 77)
esslim ————

5250 A(DQ(CI})) = (G(x)§9 77); VE? ﬂERm.
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Moreover, for every fe H (2, R™), the sequence (u;) of the solutions
of (0.1) converges weakly in Hj (2, R™) to the solution % of (0.2) with

B(x) = (G(x))/|G(x)| and u(E) = J |G|dA. If @ is symmetric, the same

E
result (Theorem 4.3) holds whenever A is a bounded measure.

1. — Notation and preliminaries.

Let M™ " be the space of all real m X n matrices £ = (£}) endowed
with the scalar product

€ &= 3eoes
a=1j5=1

and with the corresponding norm |&|% = (&, £). As usual, R™ is identi-
fied with M™ %!, Let 2 be a bounded open subset of R”, n = 3. The case
n = 2 can be treated in a similar way by using the logarithmic poten-
tials. We assume that the boundary 9Q of  is of class C'. The Sobolev
space H!(2, R™) is defined as the space of all functions  in LZ(2, R™)
whose first order distribution derivatives D;u belong to L%(Q,R™),
endowed with the norm

)% o, rm = _[ | Du|?de + I |u|?de,
(o] Q

where Du = (D;u?) is the Jacobian matrix of u. The space H} (2,R™)
is the closure of C3 (2, R™) in H' (2, R™), and H "' (2, R™) is the dual
of H} (22, R™). The symbol R™ will be omitted when m = 1.

For every subset £ of £2 the (harmonie) capacity of £ with respect to

Q2 is defined by cap(E) = infj | Du |?dx, where the infimum is taken

over all functions u e H(}(Q)quch that » =1 almost everywhere in a
neighbourhood of E, with the usual convention inf J = + o,

A function u: 2 — R™ is said to be quasicontinuous if for every ¢ >
> 0 there exists a set £ c 22, with cap(F) < ¢, such that the restriction of
u to Q\E is continuous. We recall that for every u € Hj (2, R™) there
exists a quasicontinuous function %, unique up to sets of capacity zero,
such that » = % almost everywhere in Q. We shall always identify u
with «.

By a Borel measure on 22 we mean a positive, countably additive set
function with values in [0, + « ] defined on the o-field of all Borel sub-
sets of £2; by a Radon measure on £2 we mean a Borel measure which is
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finite on every compact subset of £2. By 91, (£2) we denote the set of all
positive Borel measures x4 on 2 such that u(E) = 0 for every Borel set
E c Q with cap(E) = 0. If E is u-measurable in Q, we define the Borel
measure uLE by (u—E)B) =u(E N B) for every Borel set BcQ,
while x|, is the measure on E given by u |, (B) = u(B) for every Borel
subset B of E.

For every x e R™ and ¢ > 0 we set U,(x) = {y e R": |x — y| < 0}
and D, (x) = U, (x). A special class of measures we shall frequently use
is the Kato space.

DEerFINITION 1.1. The Kato space K* (£) is the cone of all positive
Radon measures u on Q such that

lim sup j |y — x| "du(y) =0.

+
0—0 xEQQﬂUQ(a‘)

We recall that every measure in K* (£) is bounded and belongs to
H™'(R). For more details about Kato measures we refer to[10]
and [6].

Let A(x) = (a%(x)), with 1 < i,/ < n and 1 < a, B < m, be a family

of functions in C(Q) satisfying the following conditions: there exist two
constants ¢; > 0 and ¢, > 0 such that

alélP<X %aé’b(x)sféf, VeeQ, VEeM™ ",

L) o

22 |lah@)| <sc,, Vrwe®,

i,ja,p

(1.1)

and let d: H{ (2, R™) — H (2, R™) be the elliptic operator defined
by

(Au, v) = j(ADu, Dv)dx,
Q

where ADw is the m X n matrix defined by

(ADu) =2 %a;{gpjuﬂ.
J

For fixed x € 2 the Green’s function G(x, y) = G*(y) is the solution
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of the problem
a*G*=06,I in Q,
GxEHOLP(Q’mem)’ 1 <p<

’

n-—1

where @* is the adjoint operator of d, d, is the Dirac distribution at ,
and [ is the m X m identity matrix. Since the coefficients are continu-
ous the existence of the Green’s function can be obtained by a classical
duality argument. It is well-known that, as the boundary of R is of class
C?, there exists a constant c; > 0 such that

1.2) |G(x, )| <cs|le—y|>™", Ve,yef.

