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Spectral Decomposition of Green’s Integrals and
Existence of Ws’ 2-Solutions of Matrix Factorizations

of the Laplace Operator in a Ball.

A. SHLAPUNOV (*) (**)

ABSTRACT - We prove that Green’s integral S for a ball associated to a
matrix factorization P of the Laplace operator, defines a bounded linear self-
adjoint operator in the Hilbert space of harmonic Ws, 2-functions in BR (s &#x3E;
~ 0), with the spectrums belonging to the interval [ 0, 1 ] on the real axis. Using
this fact, we obtain a formula for solutions of the equation Pu = f in BR with

’-datum, and a criterion for the existence of W’, 2-solutions for such a da-
tum (~ ~ 0, 0 ~ + 1).

Let P be a matrix factorization of the Laplace operator L:1 n in 
(n ~ 2), i.e. a homogeneous first order partial linear differential opera-
tor (with constantant coefficients) such that

where Ik is the unit (1~ x k)-matrix and P * is the formal adjoint of P. We
have

with complex valued (l x k)-matrices Pi (I a k).

(*) Indirizzo dell’A.: Kransnoyarsk State University, Department of

Mathematics, Pr. Svobodnyi 79, Krasnoyarsk 660062, Russia.
(**) The author thank Prof. E. Vesentini and Prof. M. Nacinovich for many

useful discussions.
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In this paper we are interested in finding WS’ 2-solutions of the
equation

where BR is the ball with centre at the origin and radius 0  R 
 00.

With the purpose we study in § 1 spectrum of operators defined by
Green’s integral, associated with P and the standard fundamental sol-
ution of the Laplace operator in the Hilbert spaces of har-
monic W8,2-functions in BR (s ; 0). Following the approach of A. V. Ro-
manov (cf. [Roml]), we prove that Green’s integrals define bounded lin-
ear selfadjoint operators in with the spectrums belonging to
the interval [0, 1] on the real axis. For this, however, we need to define
a special Hilbert structure in h ~, 2 (BR ) for non-integral s.

As a corollary, in § 2 we prove Theorem on Iterations of Green’s in-
tegrals in the Hilbert spaces h ,2 (BR ) and obtain a formula for W8, 2_Sol_
utions of the equation Pu = f in BR , with Wm’ 2-data, whenever they
exists (cf. [Rom2], [Sh2] and [NaSh]).

Then, using the spectral decomposition of the operators defined by
Green’s integrals, we obtain in § 3 necessary and sufficient conditions
of the fact that for (m ~ 0), satisfying compatibility
conditions in BR , there exists a solution U E W,, 2(BR) with Pu = f and
0 £ s % nz + 1, and obtain a formula for solutions of the equation Pu = f
in BR with 

The formulae produce rather explicitely a way to obtain a solution of
the equation Pu = f by successive approximations.

Though the system P seems to be rather simple, there are no results
about existence of its W8,2-solution for Wm, 2-data unless the well
known examples such as the operators connected with the De Rham
complex or the Dolbeault complex (in particular, the gradient operator
or the Cauchy-Riemann system). Of course, the results about solvabili-
ty of systems with constant coefficients in convex domains (see, for
example, [AnNa]) and theorems on the regularity of solutions of elliptic
systems imply that for every f E W m, 2 (BR ), satisfying the compatibility
conditions in BR there exists a solution with Pu = f.
However the example of the overdetermined Cauchy-Riemann system
shows that we should expect a finite loss of the global regularity of sol-
utions (see, for example, Example 7.4 in [NaSh] and Corollary 3.5 and
Example 3.7 below).

In the case of a determined matrix factorization of the Laplace oper-
ator in (i.e. 1 = k), for every f E wm, 2 (B R) there exist a solution u E
E Wm + 1, 2 (BR) with Pu = f. So, throughout the paper we will be concen-
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trated on the case where the operator P is overdetermined, i.e. 1 &#x3E; k

(though, the case 1 = k is formally permitted).

1. - Spectrum of Green’s integrals in h s, 2 (BR).

We denote by BR the ball in R~ with centre at zero and radius 0 
 R  oo , by the area of the unit sphere dB1 and by dQ the standard
volume form on aBR .

