RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIANNI DAL MASO RODICA TOADER

A capacity method for the study of Dirichlet problems for elliptic systems in varying domains

Rendiconti del Seminario Matematico della Università di Padova, tome 96 (1996), p. 257-277

http://www.numdam.org/item?id=RSMUP_1996_96_257_0

© Rendiconti del Seminario Matematico della Università di Padova, 1996, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Capacity Method for the Study of Dirichlet Problems for Elliptic Systems in Varying Domains.

GIANNI DAL MASO - RODICA TOADER (*)

ABSTRACT - The asymptotic behaviour of solutions of second order linear elliptic systems with Dirichlet boundary conditions on varying domains is studied by means of a suitable notion of capacity.

Introduction.

Let Ω be a bounded open subset of \mathbb{R}^n and let $\Omega: H_0^1(\Omega, \mathbb{R}^m) \to H^{-1}(\Omega, \mathbb{R}^m)$ be an elliptic operator of the form

$$\langle \mathfrak{A}u, v \rangle = \int_{\Omega} (ADu, Dv) dx,$$

where A(x) is a fourth order tensor and (\cdot, \cdot) denotes the scalar product between matrices. Given a sequence (Ω_j) of open subsets of Ω , we consider for every $f \in H^{-1}(\Omega, \mathbf{R}^m)$ the sequence (u_j) of the solutions of the Dirichlet problems

(0.1)
$$\begin{cases} u_j \in H_0^1(\Omega_j, \mathbf{R}^m), \\ \alpha u_j = f & \text{in } \Omega_j, \end{cases}$$

extended to Ω by setting $u_j = 0$ on $\Omega \setminus \Omega_j$. We want to describe the asymptotic behaviour of (u_j) as $j \to \infty$. As in the scalar case, a relaxation phenomenon may occur. Namely, if (u_j) converges weakly in $H_0^1(\Omega, \mathbb{R}^m)$ to some function u, then there exist an $m \times m$ matrix B(x),

(*) Indirizzo degli AA.: S.I.S.S.A., Via Beirut 4, 34013 Trieste, Italy.

with |B(x)| = 1, and a measure μ , not charging polar sets, such that u is the solution of the relaxed Dirichlet problem

$$\begin{cases} u \in H_0^1(\Omega, \boldsymbol{R}^m) \cap L_{\mu}^2(\Omega, \boldsymbol{R}^m), \\ \int\limits_{\Omega} (ADu, Dv) \, dx + \int\limits_{\Omega} (Bu, v) \, d\mu = \langle f, v \rangle, \\ \forall v \in H_0^1(\Omega, \boldsymbol{R}^m) \cap L_{\mu}^2(\Omega, \boldsymbol{R}^m), \end{cases}$$

where, in the second integral, (\cdot, \cdot) denotes the scalar product in \mathbb{R}^m , while $\langle \cdot, \cdot \rangle$ is the duality pairing between $H^{-1}(\Omega, \mathbb{R}^m)$ and $H_0^1(\Omega, \mathbb{R}^m)$. Compactness and localization results for the relaxed Dirichlet problems are established in [8] for symmetric A and B, and in [4] in the general case.

The problem we consider in this paper is the identification of the pair (B,μ) which appears in the limit problem (0.2). To this aim we introduce a suitable notion of capacity. If K is a compact subset of Ω and $\xi, \eta \in \mathbf{R}^m$, then the Ω -capacity of K in Ω relative to ξ and η is defined as

$$C_{\mathfrak{C}}(K, \, \xi, \, \eta) = \int\limits_{O \setminus K} (ADu^{\,\xi}, \, Du^{\,\eta}) \, dx \,,$$

where, for every $\zeta \in \mathbb{R}^m$, u^{ζ} is the weak solution in $\Omega \backslash K$ of the Dirichlet problem

$$\begin{cases} u^{\zeta} \in H^{1}(\Omega \backslash K, \mathbf{R}^{m}), & u^{\zeta} = \zeta \text{ on } \partial K, & u^{\zeta} = 0 \text{ on } \partial \Omega, \\ \int\limits_{\Omega \backslash K} (ADu^{\zeta}, Dv) dx = 0, & \forall v \in H^{1}_{0}(\Omega \backslash K, \mathbf{R}^{m}). \end{cases}$$

For every $x \in \mathbb{R}^n$ let $D_{\varrho}(x)$ be the closed ball with centre x and radius ϱ . Assume that the limit

$$\lim_{j \to +\infty} C_{\mathrm{C}}(D_{\varrho}(x) \backslash \Omega_{j}, \, \xi, \, \eta) = \alpha(D_{\varrho}(x), \, \xi, \, \eta)$$

exists for every $x \in \Omega$ and for almost every $\varrho > 0$ such that $D_{\varrho}(x) \subset \Omega$. Our main result, Theorem 3.7, shows that, if α can be majorized by a Kato measure λ (Definition 1.1), then for λ -almost every $x \in \Omega$ there exists an $m \times m$ matrix G(x) such that

$$\operatorname{ess\,lim}_{\varrho \, \rightarrow \, 0} \, \frac{\alpha(D_{\varrho}(x), \, \xi, \, \eta)}{\lambda(D_{\varrho}(x))} = (G(x) \, \xi, \, \eta) \, , \qquad \forall \xi, \ \eta \in I\!\!R^m \, .$$

Moreover, for every $f \in H^{-1}(\Omega, \mathbf{R}^m)$, the sequence (u_j) of the solutions of (0.1) converges weakly in $H_0^1(\Omega, \mathbf{R}^m)$ to the solution u of (0.2) with B(x) = (G(x))/|G(x)| and $\mu(E) = \int\limits_E |G| d\lambda$. If $\mathfrak A$ is symmetric, the same result (Theorem 4.3) holds whenever λ is a bounded measure.

1. - Notation and preliminaries.

Let $M^{m \times n}$ be the space of all real $m \times n$ matrices $\xi = (\xi_j^a)$ endowed with the scalar product

$$(\zeta,\,\xi)=\sum_{\alpha=1}^m\sum_{j=1}^n\zeta_j^\alpha\,\xi_j^\alpha$$

and with the corresponding norm $|\xi|^2 = (\xi, \xi)$. As usual, \mathbf{R}^m is identified with $\mathbf{M}^{m \times 1}$. Let Ω be a bounded open subset of \mathbf{R}^n , $n \geq 3$. The case n=2 can be treated in a similar way by using the logarithmic potentials. We assume that the boundary $\partial \Omega$ of Ω is of class C^1 . The Sobolev space $H^1(\Omega, \mathbf{R}^m)$ is defined as the space of all functions u in $L^2(\Omega, \mathbf{R}^m)$ whose first order distribution derivatives $D_j u$ belong to $L^2(\Omega, \mathbf{R}^m)$, endowed with the norm

$$||u||_{H^1(\Omega, \mathbb{R}^m)}^2 = \int_{\Omega} |Du|^2 dx + \int_{\Omega} |u|^2 dx,$$

where $Du = (D_j u^a)$ is the Jacobian matrix of u. The space $H_0^1(\Omega, \mathbf{R}^m)$ is the closure of $C_0^1(\Omega, \mathbf{R}^m)$ in $H^1(\Omega, \mathbf{R}^m)$, and $H^{-1}(\Omega, \mathbf{R}^m)$ is the dual of $H_0^1(\Omega, \mathbf{R}^m)$. The symbol \mathbf{R}^m will be omitted when m = 1.

For every subset E of Ω the (harmonic) capacity of E with respect to Ω is defined by $\operatorname{cap}(E) = \inf \int\limits_{\Omega} |Du|^2 dx$, where the infimum is taken over all functions $u \in H^1_0(\Omega)$ such that $u \ge 1$ almost everywhere in a neighbourhood of E, with the usual convention $\inf \emptyset = +\infty$.

A function $u \colon \Omega \to \mathbf{R}^m$ is said to be quasicontinuous if for every $\varepsilon > 0$ there exists a set $E \subset \Omega$, with $\operatorname{cap}(E) \le \varepsilon$, such that the restriction of u to $\Omega \backslash E$ is continuous. We recall that for every $u \in H^1_0(\Omega, \mathbf{R}^m)$ there exists a quasicontinuous function \widetilde{u} , unique up to sets of capacity zero, such that $u = \widetilde{u}$ almost everywhere in Ω . We shall always identify u with \widetilde{u} .