This estimate can be proved by using classical regularity results, as
in[1]. For any R™-valued bounded Radon measure u, the solution % of
the problem

Qu=u in Q,
ue HFP(2,R™), 1<p<

’

n-—1
can be represented for almost every x e 2 as

(1.3) w(x) = j Gz, ) du(y).
(2]

If, in addition, u € H ~1(2, R™), then this formula provides the quasi-
continuous representative of the solution .

2. Definition and properties of the u-capacity.

We introduce now two notions of capacity associated with the oper-
ator d.

DEFINITION 2.1. Let &, 7 e R™ and let K be a compact subset of Q.
The capacity of K in 2 relative to the operator @ and to the vectors &
and 7 is defined by

@.1) Co(K, & n) = j (ADu¢, Du")dz

O\K

where, for every { € R™, u*® is the weak solution in 2\K of the Dirichlet
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problem
ute H'(Q\K,R™), u*=¢ on 9K, u* =0 on 9R,

22) J (ADu®, Dv)de =0, Vve H}(2\K,R™).
2K
We extend u° to Q by setting ¢ = £ in K. In (2.2) the boundary condi-

tions are understood in the following sense: for every ¢ € Cy (2, R™)
with ¢ = ¢ on K we have u® — ¢ € H} (2\K, R™).

REMARK 22. For every peCy (2,R™) with vy =57 on K we
have

Ca(K, &)= I(ADuE, Dy)dzx .
Q

This can be easily seen by taking «”-— vy, which belongs to
H}(Q2\K, R™), as test function in the equation (2.2) satisfied by u®.

REMARK 2.3. The function Cq (K, &, ) is bilinear with respect to &
and 7. Moreover there exist two constants ¢, > 0 and ¢; > 0, depending
on n, m, and on the constants ¢; and ¢, which appear in (1.1), such
that

CCI(K9 Ey §) > C4 cap(K)l‘Slz and lCa(Kr E) 77)‘ < Cs cap(K)|§| |77| ’

for every compact set K c 2 and for every &, n e R™. For the proof see
Proposition 2.7.

Let u € 1, (2) and let B = (b,4) be an m X m matrix of Borel func-
tions satisfying the following conditions: there exist two constants
¢e > 0 and ¢; > 0 such that

(2.3) c|E|% < Eﬂbaﬂ(x)g“&ﬂ, Zﬁlbaﬁ(x)l <e,

for u-almost every x € 2 and every £e R™.

DEFINITION 24. Let & neR™. For every Borel set E cc Q the
(B, u)-capacity of E in Q relative to @, &, and # is defined by

CBH(E, & n) = j(ADuE, Du")dx + j(B(uE — &), (" —n))du,
Q E
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where, for every e R™, u® is the solution of
uCEHOI(Q,Rm), ug—CeL,f(E,Rm),

2.4) [ (ADu?, Dv)ds + [ (B = ), v)du =0,
Q2 E

Voe H} (2, R™) N L2(E, R™).

The existence and the uniqueness of the solution ° of problem (2.4) fol-
low from the Lax-Milgram Lemma.

REMARK 25. For any y € H} (2, R™) with y — ye LZ(E, R™), we
have

@5) CH*(B, & m = [(ADué, Dy)do + [ (Bt ~ £),(w —n)du.
Q E

To prove this fact it is enough to take «” — y, which belongs to
H}(2,R™N Lf (E, R™), as test function in the equation (2.4) satisfied
by u*. In particular (2.5) gives

CEH(E, & )= j (ADu®, Dy)da,
2

if ¥ = n u-almost everywhere on E.