Let [WS, 2 (BR)]k (s ; 0) be the Hilbert space of k-vectors of complex
valued functions, having the components in the Sobolev space W ~~ 2 (BR)
and let [h ,2 (BR)]k be its closed subspace formed by vector functions
with harmonic components.

For s E Z+ , we provide with the scalar product

Hence [h’, 2(BR)II is a Hilbert space with the induced from [WS,2(BR)]k
Hilbert structure.

It is known that for there exists weak boundary
values belonging to the Sobolev space [ W~ - I °‘ ~ -1~2, 2 ( aBR)]k
(see, for example [ShTa], Theorem 4.4). Then, for s = N - 1/2 (N E N)
we provide with the scalar product

where u, v e [h~~ 2 (BR)]k and [s] is the integral part of s. It is not 
cult to see that in this case is a Hilbert space too with the

topology equivalent to the one induced from 
For example, [ j21I2, 2 (BR )]k is the Hardy space of harmonic k-vector

complex valued functions in BR, [h 1/2,2 (BR )]k c [h°~ 2 (BR)]k and these
spaces are not equal.

For other non-integral s we will define a special Hilbert structure in
[h s, 2 (BR)]k later.

Now, for a vector u e [h 0,2 (BR)]k we denote by f1u its Green’s inte-
gral in BR associated with the operator P and the standard fundamental
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solution CfJn (x - y ) of the Laplace operator in 

It follows from [ReSz] (2.3.2.5), that the integral ~ defines a bound-
ed linear operators

In this section we are interested in the spectrum of the operators @s
in [hS,2(BR)]k. We follow the approach of Romanov for the Martinelli-
Bochner integral and s = 1 /2 (see [Roml]). For this purpose we will use
the following lemma.

LEMMA 1.1. For every homogeneous harmonic polynomial hv of
degree v ~ 0 in Rn we have

PROOF. It is proved by direct calculations.

We extract from Lemma 1.1 an information about the spectrum of
the operator go .

LEMMA 1.2. There exists an orthonormal (1 ~ i ~
 (k(n + 2v - 2)(n + v - 3)!)/(v!(n - 2)!), v &#x3E; 0) in [ho,2(BR)]kconsist-
ing of homogeneous harmonic polynomials with

PROOF. Let us denote by SU (v) the vector space of all the k-vectors
of homogoneous harmonic polynomials of degree v. It is a finite dimen-
sional vector space with dim ,Sk ( v ) _ (k( n + 2 v - 2 )( n + v - 3 ) ! ) /
/(v!(n - 2)!). Lemma 1.1 implies that Sk (V) - Sk (V) is a bound-
ed linear operator.

Since is finite dimensional, it is a (complex) Hilbert space with
the scalar product ( ~ , ~ )L2(BR). On the other hand, due to Lemma 1.1 and
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Stokes’ formula,

In particular, this means that the is selfadjoint. Hence
we conclude that spectr G|Sk(v) C [ - m, m], where m is the operator
norm 

Since the space Sk ( v ) is finite dimensional, there exist (k(n + 2v -
- 2)(n + v - 3)!)/(v!(n - 2)!) eigenvectors of the operator (corre-
sponding to eigenvalues ~,;,i, R&#x3E;), which form an orthogonal (with respect
to (’, )L2(BR» basis in ,Sk (v).

For v = 0, ~, 02~ = 1 ( 1 ~ i ~ k), where li is k-vector
with components 1 i = 6 ij and Vn is the volume of the unit ball in
Rn. .

Let v ; 1 (v ; 2 if n = 2). Because Sk (v) is finite dimensional, it is a
(complex) Hilbert space with the scalar product (cf. [Sh2]
and [NaSh])

where S(hv) _ is a harmonic function out-
side of the ball BR with zero at infinity and S’( hv ) = hv on 9BR. Then, by
the Stokes’ formula, we have (cf. [NaSh])

and, in particular, Hence we conclude
that 0 ~ A [~&#x3E; ~~ % 1 ( 1 ~ i ~ 

For the case n = 2, v = 1, we have = 1 - 03BC(i)1/2, where are

... 
/ k 

eigenvalues of the symmetric Ik 
= 1, Le. 0  A(i)1  1. 2 P1 4

It is known (see, for example, [Shl]) that it is possible to choose
in the space [ h °, 2 (BR )]k a with and 
~ Therefore, because spherical harmonics of different degrees
of homogeneity are orthogonal in [L 2 (BR)]k , we can choose an or-
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thonormal (v ~ 0, in 

consisting of the eigenfunctions of the operator g. *

~, vi~ = 1 if and only if = o.

