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Extension of Formal Power Series Solutions.

CHIARA BOITI - MAURO NACINOVICH (*)

Introduction.

In the classical Cauchy problem for a linear partial differential

equation with initial data on a hypersurface, smooth initial data togeth-
er with the equation allow to compute the Taylor series of a smooth sol-
ution at any given point of the hypersurface.

This leads to the notion of a formally non-characteristic hypersur-
face for a system of linear partial differential equations, that was con-
sidered in [1], [2], [10].

This remark suggests further generalizations of the Cauchy prob-
lem, where the assumption that the initial data are given on a formally
noncharacteristic initial manifold is dropped and we allow formal sol-
utions (in the sense of Whitney) of the given system on any closed sub-
set as initial data.

The problem is then to find classical smooth solutions of the system,
whose restrictions in the sense of Whitney are the given initial
data.
A similar question for Whitney functions of finite order was studied

in [5].
In this paper we take up an extreme case of the generalized Cauchy

problem, where the initial manifold reduces to a point.
The initial data are then a (vector valued) formal power series

99 at a point xo E IV, satisfying a system P(x, D ) cp = 0 at xo in
the sense of formal power series, and we try to find a smooth
function u, defined on a neighbourhood of xo, having cp as its Taylor

(*) Indirizzo degli AA.: Dipartimento di Matematica, Via Buonarroti 2, 56127
Pisa, Italy.
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series at xo and satisfying the system P(x, = 0 on a Schwartz-

regular open domain D c U with xo E D.
Most of the results will be obtained for systems of linear partial dif-

ferential operators with constant coefficients.

1. - Evolution pairs.

Let S~ be an open set in 
If F is a closed subset of Q, and we denote by 4(F, S~ ) the ideal of

smooth functions in S~ which vanish of infinite order on F, then the
space WF of Whitney functions on F is defined by the exact se-

quence

The quotient topology of ~( S~ )/~(F, ,~ ) makes WF a Fréchet space. We
note that WF and its Fr6chet topology are independent of the choice of
the open neighbourhood Q of F in 

For f E WF and xo E F we set

for the Taylor series of f at xo, and

for its Taylor polynomial of degree m at xo .
For any compact subset K of F and any integer nz a 0 we set

if K contains at least two distinct points; if K = then we set

lllflll{x0}m = llfll{x0}m.
These define the Frechet space structure of WF

(Whitney extension theorem, cf.[13]).
If F is regular in the sense of Schwartz (cf. [12]), for instance if F is

convex, then the topology of W~ can be defined in an equivalent way by
the sminorms )) . ))li.
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The strong dual of WF is the space 6F of distributions with

compact support contained in F.
Let A(x, D) be an al x ao matrix of linear partial differential opera-

tors with smooth coefficients in S~. It defines a continuous linear

map

Let F be a closed subset of ,5~. Since

we obtain, by passing to the quotients, a continuous linear map

Denote by SA (F) the space

Let F, c F2 be a pair of closed subsets of Q.
We have a natural restriction map

which commutes with A(x, D).
Therefore we can consider the (generalized) Cauchy problem:

DEFINITION 1.1. We say that an evolution pair for
A(x, D) if the restriction map (1.1) induces an epimorphism

When (1.2) is injective, we say that (Fl , F2 ) is a causality pair, and
when (1.2) is an isomorphism we say that (Fl , F2 ) is a hyperbolic
pair.

Let us remark that the problem of causality has been largely stud-
ied by many authors (see, for example, [3], [8], [10]).

In the case of constant coefficients when F, is affine linear and F2 is
a neighbourhood of F1 the condition that A(D) be non-characteristic in
the conormal directions of F, is necessary and sufficient for causali-

ty.
We introduce the notion of local evolution:
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DEFINITION 1.2. The pair (F1, F2 ) is a local evolution pair for
A(x, D) if for every f e with A(x, D) f = 0 in F1, we can find a

neighbourhood U of Fl in and a function u such that

A(x, D) f = 0 in F2nU = f. 

LEMMA 1.3. Assume that (F1, F2 ) is a local evolution pair for
A(x, D). Then, given any compact subset K of Fl, we can find a neigh-
bourhood V of K in Q such that (F1, Fl U is an evolution pair
for A(x, D).