REMARK 2.6. If u is bounded, then u” e L,f (E, R™), thus we may
take u” as test function in the equation satisfied by %° and we obtain

Cor (B, & m=~[Bw -5, ndu.
E
We shall compare now the capacity C2 # with the u-capacity C* rela-
tive to the Laplacian, introduced in[7], Definition 5.1.

PROPOSITION 2.7. There exist two constants cg > 0 and cy > 0, de-
pending on m, m, and On ¢, Ca, Cg, C7, Such that for every Borel set
EccQ

(2-6) csC/‘(E’)|§|2$Cg'”(E, §9 E)a VEERm1
@) |C3*(E, & m)| < cgCH(E)|E|In| , V& neR™.

PROOF. To prove (2.6), let v* = (u*)* /£, if £* # 0, and v® = 0 oth-
erwise. Then, using the ellipticity of A and B, for every Borel subset
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E cc 2 and for every £ e R™ we obtain

I(ADug, Duf)dw + J(B(uE —E)yub-E)du=
E

Q

> k( j | Dut |2dw + j |u6—5|2dﬂ) >

@ E
= k|§|2a§1( J | Dv* |2 da + J |v® — 1|2d,u),
@ E
where k = min{c,, c¢s}. This implies that
CEH(E, E &)= mkC*(E)|E|%.
Using Hoélder Inequality it can be easily proved that
|C& (B, & m)| < (CE#(E, & E)(CE*E, n, M.

Hence it suffices to prove (2.7) for £ = 7. Let vy be the C*-capacitary po-
tential of £ in Q (see[6], Definition 3.1). Define y* = (1 — vg)£*. By
(2.5), using the boundedness of A and B, Young Inequality, and then
Poincaré Inequality we get

CBu (B, &, E)SM(jIDuEIIDw|dx+jluE—EIIw—EId/t)s
Q E
M £|2 1 2
<5 (egj | Dut |2 de + £J|sz| dx +

+6] |u® — &[2du + % jlw - §|2dﬂ)-
E E

For a suitable choice of ¢ the sum of the terms containing %* can be ma-
jorized by (1/M) CEr(E, E, &), hence there exists a constant K such
that

OB (B, &, ) < K( [ 1Dyltds+ [ 1y - §|2d;4) <
(2}

E

< K|g|2( [ 1Dvs 2 + | Ivglzdﬂ) _KlEPCrE).  m
] E
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PROPOSITION 2.8. For every Kato measure u, the solution u® of
(2.4) corresponding to a Borel subset E of 2 of sufficiently small diam-
eter belongs to L “ (2, R™) and tends to 0 in L~ (2, R™) as the diame-
ter of E tends to zero.

PROOF. Let E be a Borel subset of 2 and let u¢ be the solution of
24). If ute L; (2, R™), then the representation formula (1.3) for the
solution of a linear system of second order partial differential equations
gives

28) ub(x)= - j Gz, ¥) B(y)mt (y) — ) du(y) for ae xe @,
E

where G(x, y) is the Green’s function associated with the operator @
and with the domain Q. In this case the measure B(u® — {)uLE be-
longs to H "}(L2, R™) and (2.8) provides the quasicontinuous represen-
tative of u®.

Let us consider the operator T: L, (2, R™) — L,” (2, R™) defined
by

Tf(x) = — j Gz, y) B(y)(f(y) — O du(y).
E

Since the functions b,4 are bounded, we may apply estimate (1.2) for the
Green’s function and we obtain