PROOF. This is an immediate sequence of the homogeneity of the
polynomials and formulae (1.3), (1.4).

Because the polynomials are homogeneous, it is not difficult to
obtain from Green’s formula for harmonic functions the following lem-
ma (cf. [Shl]).

LEMMA 1.4. The system an orthogonal basis in [hs’ 2 (BR)]k
(s = (N - 1 )/2, N e N). Moreover there exist constants C1 (s, n),
C2 ( s, n ) &#x3E; 0 such that

for every v ; 0, 1 ~ i ~ dim ,Sk ( v ).

PROOF. The orthogonality and estimates can be proved by direct
calculations, using the homogeneity of the polynomials.

The is complete in [ h s’ 2 (BR )]~ because it is complete in
and orthogonal in [h 8,2 (BR)]k .

Now, for s ~ 0 (s ~ (N - 1)/2, N e N) we provide the space
[ h s’ 2 (BR )]k with the Hermitian form

where (u) are the Fourier coefficients of the vector-function u with
respect to the orthonormal basis in 

PROPOSITION 1.5. The Hermitian form (., (s % 0) is a
scalar product in the space [hs~ 2 (BR)] defining a topology, equivalent
to the original one. Moreover, the is an orthogonal basis
in and there exist constants C1 (s, n), C2 ( s, n) &#x3E; 0 such
that

for every v ; 0, 1  i  dim Sk ( v ). i

PROOF. For s = (N - 1)/2, the statement was proved in
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Lemma 1.4. In order to prove it for a number s ~ 0 (s ~ (N - 1)/2, N E
E ), it is sufficient to consider 2 interpolation couples: [hE’3,2 (BR )]k ,
[h[83 + 1, 2 and 4 ([sJ), L~ ([s] + 1), where [s] is the integral part of s

and, for r &#x3E; 0, l2(r) = {{Kv}oov = 0: 1 and then to useI v=1 1 J
the standard interpolation arguments (see, for example, [Tr], 4.1-4.4
and 1.18.2).

The following theorem was proved for the Martinelli-Bochner inte-
gral in the ball and s = 1/2 in Romanov ([Romll), for the Martinelli-
Bochner integral in a domain with connected boundary and s = 1 in Ro-
manov ([Rom2]). For Green’s integrals, associated with the matrix fac-
torization of the Laplace operator in a domain with smooth boundary,
and s = 1 it was proved in [Sh2] and for Green’s integrals, associated
with an elliptic (overdetermined) system of order p ~ 1 and special fun-
damental solutions, and s = p its generalization was obtained
in [NaSh].

THEOREM 1.6. The operator is a

bounded linear selfadjoint operator with spectr ~s c [ o, 1 ] (s ; 0).

PROOF. According to Lemmata 1.2, 1.3 and Proposition 1.5, for a
vector we have

because for the eigenvalues of the operators f1s. Here
(u) are the Fourier coefficients of u with respect to the orthogonal

Therefore f1s is a selfadjoint operator with spectr Gs C
c [0, 1]..

Because of the orthogonality and the completness of the system
~ hvi~ }, 0 ~ ~, vi~ ~ 1 are the only eigenvalues of the operators f1s.

EXAMPLE 1.7. Let P = ~n (n ~ 2) be the gradient operator in R"
(l = n, k = 1). Then, due to Lemma 1.1 and Euler formula for homoge-
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neous functions, for every homogeneous harmonic polynomial hv we
have

Arguing as before, we obtain that the multiplicity of the eigenvalue
(1/2)  (n+v-2)/(n+2v-2) ~ 1 is «n + 2v - 2)(n + v - 3)!)/
/(v!(n - 2)!)  00 and that spectr S consists of the eigenvalues (n + v -
- 2 )/(n + 2v - 2) and the limit point 1/2, 3.

In the degenerate case n = 2 the spectrum spectr g consists only of
two eigenvalues: 1/2 (eigenvalue of the infinite multiplicity corre-

sponding to v &#x3E; 0) and simple eigenvalue 1 (corresponding to v = 0), i.e
~ is not compact.