By a Borel measure on Ω we mean a positive, countably additive set function with values in $[0, +\infty]$ defined on the σ -field of all Borel subsets of Ω ; by a Radon measure on Ω we mean a Borel measure which is

finite on every compact subset of Ω . By $\mathcal{M}_0(\Omega)$ we denote the set of all positive Borel measures μ on Ω such that $\mu(E)=0$ for every Borel set $E \in \Omega$ with $\operatorname{cap}(E)=0$. If E is μ -measurable in Ω , we define the Borel measure $\mu \sqsubseteq E$ by $(\mu \sqsubseteq E)(B)=\mu(E\cap B)$ for every Borel set $B \in \Omega$, while μ_{\mid_E} is the measure on E given by $\mu_{\mid_E}(B)=\mu(B)$ for every Borel subset B of E.

For every $x \in \mathbb{R}^n$ and $\varrho > 0$ we set $U_\varrho(x) = \{y \in \mathbb{R}^n \colon |x - y| < \varrho\}$ and $D_\varrho(x) = \overline{U}_\varrho(x)$. A special class of measures we shall frequently use is the Kato space.

DEFINITION 1.1. The Kato space $K^+(\Omega)$ is the cone of all positive Radon measures μ on Ω such that

$$\lim_{\varrho \to 0^+} \sup_{x \in \Omega} \int_{\Omega \cap U_\varrho(x)} |y - x|^{2-n} d\mu(y) = 0.$$

We recall that every measure in $K^+(\Omega)$ is bounded and belongs to $H^{-1}(\Omega)$. For more details about Kato measures we refer to [10] and [6].

Let $A(x)=(a_{\alpha\beta}^{ij}(x))$, with $1 \le i, j \le n$ and $1 \le \alpha, \beta \le m$, be a family of functions in $C(\bar{\Omega})$ satisfying the following conditions: there exist two constants $c_1 > 0$ and $c_2 > 0$ such that

$$(1.1) \qquad \begin{cases} c_1 |\xi|^2 \leq \sum_{i,j} \sum_{\alpha,\beta} \alpha^{ij}_{\alpha\beta}(x) \, \xi^{\beta}_j \, \xi^{\alpha}_i \,, \qquad \forall x \in \Omega, \ \forall \xi \in \mathbf{M}^{m \times n} \,, \\ \sum_{i,j} \sum_{\alpha,\beta} |\alpha^{ij}_{\alpha\beta}(x)| \leq c_2 \,, \qquad \forall x \in \Omega \,, \end{cases}$$

and let Ω : $H^1_0(\Omega, \mathbf{R}^m) \to H^{-1}(\Omega, \mathbf{R}^m)$ be the elliptic operator defined by

$$\langle \Omega u, v \rangle = \int_{\Omega} (ADu, Dv) dx,$$

where ADu is the $m \times n$ matrix defined by

$$(ADu)_i^a = \sum_j \sum_\beta a_{\alpha\beta}^{ij} D_j u^\beta$$
.

For fixed $x \in \Omega$ the Green's function $G(x, y) = G^{x}(y)$ is the solution

of the problem

$$\left\{ \begin{array}{l} \mathfrak{C}^*\,G^x = \delta_x I & \text{in } \Omega\,, \\[0.2cm] G^x \in H_0^{1,\,p}(\Omega,\,\pmb{M}^{m\times m}), & 1$$

where \mathcal{C}^* is the adjoint operator of \mathcal{C} , δ_x is the Dirac distribution at x, and I is the $m \times m$ identity matrix. Since the coefficients are continuous the existence of the Green's function can be obtained by a classical duality argument. It is well-known that, as the boundary of Ω is of class C^1 , there exists a constant $c_3 > 0$ such that

$$(1.2) |G(x, y)| \le c_3 |x - y|^{2-n}, \forall x, y \in \Omega.$$

This estimate can be proved by using classical regularity results, as in [1]. For any \mathbb{R}^m -valued bounded Radon measure μ , the solution u of the problem

$$\left\{ \begin{array}{ll} \mathfrak{C} u = \mu & \text{in } \Omega \,, \\ u \in H_0^{1,\,p}(\Omega, \boldsymbol{R}^m), & 1$$

can be represented for almost every $x \in \Omega$ as

(1.3)
$$u(x) = \int_{O} G(x, y) d\mu(y).$$

If, in addition, $\mu \in H^{-1}(\Omega, \mathbf{R}^m)$, then this formula provides the quasicontinuous representative of the solution u.

2. Definition and properties of the μ -capacity.

We introduce now two notions of capacity associated with the operator $\ensuremath{\mathfrak{C}}.$

DEFINITION 2.1. Let $\xi, \eta \in \mathbb{R}^m$ and let K be a compact subset of Ω . The capacity of K in Ω relative to the operator Ω and to the vectors ξ and η is defined by

(2.1)
$$C_{\mathfrak{A}}(K,\,\xi,\,\eta) = \int\limits_{\Omega\setminus K} (ADu^{\,\xi},\,Du^{\,\eta})\,dx\,,$$

where, for every $\zeta \in \mathbb{R}^m$, u^{ζ} is the weak solution in $\Omega \setminus K$ of the Dirichlet

problem

$$(2.2) \begin{cases} u^{\zeta} \in H^{1}(\Omega \backslash K, \mathbf{R}^{m}), & u^{\zeta} = \zeta \text{ on } \partial K, & u^{\zeta} = 0 \text{ on } \partial \Omega, \\ \int\limits_{\Omega \backslash K} (ADu^{\zeta}, Dv) \, dx = 0, & \forall v \in H^{1}_{0}(\Omega \backslash K, \mathbf{R}^{m}). \end{cases}$$

We extend u^{ζ} to Ω by setting $u^{\zeta} = \zeta$ in K. In (2.2) the boundary conditions are understood in the following sense: for every $\varphi \in C_0^{\infty}(\Omega, \mathbf{R}^m)$ with $\varphi = \zeta$ on K we have $u^{\zeta} - \varphi \in H_0^1(\Omega \setminus K, \mathbf{R}^m)$.

Remark 2.2. For every $\psi \in C_0^\infty(\Omega, \mathbf{R}^m)$ with $\psi = \eta$ on K we have

$$C_{\mathfrak{A}}(K, \xi, \eta) = \int_{\Omega} (ADu^{\xi}, D\psi) dx.$$

This can be easily seen by taking $u^{\eta} - \psi$, which belongs to $H_0^1(\Omega \setminus K, \mathbb{R}^m)$, as test function in the equation (2.2) satisfied by u^{ξ} .

REMARK 2.3. The function $C_a(K, \xi, \eta)$ is bilinear with respect to ξ and η . Moreover there exist two constants $c_4 > 0$ and $c_5 > 0$, depending on n, m, and on the constants c_1 and c_2 which appear in (1.1), such that

$$C_{\alpha}(K, \xi, \xi) \ge c_4 \operatorname{cap}(K) |\xi|^2$$
 and $|C_{\alpha}(K, \xi, \eta)| \le c_5 \operatorname{cap}(K) |\xi| |\eta|$,

for every compact set $K \subset \Omega$ and for every ξ , $\eta \in \mathbb{R}^m$. For the proof see Proposition 2.7.

Let $\mu \in \mathcal{M}_0(\Omega)$ and let $B = (b_{\alpha\beta})$ be an $m \times m$ matrix of Borel functions satisfying the following conditions: there exist two constants $c_6 > 0$ and $c_7 > 0$ such that

$$(2.3) c_6 |\xi|^2 \leq \sum_{\alpha,\beta} b_{\alpha\beta}(x) \xi^{\alpha} \xi^{\beta}, \sum_{\alpha,\beta} |b_{\alpha\beta}(x)| \leq c_7,$$

for μ -almost every $x \in \Omega$ and every $\xi \in \mathbb{R}^m$.

DEFINITION 2.4. Let ξ , $\eta \in \mathbb{R}^m$. For every Borel set $E \subset \Omega$ the (B, μ) -capacity of E in Ω relative to Ω , ξ , and η is defined by

$$C_{\rm cl}^{B,\,\mu}(E,\,\xi,\,\eta) = \int_{C} (ADu^{\,\xi},\,Du^{\,\eta})\,dx + \int_{E} (B(u^{\,\xi}-\xi),(u^{\,\eta}-\eta))\,d\mu\,,$$

where, for every $\zeta \in \mathbb{R}^m$, u^{ζ} is the solution of

$$\begin{cases} u^{\zeta} \in H_0^1(\Omega, \mathbf{R}^m), & u^{\zeta} - \zeta \in L_{\mu}^2(E, \mathbf{R}^m), \\ \int_{\Omega} (ADu^{\zeta}, Dv) \, dx + \int_{E} (B(u^{\zeta} - \zeta), v) \, d\mu = 0, \\ \forall v \in H_0^1(\Omega, \mathbf{R}^m) \cap L_{\mu}^2(E, \mathbf{R}^m). \end{cases}$$

The existence and the uniqueness of the solution $u^{\,\zeta}$ of problem (2.4) follow from the Lax-Milgram Lemma.