ITf = ThlLr @ rm < eserllfi = falliz o rm) sup I |x —y|*~"du(y).
xre E

As yue K* (), the integral in the above formula tends to zero as di-
am (E) tends to zero, so that for sets £ of sufficiently small diameter
the operator T is a contraction, hence it has a unique fixed point w in
L; (2, R™). By (1.3), for fe L, (2, R™) the function w, = Tf is the sol-
ution of the Dirichlet problem

wye HY (2, R™),
Aw;= —-B(f-t)u_E in @,

so that the fixed point w belongs to Hj (2, R™) and is a solution in the
sense of distributions of Aw = — B(w — {)uE, and hence a solution of
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(2.4). Therefore u* = w and we conclude that for sets E of sufficiently

small diameter % e L,;” (22, R™). Then, from (2.8), for the quasicontinu-
ous representative of uc we have

luf(@)] =

[ 6, 1) Bt @) - Dautw) | <
E

< [ 16, 1B |45 () = &ldu(y) <
E

<cserflul = Elloz o, mm sup J |z —y|* "duly),
re
E

which implies that |u®|L=(0, &m < cgllu®| Lz (0 g™ + cglE|, Where the

coefficient cg is given by c3c; sup I | — y|2~ "du and tends to zero as
ref
E
the diameter of E tends to zero. As u‘ e H{ (22, R™) and u vanishes on
sets of capacity zero, |u®| .z o, rm < [|4®|L= (o, rm and from the previ-
ous inequality we obtain that | |fL =@, rm tends to zero as the diame-
ter of E tends to zero. ®

THEOREM 29. If u is a Kato measure then

- C&+ (D, (x), & m)
0—0+ #(D, (%))

= Bx)&, n)

for u-almost every x € Q and for every & neR™.

PrROOF. Let x € Q. Since every u € K* () is bounded, by Remark
2.6 we have

29) CE*(D,@), &n)=— j (B(y)(wmt () — &), n) du(y).
Dy(®)

By the Besicovitch Differentiation Theorem (see, e.g., [9], 1.6.2),

(2.10) lim 1

-_ B d = (B
S, D, j (B(y)E, ) du(y) = (B@)E, n)

for u-almost every x € 2 and for every &, n € R™. The conclusion fol-
lows now from (2.9), (2.10), and Proposition 2.8. =



A capacity method for the study of Dirichlet problems etec. 267

3. y%convergence.

In order to study the asymptotic behaviour of sequences of solutions
of Dirichlet problems in varying domains we introduce the notion of y %-
convergence and show that under certain hypotheses the y9-limit can
be identified.

DEFINITION 3.1. Let (£2,) be a sequence of open subsets of 2, let
u e INy(R), and let B be an m X m matrix of Borel functions satisfying
(2.3). We say that (£;) y 3-converges to (B, u), and we use the notation

Q; -y—%> (B, w), if for every fe H ' (£, R™) the sequence (u;) of the sol-
utions of the problems

u]- € H(} (.Q], Rm),

J(ADuj, Dvydx = (f,v), WYveH}(R;,R™,

Q;

extended by zero on 2\, converges weakly in Hj (2, R™) to the sol-
ution of the relaxed Dirichlet problem

ue Hs (2, R™ NLI(LQ,R™),
31) [ADu, Dv)dz + [(Bu, v)du = (£, v),
Q Q2

Yve Hy (2, R")NLZ(Q,R™).

REMARK 3.2. Let u e Iy(R2), let B be an m X m matrix of Borel
functions satisfying (2.3), and let v and C be defined by

B(x)

WE) = j |Bldu, C(x)= BoT

E

Then the measure v belongs to I, (£2) and the matrix C satisfies (2.3).

Moreover 2, —/2 (B, ) if and only if 2, > (C, v). This shows that,
in Definition 3.1, it is not restrictive to assume |B(x)| = 1 for every x €
e Q. However, it is sometimes useful to consider also matrices B which
do not satisfy this condition.

If m=1 and @ = — 4, we shall always assume that B(x) =1 for

every x € . In this case we use the notation Q; ey u.

The following compactness result is proved in [4].
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THEOREM 3.3. For every sequence (£2;) of open subsets of 2 there
exist a subsequence (£2;,), a measure u € My(L2), and an m X m matrix

of Borel functions satisfying (2.3), such that £, A u and
79
Q Tk > (B N ﬂ)

The localization property of the y%-convergence is also proved
in [4].