EXAMPLE 1.8. Let P = 2 a be the (doubled) Cauchy-Riemann sys-
tem in ~m ( m ~ 2) written in the complex form with the complex coor-
dinates zj, - ( 1 ~ j ~ m). Then n = 2 m, L = m, k = 1 and g is the Mar-
tinelli-Bochner integral.

Romanov (see [Roml]) studied the spectrum of the operator
in the Hardy spaces ( z h1/2, 2 (BR)) and H2(CmBB1)
( - ~ 1 /2, 2 ( ~m BBR 11, He proved that harmonic homogeneous polynomi-
als

with multi-indices a = (oi, ..., an), /3 = (,81, ... , /3 n) and degree of the
homogeneity v = r + t, are the eigenvalues of the operator :

and that we can always choose an orthogonal basis (r ~ 0, t ; 0) in
( - h 1~2, 2 (BR)) consisting of polynomials of the type hrt.

One easily checks that this implies that all rational numbers of the
interval [0, 1] are eigenvalues of infinite multiplicity of the Martinelli -
Bochner integral G, and that spectrgg = [0, 1]. In particular, the opera-
tors gg is not compact.

In the degenerate case m = 1 we have n = 2, L = 1, k = 1 and g is the
Cauchy integral. The spectrum spectr g consists only of two eigenval-
ues (both are of infinite multiplicity): 1 (eigenvalue corresponding to

0), and 0 (eigenvalue corresponding to &#x3E; 0), is not

compact.
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2. - Theorem on iterations of Green’s integrals.

In this section we will use the information about the spectrum of
the operators (s~O) to obtain Theorem
on Iterations of Green’s integrals (cf. [Roml], [Rom2], [Sh2],
and [NaSh]).

It is known that for u e [ h s’ 2 (BR )]k ( s ~ 0) there exists weak bound-
ary value belonging to the Sobolev space [ws - 3/2a 2 Let
us denote by rPu the single layer potential:

By Stokes’ formula we have

for every u e [h s,2 (BR )]k . Therefore the integral rP defines linear
bounded operators r  P from [ h s’ 2 (BR )]k to [ h ~’ 2 (BR )]k .

In particular, it is possible to consider iterations 
(iP)v = (tP) o (rP) o ( ... ) o (tP) (v &#x3E; 1 times) of the integrals G and zP in
these spaces.

Let be the closed subspace of [h,, 2 (BR)]k consisting of sol-
utions of the system Pu = 0 in BR . Then stand for the or-

thogonal projections from [ h ~~ 2 (BR )]k to (BR).
Since [ h s’ 2 (BR )]k is topologically isomorphic to [ h s~ 2 (Rn BBR )]k

(n ~ 3), we associate a (unique) vector function
e with u = S(u) on aBR .

In the case where n = 2 we associate u e a (unique) vec-
tor function S(u), harmonic in BBR , regular at infinity with respect
to (see [Ta]) and such that u = ,S(u) on 

Then we can consider 
= 0 in R" BBR~ as a closed subspace of [hs’ 2 and BBR))
stands for the orthogonal projection from [ h s~ 2 (BR )]k to

ss, 2 (Rn BBR).
For the Martinelli-Bochner integral and s e Z+ this fact was men-

tioned in [Ky].
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THEOREM 2.1 (on Iterations). Let s ; 0. Then

in the strong operator topology in [h s, 2 

PROOF. Theorem 1.6 and (2.1) imply that the operators 1:sP, S. are
selfadjoint operators in [ h s’ 2 (BR )]k and that 0 ; g~ £ Id, 0 ~ z s P ~ Id
(where Id stands for the identity operator on [ h ~~ 2 (BR )]k ). Moreover,
Lemma 1.3 and Proposition 1.5 yield that for every u E we

have

where C(’) (u) are the Fourier coefficients of u E with re-

spect to the orthogonal basis Ih,(,’)l in 
Because 0 ~ Id, 0 ~ i~ P ~ Id, the series in (2.3) (2.4) converge

uniformly with respect to v. Hence, passing to the limit in (2.2) and (2.3)
and using Lemma 1.3, (2.1) and (1.4), one obtains the statement of the
theorem.