PROOF. Let be a countable fundamental system of closed

neighbourhoods of K in Q and set Wv = Vy 
For each v the space

is a Frechet space as a closed subspace of ~(F1 ) x 8(Fl U W ).
The projection map on the first coordinate

is linear and continuous, and by assumption we have:

By Baire’s category theorem, for some v the is a set of
second category in and then it is equal to ~(F1 ) by Banach’s theo-
rem (cf. [11])..

The following theorem shows that hypoellipticity is in general an
obstruction to evolution.

THEOREM 1.4. Assume that A(x, D) is hypoelliptic in S2.
Let K be a compact subset of Q.
If (K, Q) is a local evolution pair for A(x, D), then the space SA (K)

is finite dimensional.

PROOF. By Lemma 1.3, since (K, Sz) is a local evolution pair for
A(x, D), we can find some open subset U of S~ with K c such
that the pair (K, U) is of evolution for A(x, D).

This means that the restriction map

is surjective.
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Therefore, by Banach’s open mapping theorem, for all m E N we can
find m’ E N and a constant c &#x3E; 0 such that

Since A( x, D) is hypoelliptic by assumption, for every V cc U and 1 E N
there is a constant c’ &#x3E; 0 such that

e S’A (K). Then for the extension § we have:

This implies that the map

SA (K) - functions on K of order m’ ~

is injective.
Since the restriction map

is compact when 1 &#x3E; rrz’ by the Ascoli-Arzelà theorem, it follows that

SA (K) is finite dimensional.

REMARK. The hypothesis of hypoellipticity can be replaced by the
assumption that we can find an integer m sufficiently large such that
every Cm solution of the homogeneous system is also a C °° solution (in
this case (1.3) is still valid).

2. - Systems of partial differential equations with constant coeffi-
cients.

Let F be a C-linear space (of generalized) functions on an open sub-
set of R.n, closed by derivation, i.e. such that

Let 9’ = C[C1, ..., Cn] denote the ring of polynomials in n indetermi-
nates with coefficients in C.
We consider 1F as a differential 9’-module, by letting the elements
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of 1P act on T as linear partial differential operators with constant
coefficients.

By this we mean that if p(~) = 2 is a polynomial in 1il, and
we set 

where for with D~=
= then p(~) acts on 

Let Ao ( ~) be an ao x al matrix with coefficients in I.-P.

We consider the system

for a given f E ff" -
We consider the 0-module of finite type

Then the map Ao ( ~) : - can be inserted in a Hilbert resolu-
tion

by free 8’-modules of finite type.
We note that

is a necessary condition for the solvability of (2.1) and that every
necessary condition for the solvability of (2.1) which can be expressed
in terms of linear partial differential equations is a consequence of
(2.3).

Via the natural isomorphisms
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we obtain the interpretation of the groups Ext~ (M, M:

for j &#x3E; 1.
This isomorphisms translate statements about the solvability of

systems of linear partial differential operators with constant coeffi-
cients into statements on the groups Ext ~ (M, ~) associated to the
1P-module M = coker Ao .

More precisely, uniqueness in (2.1) is equivalent to the condi-
tion

whereas the existene of solutions u e Fa0 of (2.1) whenever f E Fa1 satis-
fies the integrability conditions

translates into

The main advantage of this formulation is that it enlightens the alge-
braic invariance of the problem. In particular, existence and uniqueness
in (2.1) are properties of the P-module M and are independent of its
presentation by a particular matrix Ao ( ~ ).

Several classical problems in the theory of partial differential opera-
tors can be translated into the vanishing of the cohomology groups
Ext ~ (M, 1F) for different choices of the differential 1P-modules M

3. - Extension of power series solutions.

Let F be a locally closed subset of with 0 E F.
We note that the space Wlol can be identified with the space

... , of formal power series f(x) = E by Borel’s
lemma (see [6]). a G’

For fe WF, we for the Taylor series of f at 0, which corre-
sponds to f by the natural restriction map



212

Let Ao (D) be an al x ao matrix of linear partial differential operators
with constant coefficients in Rn.