THEOREM 34. If Q,-—’i(B, u) then ;N U——y?'—>(B|U,;¢|U) for
every open subset U of Q.

PROPOSITION 3.5. Suppose that 2; —-—>(B u) and ; —>(B i).
If u=p and u() < + o, then B(x) B(x) for u- almost every x e
e Q.

ProoF. Let fe H (2, R™) and let u be the solution of the relaxed
Dirichlet problem (3.1). Then we have

j((B -Bu,v)du=0, VveH}(Q,R"NLXQ,R™.

In particular, since u(2) < + o, this equality holds true for every v e
e Cy’ (2, R™). So, varying v, we obtain that (B — B)u = 0 u-almost
everywhere in Q. Since u(22) < + o, the set of all solutions % of (3.1)
corresponding to different data fe H ™~ 1(.(.? R™) is dense in H} (2, R™).
This implies that B = B u-almost everywhere in Q. ®

For every x e Q2 let do(x) = dist(x, 392).

THEOREM 36. If Q; —> u, with u(Q) < + ©, and Q; -y—?’>(B,y),
then for every x e Q there exists a countable set N(x)c R such
that

Ca(D,(®)\Rj, &, 1) > C&# (D, (), &, 1)
for every o € (0, do(x))\N(x).

PRrROOF. Let us fix xe Q. It is proved in[7] that there exists a
countable set N, (x) c R such that for all ¢ € (0, dg(x))\N; (x)

2\(D,@)\Q,) —> uLD, ().

Then, applying Theorem 3.3 to the sequence 2; = Q\(D,(®)\2;), we
obtain that there exist a subsequence, still denoted by the same index j,
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and an m X m matrix B of Borel functions satisfying (2.3) such
that

8, % (B, uLD,@)).

Now we apply the localization result (Theorem 3.4) to the sequence
(£2;) and we obtain

Up (@) L4 %‘, ()

Y
;N Uo(x) = Hyw and 'QJ' n U@(x) - (Blugu)’ 'ulug(z))’

The same localization result applied to the sequence Qj gives

a
Y Up ()

Q;NUy(@) = 2N Uy (@) —> By s A1y,) »

hence B = B p-almost everywhere in U, (%) by Proposition 3.5. On the
other hand, since u(2) < + o, for every x € Q there exists a countable
set Na(x) c R such that u(3D,(x)) = 0 for all ¢ € (0, dg ())\N2 (). To-
gether with the previous results this implies that

2, B, uLD,(), Voe O, dg@N\WN; @) U Ny ().

Let K; = D, (x)\Q; = 2\ 2; and let u; be the weak solution in 2, of the
problem

u;e H'(2)), uw;=& on 9K, u; =0 on 8%,

(ADw;, Dv)dx =0, VveH}(2;,R™).
0.

J

As usual we extend u; to £ by setting u; = § on K;. Let ¢ € Cy” (2, R™)
with ¢ = § on D, (x), and let z; = u; — @. Then z; is the solution of the
problem

ZJEHOI(Q], Rm),
(ADz;, Dv)dx = (f,v), VveH§(&;, R™),
f‘?]'
where f is the element of H (2, R™) defined by (f,v)= —

- I(AD(p, Dv) dx. By Definition 3.1 the sequence (2;) converges weakly
e
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in H} (2, R™) to the solution z of the problem

e H} (2,R™) N LE(D,(x), R™),

I(ADz, Dv)dz + f (Bz, v)du = (f, v),

Q D, (x)

Yve H} (2, R™) N LZ(D,(x), R™).
This implies that (u;) converges weakly in Hg (2, R™) to the solution ut
of (2.4) corresponding to { =& and E = D,(x). Consequently (ADu;)

converges to ADu® weakly in L2(Q, M™*"). Let us fix now ye
e Cy’ (2, R™) with y =75 on D,(x). Then, by Remarks 2.2 and 2.5,

Ca(D,@\2;, & m) = [(ADw;, Dy)da,
Q

CE#(D,(x), &, ) = j (ADu®, Dy)dz,
Q

and the conclusion follows from the weak convergence of
(ADy;). =

Given a family (f,), > o of real numbers, we say that ess lign fo=aif
Qo

for every neighbourhood V of a there exists a neighbourhood U of 0
such that f, € V for almost every ¢ € U. Let (£2;) be a sequence of open
subsets of £. For every closed ball D,(x) c 2 and for every &, ne R™
we define

a ' (Dg (.’X/'), E) 77) = li}glgf Ca (DQ (x)\gj’ '59 77) ’
a"(D, (x), &, n) = limsup Cq (D, ()\2;, &, 7).