REMARK 2.2. If P is the gradient operator V n in R" or the doubled
Cauchy-Riemann system 3 in Cn then 

sa, 2 = 0. However it is not true for all overdetemined matrix
factorizations of the Laplace operator. For example, if n = 3, l = 4, k =
= 3 and

then it is easy to check that the vector XE [TZs’ 2 (BR)]3 belongs to
Sp2(R3BBR) with Hence 
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COROLLARY 2.3. For every u e we have

where the limits and the series converge in the [WS, 2 

PROOF. Follows from formula (2.1) and Theorem 2.1.

Let us consider, for s ; m ; s - 1 ~ 0 the linear closed densely de-
fined operator

And let now It is

easy to see that dom Ps, m is a Hilbert space with the scalar prod-
uct

Let T be the the following integral:

The integral T defines bounded linear operators [ W m~ 2 -

[wm + 1, 2(BR )]k (see [NaSh]). Hence the composition TP defines a
bounded linear operator Tm P,: dom Ps, 

Now we can define an extension ~s of the operator ~s : [h s,2 (BR)]k ~
- [h s, 2 (BR)]k for u E dom Ps, m . Indeed, if u e dom P, m then there exists a
sequence such that lim 

N - oo 
- pUNlllwm,2(BR) = 0. Then, for u E dom Ps, m , we set

Stokes’ formula and the continuity of the operator T m imply that, for
u e dom P~ , = lim (uN - TPUN) = u - ( TP)s u, i.e. the operator gg

N - oo

is well defined and does not depend on the choice of the sequence uN .
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Moreover, it follows from Stokes’ formula, that TPu = iPu for u e
E Hence (2.1) implies that ~u = ~ u.

Now Theorem 2.1 implies the following result (similar to Corollary
2.3).

COROLLARY 2.4. For every u e domPs, m we have

where the limits and the series converge in the 

Now we obtain a formula for solutions of Pu = f in BR whenever
they exists in dom Ps, m .

COROLLARY 2.5. Let f E such that Pv = f in BR with
ve dom P,, m ( 0 ~ s - 1 ~ m ~ s). Then the series

where

are the Fourier coe, fftcients of the vector ~ Tf with respect to the orthogo-
nal in converges in the and
Pu = f in BR .

PROOF. This follows from Corollary 2.4, (1.2) and the fact that

We emphasize that the coefficients in (2.6) do not depend on s
and m. In the next section we discuss in detail the existence of

of the equation Pu = f and obtain a formula for its
solutions with data in 0).
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3. - On the solvability of the system P~c = f in BR .

In this section we obtain a criterion for the existence of [Ws’ 2 (BR)]k-
solutions the system

and a formula for its with the datum f E
E [Wm, 2(BR)]l (m &#x3E; 0).

Because P is a system of partial differential operators with constant
coefficients and injective principal symbol, it can be included into an el-
liptic Hilbert compatibility complex

with P ° = P. This means that P 1 is a differential operator with constant
coefficients of order 1,

and that

is an exact sequence for 
One easily sees that the condition 0 is a necessary one for the

solvability of the equation Pu = f.
Let us denote by the following closed subspace of
- 

p

LEMMA 3.1. For every m e ~+ , the system an or-

thogonal basis in the Hilbert space Moreover there exist
constants C1 ( m, n), n ) &#x3E; 0 such that

PROOF. The orthogonality and the estimates follow from the
Stokes’ formula and Lemmata 1.1, 1.2 by direct calculations.

Since the compatibility complex (3.1) is elliptic, for every g E
e there exists v E 1, 2 (BR)]k, satisfying Pv = g in BR
(see, for example, [AnNa]). In particular, for every 0  r  R, v e
E 
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where the first series converges in the (and hence,
due to Stiltjes-Vitaly Theorem, uniformly together with all the deriva-
tives on compact subsets of Br).

Because of Lemma 1.3, the coefficients r) do not depend on r.
Moreover, due to the orthogonality the system 1, r)
depend only on g and do not depend on v. Hence the statement of the
lemma holds.

Now, for m ; 0 e Z+) we provide the space (BR ) with the
Hermitian form 

’

where ( f ) are the Fourier coefficients of the vector-function f with
respect to the orthonormal basis I Ph (i) I in (BR).