REMARK 2.5. For any $\psi \in H^1_0(\Omega, \mathbf{R}^m)$ with $\psi - \eta \in L^2_\mu(E, \mathbf{R}^m)$, we have

(2.5)
$$C_a^{B,\mu}(E,\xi,\eta) = \int_O (ADu^{\xi},D\psi) dx + \int_E (B(u^{\xi}-\xi),(\psi-\eta)) d\mu$$
.

To prove this fact it is enough to take $u^{\eta} - \psi$, which belongs to $H_0^1(\Omega, \mathbf{R}^m) \cap L_{\mu}^2(E, \mathbf{R}^m)$, as test function in the equation (2.4) satisfied by u^{ξ} . In particular (2.5) gives

$$C_{\mathfrak{A}}^{B,\,\mu}(E,\,\xi,\,\eta) = \int_{\Omega} (ADu^{\xi},\,D\psi)\,dx\,,$$

if $\psi = \eta$ μ -almost everywhere on E.

REMARK 2.6. If μ is bounded, then $u^{\eta} \in L^2_{\mu}(E, \mathbf{R}^m)$, thus we may take u^{η} as test function in the equation satisfied by u^{ξ} and we obtain

$$C_a^{B,\,\mu}(E,\,\xi,\,\eta) = -\int\limits_E \left(B(u^{\,\xi}-\xi),\,\eta\right)d\mu\,.$$

We shall compare now the capacity $C_a^{B,\mu}$ with the μ -capacity C^{μ} relative to the Laplacian, introduced in [7], Definition 5.1.

PROPOSITION 2.7. There exist two constants $c_8 > 0$ and $c_9 > 0$, depending on n, m, and on c_1 , c_2 , c_6 , c_7 , such that for every Borel set $E \subset \Omega$

(2.6)
$$c_8 C^{\mu}(E) |\xi|^2 \leq C_{\mathfrak{A}}^{B,\mu}(E,\xi,\xi), \quad \forall \xi \in \mathbf{R}^m,$$

$$(2.7) |C_0^{B,\mu}(E,\xi,\eta)| \leq c_9 C^{\mu}(E)|\xi||\eta|, \forall \xi, \eta \in \mathbf{R}^m.$$

PROOF. To prove (2.6), let $v^{\alpha} = (u^{\xi})^{\alpha}/\xi^{\alpha}$, if $\xi^{\alpha} \neq 0$, and $v^{\alpha} = 0$ otherwise. Then, using the ellipticity of A and B, for every Borel subset

 $E \subset \Omega$ and for every $\xi \in \mathbb{R}^m$ we obtain

$$\begin{split} \int\limits_{\Omega} (ADu^{\,\xi},\,Du^{\,\xi})\,dx + \int\limits_{E} (B(u^{\,\xi}-\xi),\,u^{\,\xi}-\xi)\,d\mu \geqslant \\ \geqslant k \left(\int\limits_{\Omega} |Du^{\,\xi}|^{\,2}\,dx + \int\limits_{E} |u^{\,\xi}-\xi|^{\,2}\,d\mu\right) \geqslant \\ \geqslant k |\,\xi\,|^{\,2} \sum_{\alpha\,=\,1}^{m} \left(\int\limits_{\Omega} |Dv^{\,\alpha}|^{\,2}\,dx + \int\limits_{E} |v^{\,\alpha}-1|^{\,2}\,d\mu\right), \end{split}$$

where $k = \min\{c_1, c_6\}$. This implies that

$$C_{\mathfrak{A}}^{B,\,\mu}(E,\,\xi,\,\xi) \geq mkC^{\mu}(E)|\xi|^2$$
.

Using Hölder Inequality it can be easily proved that

$$\left| C_{\mathrm{d}}^{B,\,\mu}(E,\,\xi,\,\eta) \right| \leq (C_{\mathrm{d}}^{B,\,\mu}(E,\,\xi,\,\xi))^{1/2} (C_{\mathrm{d}}^{B,\,\mu}(E,\,\eta,\,\eta))^{1/2} \,.$$

Hence it suffices to prove (2.7) for $\xi = \eta$. Let v_E be the C^{μ} -capacitary potential of E in Ω (see [6], Definition 3.1). Define $\psi^{\alpha} = (1 - v_E)\xi^{\alpha}$. By (2.5), using the boundedness of A and B, Young Inequality, and then Poincaré Inequality we get

$$\begin{split} C^{B,\,\mu}_{\mathrm{cl}}(E,\,\xi,\,\xi) &\leqslant M \Biggl(\int\limits_{\varOmega} |Du^{\,\xi}| \, |D\psi| dx + \int\limits_{E} |u^{\,\xi} - \xi| \, |\psi - \xi| d\mu \Biggr) \leqslant \\ &\leqslant \frac{M}{2} \Biggl(\varepsilon \int\limits_{\varOmega} |Du^{\,\xi}|^2 \, dx + \frac{1}{\varepsilon} \int\limits_{\varOmega} |D\psi|^2 \, dx + \\ &+ \varepsilon \int\limits_{E} |u^{\,\xi} - \xi|^2 \, d\mu + \frac{1}{\varepsilon} \int\limits_{E} |\psi - \xi|^2 \, d\mu \Biggr). \end{split}$$

For a suitable choice of ε the sum of the terms containing u^{ξ} can be majorized by $(1/M) C_{\mathrm{cl}}^{B,\mu}(E,\xi,\xi)$, hence there exists a constant K such that

$$\begin{split} C^{B,\,\mu}_{\mathrm{cl}}(E,\,\xi,\,\xi) & \leq K \Biggl(\int\limits_{\Omega} |D\psi|^2 \, dx + \int\limits_{E} |\psi - \xi|^2 \, d\mu \Biggr) \leq \\ & \leq K |\xi|^2 \Biggl(\int\limits_{\Omega} |Dv_E|^2 \, dx + \int\limits_{E} |v_E|^2 \, d\mu \Biggr) = K |\xi|^2 \, C^{\mu}(E) \, . \end{split}$$

PROPOSITION 2.8. For every Kato measure μ , the solution u^{ζ} of (2.4) corresponding to a Borel subset E of Ω of sufficiently small diameter belongs to $L^{\infty}(\Omega, \mathbf{R}^m)$ and tends to 0 in $L^{\infty}(\Omega, \mathbf{R}^m)$ as the diameter of E tends to zero.

PROOF. Let E be a Borel subset of Ω and let u^{ζ} be the solution of (2.4). If $u^{\zeta} \in L_{\mu}^{\infty}(\Omega, \mathbf{R}^m)$, then the representation formula (1.3) for the solution of a linear system of second order partial differential equations gives

$$(2.8) \quad u^{\zeta}(x) = -\int\limits_E G(x, y) B(y) (u^{\zeta}(y) - \zeta) \, d\mu(y) \quad \text{ for a.e. } x \in \Omega \,,$$

where G(x, y) is the Green's function associated with the operator \mathfrak{A} and with the domain Ω . In this case the measure $B(u^{\xi} - \xi)\mu \perp E$ belongs to $H^{-1}(\Omega, \mathbb{R}^m)$ and (2.8) provides the quasicontinuous representative of u^{ξ} .