J—o>®

3.2)

We are now in a position to prove the main result of the paper.

THEOREM 3.7. Assume thot there exists a measure Ae K* ()
such that

33) o"(Dy(x), &, &) < AD, ()| &

Jor every closed ball D,(x) c 2 and for every & e R™. Assume, in addi-
tion, that for every xe 2

B4) a'(D,(x), &, n) =a"(D,(x), &, n) for ae oe(0,do(x)).
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Then there exists an m X m matric G(x) of bounded Borel functions
such that

' D), &m) d'(Dy(x), &)
R 2 TR M X B

Jor A-almost every x € 2 and for every &, e R™. Let B and u be defined
by

G(x)

B(x) = m

for A-a.e. xeQ2,

wE) = J |G|dA  for every Borel set E c 2,
E

with the convention that 0/0 is the m X m identity matrix I. Then B
satisfies (2.3) and Q; —-&(B, W,

REMARK 3.8. Theorems 3.3 and 3.6 imply that every sequence (£2;)
has a subsequence which satisfies (8.4). Therefore condition (3.3) is the
only non-trivial hypothesis of Theorem 3.7.

REMARK 3.9. For every closed ball D,(x)c 2 let

B'(D, (x)) = limsup cap (D, (x)\2;) .

J—>t>

If there exists a measure 1 e K* () such that g"(D, (x)) < A(D, (x))
then the estimates in Remark 2.3 imply that (3.3) is satisfied with A re-
placed by c;A. This condition is satisfied, for instance, in the periodic
case with a critical size of the holes (see [5]) and for the sequences of do-
mains considered in [11] and [12].

ProoF OoF THEOREM 3.7. Let us fix x € Q. From the compactness
result (Theorem 3.3) we obtain that there exist a subsequence, still de-
noted by (£2;), and a pair (B, /t) with B satisfying (2.3) and /i € 9, (),

such that Q; AN # and Q; AN (B,7i). Let us fix x € 2. By Theorem
5.15 in[7] for almost every 0 € (0, do(x)) we have cap(D, (x)\2;) —
— C*(D,(x)). The first estimate in Remark 2.3 gives

cs| E|? cap(D, (£)\RQ;) < Cq (D, (x)\Q;, &, &),
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and passing to the limit we get
¢, C7 (D, (x))|&]2 <

< lim Sup Ca(D,(@\Qj, &, &) = a"(Dy(x), &, &) < MD, (x))|&].
Q—)

Applying now Theorem 2.3 in [3] we get that x is absolutely continuous
with respect to 4 and that the density (du /dA)(x) is bounded, hence
ne K*(Q). Let

G(x)

_ B & N
G@) =B@) 5r @),  B@ = qeoor,

wE) = [|¢ldi=[|B|da,
E E

with the convention that 0/0 is the m X m identity matrix I. Then
B(x)

| B(x)|

_ i L, g OR
B(x) = if d/l(x)>0’ and B(x)=1, if 7 (x) =

As B satisfies (2.3) fi-almost everywhere, B satisfies (2.3) u-almost
everywhere. Since Q; i(ﬁ,ﬁ) and B(x) = B(x)/| B(x)| #-almost

everywhere in Q, by Remark 3.2 we have also 2, —i(B u).