The following Proposition follows from Lemma 3.1 as Proposition
1.5 follows from Lemma 1.4.

PROPOSITION 3.2. For every m ~ 0, the Hermitian form
( ~ , ~ )SP~, P, ~BR~ is a scalar product in the space (BR) defining the
topology, equivalent to the original one. Moreover, the system

0 is an orthogonal basis in (BR) and there exist con-
stants C1 ( m, n), n) &#x3E; 0 such that

In the following corollary K$i) (f - PTf ), are the Fourier coefficients
of the vector f - PTf with respect to the orthogonal system

COROLLARY 3.3. For every fe 0), with 0
in BR the vector-function

where the series converges in for every 0  r  R, sat-
isfies Pu = f in BR .
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mula one easily checks that

Moreover, Proposition 3.2 implies that, for every m &#x3E; 0,

Now, arguing as in the proof of Lemma 3.1, we obtain that the state-
ment of the corollary holds.

THEOREM 3.4. Let m ; 0 and 0 ~ s ~ m + 1. Then the following
conditions are equivalent:

(1) for every (BR)]l , with = 0 in BR there exists u E
E [ Ws’ 2 satisfying Pu = f in BR ;

for every f E with 0 in BR .

for every f E with 0 in BR ;
(4) there exists a constacnt C1 &#x3E; 0 such that

(5) there exists ac constant C2 &#x3E; 0 such that

PROOF. The equivalence of (1), (2) and (3) follows from Proposi-
tion 1.5, Corollary 2.5 and Corollary 3.3 immediately.

Condition (5) implies (3) because of Lemma 1.3 and Proposi-
tion 1.5.

Further, Proposition 3.2 and Corollary 3.3 imply that the image
Im P of the operator
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is closed. Then (1) yields that there exists a constant Co &#x3E; 0 such
that

for every u e (8/.&#x3E;,2 (BR»1. , with (Pu ) e wm, 2 (BR ), where (8/.&#x3E;,2 (BR»1. is
the orthogonal complement of in (cf.[H6]). In

particular,

for every with ~, vi~ ~ 1. Therefore (1) implies (5).
Finally, (1.2) implies that (4) and (5) are equivalent.

COROLLARY 3.5. One can find a finite (depending
on the operator P) that, for every f e [Wa + s, 2(BR)]l (s &#x3E; 0, a + s &#x3E; 0)
satisfying P 1 f = 0 in BR , there exists a to Pu = f
in BR .

PROOF. It follows, for example, from Lemma 3.2 of [Shl] -and
Proposition 1.5 that the is a basis in the space [h °° 
of harmonic vector-functions in BR belonging to [ C °° Then, for
every u e [h 

°° the series

converges in and the series

converges in [W s,2 (BR)]k for every s ~ 0. According to Sobolev Embed-
ding Theorems, u1 e for every 0, i.e. ul E [COO (BR)]k .
Hence one easily conclude that the series ul converges in

[C 00 (f3R)]k. 
- I C ’ (f3R)llIt is known (see, for example, [AnNa]) that, for every 9 E [C °° 

satisfying P 1 g = 0 in BR , there exists a vector v E [C °° (BR)]k with Pv =
= g in BR . Therefore the operator

(where (CP (BR))’ stands for the closure of the linear span of the sys-
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in [ C °° (BR )]k ) is injective, surjective and continuous.
The Open Mapping Theorem for the Frechet spaces implies the inverse
operator P ~ 1 of is continuos too.

Now, using Theorem 3.4, one easily concludes that there exists such
a finite number a ; -1 (depending on the operator P) that, for every
f E + s, 2 (BR)]l (s ~ 0, a + s ~ 0) satisfying the integrability condi-
tions, there exists a [ Ws’ 2 (BR)]k-solution u to Pu ==/in BR , unless the
operator P ~ 

1 is not continuos.

Corollary 3.5 can be proved using Ehrenpreis Fundamental Princi-
ple (see [Bj]).