Let us consider the operator $T\colon L_{\mu}^{\infty}\left(\Omega,\mathbf{R}^{m}\right)\to L_{\mu}^{\infty}\left(\Omega,\mathbf{R}^{m}\right)$ defined by

$$Tf(x) = -\int_E G(x, y)B(y)(f(y) - \zeta) d\mu(y).$$

Since the functions $b_{\alpha\beta}$ are bounded, we may apply estimate (1.2) for the Green's function and we obtain

$$||Tf_1 - Tf_2||_{L^{\infty}_{\mu}(\Omega, \mathbb{R}^m)} \le c_3 c_7 ||f_1 - f_2||_{L^{\infty}_{\mu}(\Omega, \mathbb{R}^m)} \sup_{x \in \Omega} \int_E |x - y|^{2-n} d\mu(y).$$

As $\mu \in K^+(\Omega)$, the integral in the above formula tends to zero as diam(E) tends to zero, so that for sets E of sufficiently small diameter the operator T is a contraction, hence it has a unique fixed point w in $L_{\mu}^{\infty}(\Omega, \mathbf{R}^m)$. By (1.3), for $f \in L_{\mu}^{\infty}(\Omega, \mathbf{R}^m)$ the function $w_f = Tf$ is the solution of the Dirichlet problem

$$\left\{ \begin{array}{l} w_f\!\in\!H^1_0(\varOmega,\boldsymbol{R}^m)\,,\\ Aw_f\!=\!-B(f\!-\!\zeta)\mu\! \perp\!\! E \quad \text{ in } \varOmega\,, \end{array} \right.$$

so that the fixed point w belongs to $H_0^1(\Omega, \mathbb{R}^m)$ and is a solution in the sense of distributions of $Aw = -B(w - \zeta)\mu \sqcup E$, and hence a solution of

(2.4). Therefore $u^{\zeta} = w$ and we conclude that for sets E of sufficiently small diameter $u^{\zeta} \in L^{\infty}_{\mu}(\Omega, \mathbf{R}^m)$. Then, from (2.8), for the quasicontinuous representative of u^{ζ} we have

$$\begin{split} |u^{\zeta}(x)| &= \left| \int_{E} G(x,y) B(y) (u^{\zeta}(y) - \zeta) d\mu(y) \right| \leq \\ &\leq \int_{E} |G(x,y)| \, |B(y)| \, |u^{\zeta}(y) - \zeta| d\mu(y) \leq \\ &\leq c_{3} c_{7} \|u^{\zeta} - \zeta\|_{L_{\mu}^{\infty}(\Omega, \mathbf{R}^{m})} \sup_{x \in \Omega} \int_{E} |x - y|^{2 - n} d\mu(y), \end{split}$$

which implies that $\|u^{\zeta}\|_{L^{\infty}(\Omega, \mathbf{R}^m)} \leq c_E \|u^{\zeta}\|_{L^{\infty}_{\mu}(\Omega, \mathbf{R}^m)} + c_E |\zeta|$, where the coefficient c_E is given by $c_3 c_7 \sup_{x \in \Omega} \int\limits_E |x-y|^{2-n} d\mu$ and tends to zero as the diameter of E tends to zero. As $u^{\zeta} \in H^1_0(\Omega, \mathbf{R}^m)$ and μ vanishes on sets of capacity zero, $\|u^{\zeta}\|_{L^{\infty}_{\mu}(\Omega, \mathbf{R}^m)} \leq \|u^{\zeta}\|_{L^{\infty}(\Omega, \mathbf{R}^m)}$ and from the previous inequality we obtain that $\|u^{\zeta}\|_{L^{\infty}(\Omega, \mathbf{R}^m)}$ tends to zero as the diameter of E tends to zero.

Theorem 2.9. If μ is a Kato measure then

$$\lim_{\varrho \to 0+} \frac{C_{\mathrm{d}}^{B,\,\mu}(D_{\varrho}(x),\,\xi,\,\eta)}{\mu(D_{\varrho}(x))} = (B(x)\,\xi,\,\eta)$$

for μ -almost every $x \in \Omega$ and for every ξ , $\eta \in \mathbb{R}^m$.

PROOF. Let $x \in \Omega$. Since every $\mu \in K^+(\Omega)$ is bounded, by Remark 2.6 we have

(2.9)
$$C_{\mathfrak{A}}^{B,\,\mu}(D_{\varrho}(x),\,\xi,\,\eta) = -\int\limits_{D_{\varrho}(x)} \big(B(y)(u^{\xi}(y)-\xi),\,\eta\big)\,d\mu(y).$$

By the Besicovitch Differentiation Theorem (see, e.g., [9], 1.6.2),

(2.10)
$$\lim_{\varrho \to 0+} \frac{1}{\mu(D_{\varrho}(x))} \int_{D_{\varrho}(x)} (B(y)\xi, \eta) d\mu(y) = (B(x)\xi, \eta)$$

for μ -almost every $x \in \Omega$ and for every ξ , $\eta \in \mathbb{R}^m$. The conclusion follows now from (2.9), (2.10), and Proposition 2.8.

3. γ^{α} -convergence.

In order to study the asymptotic behaviour of sequences of solutions of Dirichlet problems in varying domains we introduce the notion of γ^{α} -convergence and show that under certain hypotheses the γ^{α} -limit can be identified.

DEFINITION 3.1. Let (Ω_j) be a sequence of open subsets of Ω , let $\mu \in \mathcal{M}_0(\Omega)$, and let B be an $m \times m$ matrix of Borel functions satisfying (2.3). We say that $(\Omega_j) \gamma_{\Omega}^{\mathfrak{q}}$ -converges to (B, μ) , and we use the notation $\Omega_j \xrightarrow{\gamma_{\Omega}^{\mathfrak{q}}} (B, \mu)$, if for every $f \in H^{-1}(\Omega, \mathbf{R}^m)$ the sequence (u_j) of the solutions of the problems

$$\begin{cases} u_j \in H_0^1(\Omega_j, \mathbf{R}^m), \\ \int (ADu_j, Dv) dx = \langle f, v \rangle, \quad \forall v \in H_0^1(\Omega_j, \mathbf{R}^m), \end{cases}$$

extended by zero on $\Omega \setminus \Omega_j$, converges weakly in $H_0^1(\Omega, \mathbf{R}^m)$ to the solution of the relaxed Dirichlet problem

(3.1)
$$\begin{cases} u \in H_0^1(\Omega, \mathbf{R}^m) \cap L_{\mu}^2(\Omega, \mathbf{R}^m), \\ \int_{\Omega} (ADu, Dv) dx + \int_{\Omega} (Bu, v) d\mu = \langle f, v \rangle, \\ \forall v \in H_0^1(\Omega, \mathbf{R}^m) \cap L_{\mu}^2(\Omega, \mathbf{R}^m). \end{cases}$$

REMARK 3.2. Let $\mu \in \mathfrak{M}_0(\Omega)$, let B be an $m \times m$ matrix of Borel functions satisfying (2.3), and let ν and C be defined by

$$\nu(E) = \int_{E} |B| d\mu, \qquad C(x) = \frac{B(x)}{|B(x)|}.$$

Then the measure ν belongs to $\mathfrak{M}_0(\Omega)$ and the matrix C satisfies (2.3). Moreover $\Omega_j \xrightarrow{\gamma_0^{\mathfrak{A}}} (B, \mu)$ if and only if $\Omega_j \xrightarrow{\gamma_0^{\mathfrak{A}}} (C, \nu)$. This shows that, in Definition 3.1, it is not restrictive to assume |B(x)| = 1 for every $x \in \Omega$. However, it is sometimes useful to consider also matrices B which do not satisfy this condition.

If m=1 and $\mathfrak{C}=-\Delta$, we shall always assume that B(x)=1 for every $x\in\Omega$. In this case we use the notation $\Omega_{j}\overset{\gamma_{\Omega}}{\longrightarrow}\mu$.

The following compactness result is proved in [4].

THEOREM 3.3. For every sequence (Ω_j) of open subsets of Ω there exist a subsequence (Ω_{j_k}) , a measure $\mu \in \mathfrak{M}_0(\Omega)$, and an $m \times m$ matrix of Borel functions satisfying (2.3), such that $\Omega_{j_k} \xrightarrow{\gamma_{\Omega}^{\alpha}} \mu$ and $\Omega_{j_k} \xrightarrow{\gamma_{\Omega}^{\alpha}} (B, \mu)$.

The localization property of the γ^{a} -convergence is also proved in [4].

Theorem 3.4. If $\Omega_j \xrightarrow{\gamma \otimes} (B, \mu)$ then $\Omega_j \cap U \xrightarrow{\gamma \otimes} (B_{|_U}, \mu_{|_U})$ for every open subset U of Ω .

PROPOSITION 3.5. Suppose that $\Omega_j \xrightarrow{\gamma_{\mathcal{B}}^{\alpha}} (B, \mu)$ and $\Omega_j \xrightarrow{\gamma_{\mathcal{B}}^{\alpha}} (\widetilde{B}, \widetilde{\mu})$. If $\mu = \widetilde{\mu}$ and $\mu(\Omega) < +\infty$, then $B(x) = \widetilde{B}(x)$ for μ -almost every $x \in \Omega$.