Let us prove now (3.5). Applying Theorem 36 we obtain that
Ca(Dy(£)\RQj, &, 1) — CE* (D, (x), &, 1) for almost every o € (0, dg (x)).
Thus

a'(D,(x), & n) = a"(D, (%), &, 1) = CE* (D, (x), & 1)

for almost every ¢ e (0, do(x)) and for every &, n € R™. We may now
apply Theorem 2.9 and the Besicovitch Differentiation Theorem to
obtain

sty L L@ &M _ L CED@), &) ED@)
=0 AD, () =0 AD,@) o=t AD,(®)

= (B@)& m ai @) = (G@E )

for every & neR™ and for A-almost every xe £ such that
(dii /dA)(x) > 0. Since CBF(D,(x), & 1) < cgC*(D, ()| &| |n] <



A capacity method for the study of Dirichlet problems ete. 273
< cou (D, (®)|&E]|n| by (2.7), we obtain that

. a' (D,(x), & n)
esslim ——— =

s 1i 2D, @) 0=(G(=x)&, n)

for A-almost every « € 2 such that (dz /dA)(x) = 0. This concludes the
proof of (3.5). =

4. The symmetric case.

If the operator @ is symmetrie, then the d-capacity can be obtained
a

by solving a minimum problem. If Q; —y‘i>(B, w), with u(Q) < + o,
then the matrix B is symmetric (see [8], Corollary 5.4). In this case we
have

a (B, & &)=

- min [j(ADuf,Duf>dx+ [ Bt - &)t - £)du

weHi (2, R™) g g

for every measure u e 9, (), for every £ e R™, and for every Borel set
EccQ.

REMARK 4.1. Assume that @ and B are symmetric. If 4, < u,, then
CEm(E, & E)<CBr(E, &, E) for every Borel set E cc 2 and every
EeR™.

This monotonicity property of the capacity with respect to the mea-
sure allows us to extend the derivation theorem to any bounded mea-
sure in Iy ().

THEOREM 4.2. Assume that @ is symmetric. Let u, v e Iy(RQ),
with v(2) < + o, and let B be an m X m symmetric matrix of Borel
Sfunctions satisfying (2.3). For every x e Q and for every £Ee R™ let

@41 flx, &)=

B, u
— hmmf CO. (DQ (x)y Ey 5)

0—0 WD, () (with the convention that 0/0=1).
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Assume that there exists £ e R™\{0} such that

42) fw,&)<+o VYre® and jf(x,g>dv<+oo,
Q

Then u(RQ)< + oo, u is absolutely continuous with respect to v,
and

flz, &) = (B(x) &, E)%(x) for v—ae v and VEeR™.

Moreover, the liminf in the definition of f is a limit for v-almost every
xe 2 and for every Ee R™.

Proor. For every x e Q2 let

(D, @)
fi(@) = liminf WD, @)

The estimates in Proposition 2.7 give
4.3) cs|&|2fi(x) S flx, &) < ¢ EI2fi (), Vee R, VEeR™,

thus f; € L} () and f; (x) < + » for every x € 2. Then from Proposition
2.3 in[3] we deduce that u(2) < + « and that u =fiv, ie, w(E) =

= J fidv for every Borel set E ¢ 2. By Proposition 2.5 of [2] there exist a

E
measure 4 € K*(Q) and a Borel function g: Q —[0, + «] such that
u = gA. For every ke N let g, (x) = min{g(x), k}. Since g;A belongs to
K* (), Theorem 2.9 implies the existence of a subset E, of 2 such that

fgkdl =0 and

E

o OB (D), &, 8)
e—0 (95 A)D, (x))
Since 4 + v is a bounded measure on £, by the Besicovitch Differentia-
tion Theorem there exists a set E, c 2 such that (1 + v)(F,) =0 and

=(B(®)E, &), Vee Q\E,, VEcR™, VkeN.