EXAMPLE 3.6. Let nl ; 1, n2 ~ 1, ~ be (ll x k)-matrix factorization
of the Laplace operator in ~1 and q be (4 x I)-matrix factorization of
the Laplace operator in R;2. Then the operator

is a matrix factorization of the Laplace operator in 
We assume that either the dimension of the vector space or

the dimension of the vector space is not finite. Then, Theorem
3.4 implies that, for every m ; 0 and s &#x3E; m + 1/2, the image Im (Ps, m)
of the operator 

’

is not closed (cf. [Ke] and [NaSh] for the Cauchy-Riemann system).
Indeed, let the dimension of the vector space ,SQ (Rnl) be not finite.

We fix an eigenfunction hi ( y ) of Green’s operator ~q corresponding to a
ball in Rn2 and to an eigenvalue 1. Because the dimension of the
vector space SQ is not finite, for any number N &#x3E; 0 there exists a
number v ; N such = 0 in BR , and therefore there exists a
harmonic homogeneous polynomial hv + 1 = h1(y)hv(x) in lE~n1 + n2 ,
with

Due to Theorem 3.4, is not closed for every s &#x3E; m + 1 /2.
The proof for the case where the dimension of the vector space

is not finite, is similar.0
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According to Example 3.6 we can not garantee the exis-

tence of WS, 2 (BR)-solutions of Pu = f for all data in Lwm, 2 (BR)]2 satisfy-
ing the compatibility conditions if s &#x3E; m + 1/2. However we can do it
for s = m + 1/2.

Indeed, one easily checks that harmonic homogeneous polinomials of
the type hv = E XN hr, t (where hrt are the polinomials from

r+t+N=, . 2 (Example 1.9) are dense in (BR). Moreover, = (1 + N +
+ 2r)/(l + 2vl) hv. Now Theorem 3.4 implies the desired state-
ment.

As in [NaSh], we can easily apply the spectral decomposition of the
operator G, and Theorem 3.4 to the following P-Neumann Problem (cf.
also [Ky], §§ 17-19).

PROBLEM 3.8. Let 1jJ E [wm - 1/2,2 be a given vector, m ; 0
and It is requared to such
that

It follows from the Stokes’ formula that the condition

is necessary, for Problem 3.8 to be solvable. Because the dimension of
can be infinite, in general, Problem 3.8 is not an elliptic bound-

ary value problem.
In the following corollary T 1/J stands for the integral

and stands for the Fourier coefficients of the vector with

respect to the orthogonal in [h °, 2 (BR)l’~ (because E

E [ wm - 1/2, using 2.3.2.5 in [ReS~], we conclude that E

E [hm + 1, 2 (BR )]k). .
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COROLLARY 3.9.. If Problem 3.8 is solvable for every V E
E [wm - 1/2,2 satisfying (3.3), then conditions in Theorem 3.4
hold with s = N, and

is its unique solution in Back, if conditions in Theorem
3.4 hold with s = (N + m + 1 )/2, Problem 3.8 is solvable for every V e
E [ Wm -1 ~2, 2 ( aBR )]k , satisfying (3.3).

PROOF. SincerPu = iy~ for a solution u of Problem 3.8, using Corol-
lary 2.8 one easily concludes that formula (3.4) holds.

Let Problem 3.8 be solvable for every E [Wm - 1/2, 2(dBR)]k, satis-
n B

fying (3.3). Then, it is easy to see that (3.3) holds for 
E [Wm - 1/2,2 (19BR )]k with f E Sm, 2P1 , P*(dBR). Denoting by U E [h N, 2 (BR)]k a
solution of Problem 3.8 for such a vector V, we obtain that rPu -

n B

0. Because Lemma 1.1, Propositions 1.5 and 3.2, f = Pu,
i = 1 

i.e. the conditions of Theorem 3.4 holds with s = N.

Back, there exists a function v E
such that Condition (3.3) implies ~e

(Spm, 2 (BR)) 1. Hence we can decompose v with respect to the orthogonal
in this space. Denoting by the corresponding

Fourier coefficients, we set

One easily calculates that u = u is a solution of Problem 3.8, if condition
(5) of Theorem 3.4 holds with s ~ (m + N + 1)/2. m

COROLLARY 3.10. For every V E [C °° satisfying (3.3), there
exists u e h ’ [(BR)]k satisfying (3.2).

In the case where P is the gradient operator in Problem 3.8 is
the Neumann Problem and (3.4) is a classical formula for its solutions
(cf., for example, [VI], pp. 426-428). For the Cauchy-Riemann system
see [Ky], p. 181).
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