PROOF. Let $f \in H^{-1}(\Omega, \mathbb{R}^m)$ and let u be the solution of the relaxed Dirichlet problem (3.1). Then we have

$$\int\limits_{\Omega} \left((B - \widetilde{B}) \, u, \, v \right) d\mu = 0 \,, \qquad \forall v \in H^1_0 \left(\Omega, \, \boldsymbol{R}^m \right) \cap L^2_\mu \left(\Omega, \, \boldsymbol{R}^m \right) \,.$$

In particular, since $\mu(\Omega) < +\infty$, this equality holds true for every $v \in C_0^\infty(\Omega, \mathbf{R}^m)$. So, varying v, we obtain that $(B - \tilde{B})u = 0$ μ -almost everywhere in Ω . Since $\mu(\Omega) < +\infty$, the set of all solutions u of (3.1) corresponding to different data $f \in H^{-1}(\Omega, \mathbf{R}^m)$ is dense in $H^1_0(\Omega, \mathbf{R}^m)$. This implies that $B = \tilde{B} \mu$ -almost everywhere in Ω .

For every $x \in \Omega$ let $d_{\Omega}(x) = \operatorname{dist}(x, \partial \Omega)$.

THEOREM 3.6. If $\Omega_j \xrightarrow{\gamma_{\Omega}} \mu$, with $\mu(\Omega) < +\infty$, and $\Omega_j \xrightarrow{\gamma_{\Omega}^{\Omega}} (B, \mu)$, then for every $x \in \Omega$ there exists a countable set $N(x) \in \mathbf{R}$ such that

$$C_{\mathfrak{A}}(D_{\varrho}(x)\backslash\Omega_{j},\,\xi,\,\eta) \rightarrow C_{\mathfrak{A}}^{B,\,\mu}(D_{\varrho}(x),\,\xi,\,\eta)$$

for every $\varrho \in (0, d_{\Omega}(x)) \backslash N(x)$.

PROOF. Let us fix $x \in \Omega$. It is proved in [7] that there exists a countable set $N_1(x) \in \mathbb{R}$ such that for all $\varrho \in (0, d_{\Omega}(x)) \setminus N_1(x)$

$$\Omega \backslash (D_{\varrho}(x) \backslash \Omega_{j}) \xrightarrow{\gamma_{\Omega}} \mu \, \Box D_{\varrho}(x) \, .$$

Then, applying Theorem 3.3 to the sequence $\tilde{\Omega}_j = \Omega \setminus (D_{\varrho}(x) \setminus \Omega_j)$, we obtain that there exist a subsequence, still denoted by the same index j,

and an $m \times m$ matrix \tilde{B} of Borel functions satisfying (2.3) such that

$$\widetilde{\Omega}_j \xrightarrow{\gamma_{\Omega}^{\mathfrak{q}}} (\widetilde{B}, \mu \sqcup D_{\varrho}(x)).$$

Now we apply the localization result (Theorem 3.4) to the sequence (Ω_i) and we obtain

$$\Omega_j \cap U_{\varrho}(x) \xrightarrow{\gamma_{U_{\varrho}(x)}} \mu_{\mid_{U_{\varrho}(x)}} \quad \text{ and } \quad \Omega_j \cap U_{\varrho}(x) \xrightarrow{\gamma_{U_{\varrho}(x)}^{\mathfrak{q}}} (B_{\mid_{U_{\varrho}(x)}}, \mu_{\mid_{U_{\varrho}(x)}}).$$

The same localization result applied to the sequence $\tilde{\Omega}_i$ gives

$$\Omega_j \cap U_{\varrho}(x) = \widetilde{\Omega}_j \cap U_{\varrho}(x) \xrightarrow{\gamma_{\varrho(x)}^{\mathsf{d}}} (\widetilde{B}_{|_{U_{\varrho}(x)}}, \mu_{|_{U_{\varrho}(x)}}),$$

hence $B=\widetilde{B}$ μ -almost everywhere in $U_{\varrho}(x)$ by Proposition 3.5. On the other hand, since $\mu(\Omega)<+\infty$, for every $x\in\Omega$ there exists a countable set $N_2(x)\subset R$ such that $\mu(\partial D_{\varrho}(x))=0$ for all $\varrho\in(0,\,d_{\Omega}(x))\backslash N_2(x)$. Together with the previous results this implies that

$$\tilde{\varOmega}_j \xrightarrow{\gamma_\Omega^d} \left(B, \, \mu \, \llcorner \, D_\varrho(x)\right), \qquad \forall \varrho \in (0, \, d_\Omega(x)) \backslash (N_1(x) \, \cup \, N_2(x)) \, .$$

Let $K_j = D_{\varrho}(x) \backslash \Omega_j = \Omega \backslash \widetilde{\Omega}_j$ and let u_j be the weak solution in $\widetilde{\Omega}_j$ of the problem

$$\begin{cases} u_j \in H^1(\widetilde{\Omega}_j)\,, & u_j = \xi \quad \text{on } \partial K_j\,, & u_j = 0 \text{ on } \partial \Omega\,, \\ \int\limits_{\widetilde{\Omega}_j} (ADu_j,\,Dv)\,dx = 0\,, & \forall v \in H^1_0(\widetilde{\Omega}_j,\,\boldsymbol{R}^m)\,. \end{cases}$$

As usual we extend u_j to Ω by setting $u_j = \xi$ on K_j . Let $\varphi \in C_0^{\infty}(\Omega, \mathbb{R}^m)$ with $\varphi = \xi$ on $D_{\varrho}(x)$, and let $z_j = u_j - \varphi$. Then z_j is the solution of the problem

$$\begin{cases} z_j \in H^1_0(\widetilde{\Omega}_j,\, \boldsymbol{R}^m)\,, \\ \int\limits_{\widetilde{\Omega}_j} (ADz_j,\, Dv)\, dx = \left\langle f,\, v\right\rangle, \qquad \forall v \in H^1_0(\widetilde{\Omega}_j,\, \boldsymbol{R}^m)\,, \end{cases}$$

where f is the element of $H^{-1}(\Omega, \mathbf{R}^m)$ defined by $\langle f, v \rangle = -\int_{\Omega} (AD\varphi, Dv) dx$. By Definition 3.1 the sequence (z_j) converges weakly

in $H_0^1(\Omega, \mathbf{R}^m)$ to the solution z of the problem

$$\begin{cases} z \in H^1_0(\Omega, \boldsymbol{R}^m) \cap L^2_\mu(D_\varrho(x), \boldsymbol{R}^m) \,, \\ \int\limits_{\Omega} (ADz, Dv) \, dx + \int\limits_{D_\varrho(x)} (Bz, \, v) \, d\mu = \langle f, \, v \rangle, \\ \forall v \in H^1_0(\Omega, \boldsymbol{R}^m) \cap L^2_\mu(D_\varrho(x), \boldsymbol{R}^m) \,. \end{cases}$$

This implies that (u_j) converges weakly in $H_0^1(\Omega, \mathbf{R}^m)$ to the solution u^{ξ} of (2.4) corresponding to $\xi = \xi$ and $E = D_{\varrho}(x)$. Consequently (ADu_j) converges to ADu^{ξ} weakly in $L^2(\Omega, \mathbf{M}^{m \times n})$. Let us fix now $\psi \in C_0^{\infty}(\Omega, \mathbf{R}^m)$ with $\psi = \eta$ on $D_{\varrho}(x)$. Then, by Remarks 2.2 and 2.5,

$$egin{aligned} C_{\mathrm{cl}}\left(D_{arrho}(x)ackslash\Omega_{j},\,\xi,\,\eta
ight) &= \int\limits_{\Omega}(ADu_{j},\,D\psi)\,dx\,, \ &C_{\mathrm{cl}}^{B,\,\mu}(D_{arrho}(x),\,\xi,\,\eta) &= \int\limits_{\Omega}(ADu^{\,\xi},\,D\psi)\,dx\,, \end{aligned}$$

and the conclusion follows from the weak convergence of (ADu_i) .