(gD, @) _ i
QI—IPO (l + 'V)(Dg(x)) h gk(x) d(,{ + v) (x) <+® ’ V{L‘ € -Q\Ez, Vk EN,
D, (@) v

Im G 0D, @)  dA+v) @<1, Voe\E,.
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By (4.2) and (4.3) we have fi(x) < + «© and f(x, £) < + ® for every
xe R and forevery Ee R™. Let E=E,UE,. For x e Q\F and £ R™
we have

gr (@)(B@)E, E) (%) =

d().+ V)

(95 A)D, (x)) lim CEu* (D, (x), &, £) _
"o A+ v)(D, () e~0 (g, A)D, (x))

. (D, (), £, 8) _
= lim
e—=0 (A +v)(D,(®))

.. C@*(D,(), & &) w(D, (%))
SEORf ——0.@) e Grn@,@) &S d(/l WG @
So, for every Borel set F'c Q\E and for every £ e R™ we have
J[gk (x)(B(x) &, &) d(l + ) (x)] d(A +v) <
F

dv
st[ﬂx, 5 3oy @[dh +v),

hence

[ge@)B@ g, e dr < [ fw, £)dv
F F

for every Borel set F c Q. Passing now to the limit as k — + o, by the
monotone convergence theorem we have

[B@E &)du = [ 9B &, &) di< [fa, £)dv
F F F

for every Borel set F'c 2 and every £ e R™. Thus, f; (x)(B(x)E&, &) <
< f(x, &) for v-almost every x e 2 and for every £e R™. Since

B.u(D,(x), &, E) < j BW)E, O fi (y)dv(y),

Dy (x)

by the Besicovitch Differentiation Theorem we obtain f(x, &) <
< fi (x)(B(x) &, &) for v-almost every x € L2 and for every every £ e R™. So
we proved that f(x, &) = fi (x)(B(x) &, &) for every £ e R™ and v-almost
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every x € Q. Moreover, by the Besicovitch Differentiation Theorem for
v-almost every x € 2 and for every £ e R™ we have

CEr (D, (@), &, 8) _ B.4(D, (@), & E)
< lim
WD, (x)) DS T, @)

f(z, &) = liminf
0—0

< lim sup

1 _
mswp Lo J(B(y)g, E) fi(y)dv(y) =fi(x)B)E, &),

D, (x)

and this completes the proof. =

The hypotheses in Theorem 3.7 can be weakened by using the mono-
tonicity of the d-capacity and the previous result.

THEOREM 4.3. Assume that A is symmetric and that there exists a
bounded Radon measure A on 2 such that

a"(D, (%), &, &) < D, (2))|&|?

Jfor every closed ball D,(x) c 2 and for every £ e R™. Assume, in addi-
tion, that for every x € Q there exists a dense set D c (0, do(x)) such
that

44) a'(D,(x), & &) =a'(D,(®), &, &), VoeD, VEeR™.

Then there exists an m X m symmetric matric G(x) of bounded Borel
Sfunctions such that

. a'(Dy(x), &, &) . a'(D,(x), & &)
esslim ——— =esslim ———

o0 AD,@)  em0  AD,@) = (G()&, &)

for A-almost every x € Q and for every Ee R™. Let B and u be defined
by

Jor A—ae xe®,

wk) = J |G|dA  for every Borel set EcQ,
E

with the comvention that 0/0 is the m X m identity matrixz I. Then
4eIMo(2), B satisfies 2.3), and Q; —> (B, u).

Proor. Since Cq(-,&, &) is an increasing set function,
a'(D,(x), &, &) and a"(D, (x), £, £) are increasing functions of o, hence
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(4.4) implies that a’ (D, (x), &, &) = a"(D, (), &, &) for almost every ¢ €
€(0,dy(x)). As in the proof of Theorem 8.7, we obtain that

Q; —Y?;(E, W), with u absolutely continuous with respect to A. Since
(du/dA)(x) is bounded, we have ()< +o. Let Gx)=

= B(x)(d i /dA)(x). Since u(E) = j |G|dA = j |B|dj, and i € 9, (2), we

have u € 9, (£2). The conelusion follows now by repeating the same ar-
guments as in Theorem 3.7, the only difference being that now we apply
Theorem 4.2 instead of Theorem 2.9. =
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