Given a family $(f_\varrho)_{\varrho>0}$ of real numbers, we say that $\underset{\varrho\to 0}{\operatorname{sslim}} f_\varrho=a$ if for every neighbourhood V of a there exists a neighbourhood U of 0 such that $f_\varrho\in V$ for almost every $\varrho\in U$. Let (Ω_j) be a sequence of open subsets of Ω . For every closed ball $D_\varrho(x)\in\Omega$ and for every $\xi,\,\eta\in I\!\!R^m$ we define

$$(3.2) \qquad \begin{cases} \alpha'(D_{\varrho}(x), \, \xi, \, \eta) = \liminf_{j \to \infty} C_{\mathfrak{A}}(D_{\varrho}(x) \backslash \Omega_{j}, \, \xi, \, \eta), \\ \alpha''(D_{\varrho}(x), \, \xi, \, \eta) = \limsup_{j \to \infty} C_{\mathfrak{A}}(D_{\varrho}(x) \backslash \Omega_{j}, \, \xi, \, \eta). \end{cases}$$

We are now in a position to prove the main result of the paper.

Theorem 3.7. Assume that there exists a measure $\lambda \in K^+(\Omega)$ such that

(3.3)
$$\alpha''(D_o(x), \xi, \xi) \leq \lambda(D_o(x))|\xi|^2$$

for every closed ball $D_{\varrho}(x) \in \Omega$ and for every $\xi \in \mathbb{R}^m$. Assume, in addition, that for every $x \in \Omega$

$$(3.4) \quad \alpha'\left(D_{\varrho}(x),\,\xi,\,\eta\right)=\alpha''(D_{\varrho}(x),\,\xi,\,\eta) \quad \ \, \textit{for a.e. } \varrho\in\left(0,\,d_{\varOmega}(x)\right).$$

Then there exists an $m \times m$ matrix G(x) of bounded Borel functions such that

$$(3.5) \qquad \text{ess lim}_{\varrho \to 0} \frac{\alpha'(D_{\varrho}(x), \xi, \eta)}{\lambda(D_{\varrho}(x))} = \text{ess lim}_{\varrho \to 0} \frac{\alpha''(D_{\varrho}(x), \xi, \eta)}{\lambda(D_{\varrho}(x))} = (G(x)\xi, \eta)$$

for λ -almost every $x \in \Omega$ and for every $\xi, \eta \in \mathbb{R}^m$. Let B and μ be defined by

$$B(x) = \frac{G(x)}{|G(x)|}$$
 for λ -a.e. $x \in \Omega$,

$$\mu(E) = \int\limits_E \, |\, G \,|\, d\lambda \quad \mbox{ for every Borel set } E \in \Omega \,,$$

with the convention that 0/0 is the $m \times m$ identity matrix I. Then B satisfies (2.3) and $\Omega_i \xrightarrow{\gamma_{\infty}^{0}} (B, \mu)$.

REMARK 3.8. Theorems 3.3 and 3.6 imply that every sequence (Ω_j) has a subsequence which satisfies (3.4). Therefore condition (3.3) is the only non-trivial hypothesis of Theorem 3.7.

Remark 3.9. For every closed ball $D_{\varrho}(x) \subset \Omega$ let

$$\beta''(D_{\varrho}(x)) = \limsup_{j \to +\infty} \operatorname{cap}(D_{\varrho}(x) \backslash \Omega_{j}).$$

If there exists a measure $\lambda \in K^+(\Omega)$ such that $\beta''(D_\varrho(x)) \leq \lambda(D_\varrho(x))$ then the estimates in Remark 2.3 imply that (3.3) is satisfied with λ replaced by $c_5\lambda$. This condition is satisfied, for instance, in the periodic case with a critical size of the holes (see [5]) and for the sequences of domains considered in [11] and [12].

PROOF OF THEOREM 3.7. Let us fix $x \in \Omega$. From the compactness result (Theorem 3.3) we obtain that there exist a subsequence, still denoted by (Ω_j) , and a pair $(\tilde{B}, \tilde{\mu})$, with \tilde{B} satisfying (2.3) and $\tilde{\mu} \in \mathcal{M}_0(\Omega)$, such that $\Omega_j \xrightarrow{\gamma_{\Omega}} \tilde{\mu}$ and $\Omega_j \xrightarrow{\gamma_{\Omega}^{\beta}} (\tilde{B}, \tilde{\mu})$. Let us fix $x \in \Omega$. By Theorem 5.15 in [7] for almost every $\varrho \in (0, d_{\Omega}(x))$ we have $\operatorname{cap}(D_{\varrho}(x) \setminus \Omega_j) \to C^{\tilde{\mu}}(D_{\varrho}(x))$. The first estimate in Remark 2.3 gives

$$c_4 |\xi|^2 \operatorname{cap}(D_{\varrho}(x) \backslash \Omega_i) \leq C_{\mathfrak{A}}(D_{\varrho}(x) \backslash \Omega_i, \xi, \xi),$$

and passing to the limit we get

$$c_4 C^{\tilde{\mu}}(D_\varrho(x)) |\xi|^2 \leq$$

$$\leq \limsup_{\varrho \to 0} C_{\mathfrak{Q}}(D_{\varrho}(x) \backslash \Omega_{j}, \, \xi, \, \xi) = \alpha''(D_{\varrho}(x), \, \xi, \, \xi) \leq \lambda(D_{\varrho}(x)) \, |\xi|^{2} \, .$$

Applying now Theorem 2.3 in [3] we get that $\tilde{\mu}$ is absolutely continuous with respect to λ and that the density $(d\tilde{\mu}/d\lambda)(x)$ is bounded, hence $\tilde{\mu} \in K^+(\Omega)$. Let

$$G(x) = \widetilde{B}(x) \frac{d\widetilde{\mu}}{d\lambda}(x), \qquad B(x) = \frac{G(x)}{|G(x)|},$$

$$\mu(E) = \int_{E} |G| d\lambda = \int_{E} |\widetilde{B}| d\widetilde{\mu},$$

with the convention that 0/0 is the $m \times m$ identity matrix I. Then

$$B(x) = \frac{\widetilde{B}(x)}{|\widetilde{B}(x)|}, \quad \text{if } \frac{d\widetilde{\mu}}{d\lambda}(x) > 0, \quad \text{ and } \quad B(x) = I, \quad \text{if } \frac{d\widetilde{\mu}}{d\lambda}(x) = 0.$$

As \widetilde{B} satisfies (2.3) $\widetilde{\mu}$ -almost everywhere, B satisfies (2.3) μ -almost everywhere. Since $\Omega_j \xrightarrow{\gamma_D^0} (\widetilde{B}, \widetilde{\mu})$ and $B(x) = \widetilde{B}(x)/|\widetilde{B}(x)|$ $\widetilde{\mu}$ -almost everywhere in Ω , by Remark 3.2 we have also $\Omega_j \xrightarrow{\gamma_D^0} (B, \mu)$. Let us prove now (3.5). Applying Theorem 3.6 we obtain that

Let us prove now (3.5). Applying Theorem 3.6 we obtain that $C_{\alpha}(D_{\varrho}(x)\backslash\Omega_{j},\,\xi,\,\eta)\to C_{\alpha}^{\bar{B},\bar{\mu}}(D_{\varrho}(x),\,\xi,\,\eta)$ for almost every $\varrho\in(0,\,d_{\Omega}(x))$. Thus

$$\alpha'(D_o(x),\,\xi,\,\eta)=\alpha''(D_o(x),\,\xi,\,\eta)=C_{\mathfrak{A}}^{\bar{B},\tilde{\mu}}(D_o(x),\,\xi,\,\eta)$$

for almost every $\varrho \in (0, d_{\Omega}(x))$ and for every $\xi, \eta \in \mathbb{R}^m$. We may now apply Theorem 2.9 and the Besicovitch Differentiation Theorem to obtain

$$\operatorname{ess\,lim}_{\varrho \to 0} \ \frac{\alpha'\left(D_{\varrho}(x), \, \xi, \, \eta\right)}{\lambda(D_{\varrho}(x))} = \operatorname{ess\,lim}_{\varrho \to 0} \ \frac{C_{\operatorname{d}'}^{B,\tilde{\mu}}\left(D_{\varrho}(x), \, \xi, \, \eta\right)}{\tilde{\mu}\left(D_{\varrho}(x)\right)} \ \operatorname{ess\,lim}_{\varrho \to 0} \ \frac{\tilde{\mu}\left(D_{\varrho}(x)\right)}{\lambda(D_{\varrho}(x))} =$$

$$= \big(\, \widetilde{B}(x) \, \xi, \, \eta \big) \, \frac{d \, \widetilde{\mu}}{d \lambda} \, (x) = \big(G(x) \, \xi, \, \eta \big)$$

for every ξ , $\eta \in \mathbf{R}^m$ and for λ -almost every $x \in \Omega$ such that $(d\tilde{\mu}/d\lambda)(x) > 0$. Since $C_{\alpha}^{\tilde{B},\tilde{\mu}}(D_{\rho}(x),\,\xi,\,\eta) \leq c_9 C^{\tilde{\mu}}(D_{\rho}(x))|\xi||\eta| \leq$

 $\leq c_9 \tilde{\mu}(D_o(x)) |\xi| |\eta|$ by (2.7), we obtain that

$$\operatorname{ess\,lim}_{\varrho \to \, 0} \, \frac{\alpha^{\,\prime} \, (D_{\varrho} \, (x), \, \xi, \, \eta)}{\lambda (D_{\varrho} \, (x))} \, = 0 = (G(x) \, \xi, \, \eta)$$

for λ -almost every $x \in \Omega$ such that $(d\tilde{\mu}/d\lambda)(x) = 0$. This concludes the proof of (3.5).

4. The symmetric case.

If the operator $\mathcal C$ is symmetric, then the $\mathcal C$ -capacity can be obtained by solving a minimum problem. If $\Omega_j \xrightarrow{\gamma_{\alpha}^{\mathfrak L}} (B,\mu)$, with $\mu(\Omega) < +\infty$, then the matrix B is symmetric (see [8], Corollary 5.4). In this case we have

$$C_{\alpha}^{B, \mu}(E, \xi, \xi) =$$

$$= \min_{u \in H_0^1(\Omega, \mathbb{R}^m)} \left\{ \int_{\Omega} (ADu^{\xi}, Du^{\xi}) dx + \int_{E} (B(u^{\xi} - \xi), (u^{\xi} - \xi)) d\mu \right\}$$

for every measure $\mu \in \mathfrak{M}_0(\Omega)$, for every $\xi \in \mathbf{R}^m$, and for every Borel set $E \subset \Omega$.

REMARK 4.1. Assume that $\mathcal C$ and B are symmetric. If $\mu_1 \leq \mu_2$, then $C^{B,\,\mu_1}_{\mathfrak C}(E,\,\xi,\,\xi) \leq C^{B,\,\mu_2}_{\mathfrak C}(E,\,\xi,\,\xi)$ for every Borel set $E \subset \Omega$ and every $\xi \in \pmb{R}^m$.

This monotonicity property of the capacity with respect to the measure allows us to extend the derivation theorem to any bounded measure in $\mathcal{M}_0(\Omega)$.

THEOREM 4.2. Assume that \mathfrak{A} is symmetric. Let μ , $\nu \in \mathfrak{M}_0(\Omega)$, with $\nu(\Omega) < +\infty$, and let B be an $m \times m$ symmetric matrix of Borel functions satisfying (2.3). For every $x \in \Omega$ and for every $\xi \in \mathbb{R}^m$ let

(4.1)
$$f(x, \xi) =$$

$$= \liminf_{\varrho \to 0} \frac{C_{\mathrm{cl}}^{B,\,\mu}(D_{\varrho}(x),\,\xi,\,\xi)}{\nu(D_{\varrho}(x))} \qquad (with \ the \ convention \ that \ 0/0 = 1).$$

Assume that there exists $\xi \in \mathbb{R}^m \setminus \{0\}$ such that

(4.2)
$$f(x, \xi) < +\infty$$
 $\forall x \in \Omega$ and $\int_{\Omega} f(x, \xi) d\nu < +\infty$.

Then $\mu(\Omega) < +\infty$, μ is absolutely continuous with respect to ν , and

$$f(x, \xi) = (B(x)\xi, \xi) \frac{d\mu}{d\nu}(x)$$
 for $\nu - a.e.$ $x \in \Omega$ and $\forall \xi \in \mathbf{R}^m$.

Moreover, the \liminf in the definition of f is a limit for v-almost every $x \in \Omega$ and for every $\xi \in \mathbb{R}^m$.

PROOF. For every $x \in \Omega$ let

$$f_1(x) = \liminf_{\varrho \to 0} \frac{C^\mu(D_\varrho(x))}{\nu(D_\varrho(x))} \; .$$

The estimates in Proposition 2.7 give

$$(4.3) \quad c_8 |\xi|^2 f_1(x) \le f(x, \xi) \le c_9 |\xi|^2 f_1(x), \qquad \forall x \in \Omega, \ \forall \xi \in \mathbb{R}^m,$$

thus $f_1 \in L^1_{\nu}(\Omega)$ and $f_1(x) < +\infty$ for every $x \in \Omega$. Then from Proposition 2.3 in [3] we deduce that $\mu(\Omega) < +\infty$ and that $\mu = f_1 \nu$, i.e., $\mu(E) = f_1 \nu$

$$=\int\limits_E f_1 d\nu$$
 for every Borel set $E\subseteq \Omega$. By Proposition 2.5 of [2] there exist a

measure $\lambda \in K^+(\Omega)$ and a Borel function $g: \Omega \to [0, +\infty]$ such that $\mu = g\lambda$. For every $k \in N$ let $g_k(x) = \min\{g(x), k\}$. Since $g_k\lambda$ belongs to $K^+(\Omega)$, Theorem 2.9 implies the existence of a subset E_1 of Ω such that

$$\int_{E_1} g_k d\lambda = 0 \text{ and}$$

$$\lim_{\varrho \to 0} \frac{C_{\alpha}^{B, g_k \lambda}(D_{\varrho}(x), \xi, \xi)}{(g_k \lambda)(D_{\varrho}(x))} = (B(x)\xi, \xi), \quad \forall x \in \Omega \backslash E_1, \quad \forall \xi \in \mathbf{R}^m, \quad \forall k \in \mathbf{N}.$$

Since $\lambda + \nu$ is a bounded measure on Ω , by the Besicovitch Differentiation Theorem there exists a set $E_2 \in \Omega$ such that $(\lambda + \nu)(E_2) = 0$ and

$$\lim_{\varrho \to 0} \frac{(g_k \lambda)(D_\varrho(x))}{(\lambda + \nu)(D_\varrho(x))} = g_k(x) \, \frac{d\lambda}{d(\lambda + \nu)} \, (x) < + \infty \, , \quad \forall x \in \Omega \backslash E_2 \, , \quad \forall k \in N \, ,$$

$$\lim_{\varrho \to 0} \frac{\nu(D_{\varrho}(x))}{(\lambda + \nu)(D_{\varrho}(x))} = \frac{d\nu}{d(\lambda + \nu)}(x) \leq 1, \qquad \forall x \in \Omega \backslash E_2.$$

By (4.2) and (4.3) we have $f_1(x) < +\infty$ and $f(x, \xi) < +\infty$ for every $x \in \Omega$ and for every $\xi \in \mathbf{R}^m$. Let $E = E_1 \cup E_2$. For $x \in \Omega \setminus E$ and $\xi \in \mathbf{R}^m$ we have

$$\begin{split} g_k(x)(B(x)\,\xi,\,\xi)\,\frac{d\lambda}{d(\lambda+\nu)}\,(x) &= \\ &= \lim_{\varrho\to 0}\,\frac{(g_k\lambda)(D_\varrho(x))}{(\lambda+\nu)(D_\varrho(x))}\,\lim_{\varrho\to 0}\,\frac{C_{\mathrm{cl}}^{B,\,g_k\lambda}\,(D_\varrho(x),\,\xi,\,\xi)}{(g_k\lambda)(D_\varrho(x))} &= \\ &= \lim_{\varrho\to 0}\,\frac{C_{\mathrm{cl}}^{B,\,g_k\lambda}\,(D_\varrho(x),\,\xi,\,\xi)}{(\lambda+\nu)(D_\varrho(x))} &\leqslant \\ &\leqslant \liminf_{\varrho\to 0}\,\frac{C_{\mathrm{cl}}^{B,\,g_k\lambda}\,(D_\varrho(x),\,\xi,\,\xi)}{\nu(D_\varrho(x))}\,\lim_{\varrho\to 0}\,\frac{\nu(D_\varrho(x))}{(\lambda+\nu)(D_\varrho(x))} &= f(x,\,\xi)\,\frac{d\nu}{d(\lambda+\nu)}\,(x)\,. \end{split}$$

So, for every Borel set $F \subset \Omega \setminus E$ and for every $\xi \in \mathbb{R}^m$ we have

$$\begin{split} \int\limits_{F} & \left[g_{k}(x) (B(x) \, \xi, \, \xi) \, \frac{d\lambda}{d(\lambda + \nu)} \, (x) \right] d(\lambda + \nu) \leqslant \\ & \leqslant \int\limits_{F} & \left[f(x, \, \xi) \, \frac{d\nu}{d(\lambda + \nu)} \, (x) \right] d(\lambda + \nu) \, , \end{split}$$

hence

$$\int\limits_F g_k(x)(B(x)\,\xi,\,\xi)\,d\lambda \leqslant \int\limits_F f(x,\,\xi)\,d\nu$$

for every Borel set $F \in \Omega$. Passing now to the limit as $k \to +\infty$, by the monotone convergence theorem we have

$$\int_{F} (B(x)\,\xi,\,\xi)\,d\mu = \int_{F} g(x)(B(x)\,\xi,\,\xi)\,d\lambda \le \int_{F} f(x,\,\xi)\,d\nu$$

for every Borel set $F \in \Omega$ and every $\xi \in \mathbb{R}^m$. Thus, $f_1(x)(B(x)\xi, \xi) \le f(x, \xi)$ for ν -almost every $x \in \Omega$ and for every $\xi \in \mathbb{R}^m$. Since

$$C_{\mathrm{cl}}^{B,\,\mu}(D_{\varrho}(x),\,\xi,\,\xi) \leq \int\limits_{D_{r}(x)} (B(y)\,\xi,\,\xi) f_{1}(y) \,d\nu(y),$$

by the Besicovitch Differentiation Theorem we obtain $f(x, \xi) \le \xi f_1(x)(B(x)\xi, \xi)$ for ν -almost every $x \in \Omega$ and for every every $\xi \in \mathbb{R}^m$. So we proved that $f(x, \xi) = f_1(x)(B(x)\xi, \xi)$ for every $\xi \in \mathbb{R}^m$ and ν -almost

every $x \in \Omega$. Moreover, by the Besicovitch Differentiation Theorem for ν -almost every $x \in \Omega$ and for every $\xi \in \mathbf{R}^m$ we have

$$\begin{split} f(x,\,\xi) &= \liminf_{\varrho \,\to \, 0} \, \frac{C_{\mathrm{cl}}^{B,\,\mu} \left(D_{\varrho}(x),\,\xi,\,\xi \right)}{\nu(D_{\varrho}(x))} \, \leq \limsup_{\varrho \,\to \, 0} \, \frac{C_{\mathrm{cl}}^{B,\,\mu} \left(D_{\varrho}(x),\,\xi,\,\xi \right)}{\nu(D_{\varrho}(x))} \, \leq \\ &\leq \limsup_{\varrho \,\to \, 0} \, \frac{1}{\nu(D_{\varrho}(x))} \int\limits_{D_{\varrho}(x)} \left(B(y)\,\xi,\,\xi \right) f_{1}(y) \, d\nu(y) = f_{1}(x) (B(x)\,\xi,\,\xi) \,, \end{split}$$

and this completes the proof.

The hypotheses in Theorem 3.7 can be weakened by using the monotonicity of the α -capacity and the previous result.

Theorem 4.3. Assume that α is symmetric and that there exists a bounded Radon measure λ on Ω such that

$$\alpha''(D_o(x), \xi, \xi) \leq \lambda(D_o(x))|\xi|^2$$

for every closed ball $D_{\varrho}(x) \subset \Omega$ and for every $\xi \in \mathbf{R}^m$. Assume, in addition, that for every $x \in \Omega$ there exists a dense set $D \subset (0, d_{\Omega}(x))$ such that

$$(4.4) \quad \alpha'(D_{\varrho}(x), \, \xi, \, \xi) = \alpha''(D_{\varrho}(x), \, \xi, \, \xi) \,, \qquad \forall \varrho \in D, \ \forall \xi \in \mathbf{R}^m \,.$$

Then there exists an $m \times m$ symmetric matrix G(x) of bounded Borel functions such that

$$\underset{\varrho \to 0}{\operatorname{esslim}} \ \frac{\alpha'(D_{\varrho}(x), \, \xi, \, \xi)}{\lambda(D_{\varrho}(x))} = \underset{\varrho \to 0}{\operatorname{esslim}} \ \frac{\alpha''(D_{\varrho}(x), \, \xi, \, \xi)}{\lambda(D_{\varrho}(x))} = (G(x) \, \xi, \, \xi)$$

for λ -almost every $x \in \Omega$ and for every $\xi \in \mathbb{R}^m$. Let B and μ be defined by

$$B(x) = \frac{G(x)}{|G(x)|}$$
 for $\lambda - a.e.$ $x \in \Omega$,

$$\mu(E) = \int\limits_E \, |G| \, d\lambda \quad \mbox{ for every Borel set } E \in \Omega \, ,$$

with the convention that 0/0 is the $m \times m$ identity matrix I. Then $\mu \in \mathfrak{M}_0(\Omega)$, B satisfies (2.3), and $\Omega_j \xrightarrow{\gamma_0^0} (B, \mu)$.

PROOF. Since $C_{\mathfrak{A}}(\cdot, \xi, \xi)$ is an increasing set function, $\alpha'(D_{\varrho}(x), \xi, \xi)$ and $\alpha''(D_{\varrho}(x), \xi, \xi)$ are increasing functions of ϱ , hence

(4.4) implies that $\alpha'(D_{\varrho}(x), \xi, \xi) = \alpha''(D_{\varrho}(x), \xi, \xi)$ for almost every $\varrho \in (0, d_{\Omega}(x))$. As in the proof of Theorem 3.7, we obtain that $\Omega_j \xrightarrow{\gamma \vartheta} (\widetilde{B}, \widetilde{\mu})$, with $\widetilde{\mu}$ absolutely continuous with respect to λ . Since $(d\widetilde{\mu}/d\lambda)(x)$ is bounded, we have $\widetilde{\mu}(\Omega) < +\infty$. Let $G(x) = \widetilde{B}(x)(d\widetilde{\mu}/d\lambda)(x)$. Since $\mu(E) = \int_{\widetilde{E}} |G| d\lambda = \int_{\widetilde{E}} |\widetilde{B}| d\widetilde{\mu}$, and $\widetilde{\mu} \in \mathcal{M}_0(\Omega)$, we have $\mu \in \mathcal{M}_0(\Omega)$. The conclusion follows now by repeating the same arguments as in Theorem 3.7, the only difference being that now we apply Theorem 4.2 instead of Theorem 2.9.

REFERENCES

- [1] M. AVELLANEDA F. H. LIN, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), pp. 803-847.
- [2] J. BAXTER G. DAL MASO U. MOSCO, Stopping times and Γ-convergence, Trans. Amer. Math. Soc., 303 (1987), pp. 1-38.
- [3] G. BUTTAZZO DAL MASO U. MOSCO, A derivation theorem for capacities with respect to a Radon measure, J. Funct. Anal., 71 (1987), pp. 263-278.
- [4] J. CASADO DIAZ A. GARRONI, Asymptotic behaviour of nonlinear elliptic systems on varying domains, in preparation.
- [5] D. CIORANESCU F. MURAT, Un terme étrange venu d'ailleurs, I and II, in Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. II, pp. 98-138, Vol. III, pp. 154-178, Res. Notes in Math., 60 and 70, Pitman, London (1982) and (1983).
- [6] G. Dal Maso U. Mosco, Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal., 95 (1986), pp. 345-387.
- [7] G. Dal Maso U. Mosco, Wiener's criterion and Γ-convergence, Appl. Math. Optim., 15 (1987), pp. 15-63.
- [8] A. DEFRANCESCHI E. VITALI, Limits of minimum problems with convex obstacles for vector valued functions, Applicable Anal., 52 (1994), pp. 1-33.
- [9] L. C. EVANS R. F. GARIEPY, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton (1992).
- [10] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1973), pp. 135-148.
- [11] A. V. MARCHENKO E. YA. KHRUSLOV, Boundary Value Problems in Domains with Finely Granulated Boundaries (in Russian), Naukova Dumka, Kiev (1974).
- [12] I. V. Skrypnik, Methods of Investigation of Nonlinear Elliptic Boundary Value Problems (in Russian), Nauka, Moscow (1990).

Manoscritto pervenuto in redazione il 3 agosto 1995.