We formulate the Cauchy problem for the pair ({0}, F) in the fol-
lowing way:

Let ~({0}, F) be the ideal of functions of WF which vanish of infinite
order at { 0 }. Then we have an exact sequence of differential 8’-mod-
ules :

If Ai (D) is an a2 x a1 matrix of partial differential operators with con-
stant coefficients giving a basis for the integrability conditions of
Ao (D), a necessary condition in order that the Cauchy problem be solv-
able is that

These integrability conditions for f will be therefore assumed in the
following.

Besides, by the extendability of Whitney functions, 99 extends to an
element q E Then, upon substituting f - Ao (D) ëp to f, we are re-
duced to a new Cauchy problem of the form:

Because I({0}, F) is a P-module, existence or uniqueness in the Cauchy
problem for the pair ( { 0 }, F) are properties of the 1il-module M =
= 

Therefore we are led to the following:

1) The pair ({0}, F) is of evolution for M in the Whitney class if
and only if

2) The pair ({0}, F) is hyperbolic for M in the Whitney class if
and only if

3) The pair ({ 0 }, F) is of causality for M in the Whitney class if
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and only if

From the exact sequence (3.1) we deduce, for every 0-module M, the
long exact sequence

Assume now that F is a convex set. Then we have (cf. [9])

Therefore, for a convex F, the long exact sequence above reduces to

It follows that:

1) The pair ({0}, F) is of evolution for M in the Whitney class if
and only if the homomorphism

is onto.

2) The pair ({ 0 }, F) is hyperbolic for M in the Whitney class if
and only if the homomorphism (3.2) is an isomorphism.

3) The pair ( { 0 }, F) is of causality for M in the Whitney class if
and only if the homomorphism (3.2) is injective.

It is well known that if F is a neighbourhood of 0, then the pair ({ 0}, F)
is of causality for Ao (D ) if and only if Ao (D ) is elliptic.

0

If 0 e 8F and F # 0 we can say that if the pair ({ 0}, F) is of causality
for Aa(D), then Ao(D) is elliptic.

Let us study now evolution.

LEMMA 3.1. A necessary and sufficient condition in order that
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the pair (f 01, F) be of evolution is that the restriction homomorphism
(3.2) has a closed image.

PROOF. Necessity is obvious.
Sufficiency follows because

has always a dense image.

Using two algebraic lemmas proved in [10], we have:

PROPOSITION 3.2. A necessary and sufficient condition in order
that the pair ({ 0 1, F), for a locally closed convex set F with 0 e F, be of
evolution (resp. hyperbolic, of causality) in the Whitney class for M is
that it be of evolution (resp. hyperbolic, of causality) for Tlp for every
associated prime ideal p of M.

Therefore, there is no loss of generality in restricting our considera-
tions to modules of the form for a prime ideal p c ~.

Having fixed a prime ideal p c we set

Identifying Ext0P(P/p, WF ) to the space of Whitney functions u E WF
such that = 0 for all p e p, we give to WF ) a natural
structure of Frechet space, by the family of semi-norms

for compact convex subsets K of F, and for 
When V( p) reduces to one point, the pair ({0}, F) is trivially hyper-

bolic for every choice of a connected locally closed 0.
Thus we will assume in the following that dime 1.

By Banach’s open mapping theorem, if the pair ( ~ 0 ~, F) is of evolu-
tion for in the Whitney class, then the surjective restriction

map

is open.
Therefore:

LEMMA 3.3. If the pair ({ 0}, F) is of evolution for in the Whit-

ney class, then for every compact subset K of F, and every integer m ~
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; 0, we can find acn integer ~n’ ~ 0 and ac constants c &#x3E; 0 such that

It follows:

LEMMA 3.4. If the pair ({ 0}, F) is in the Whit-

ney class, then for every compact subset K of F and every integer m ~
3 0, there is an integer 0 such that for every distribution T wih
compact support in K such that

we can find a distribution Tl of order ~n’ and support in {0}, such
that

Therefore, every continuous linear functional on WF) which
can be carried by 10 1 uniquely extends to a continuous linear func-
tional on Wlol).

PROOF. Let T be a distribution with compact support in K such
that (3.3) and (3.4) hold.

By Lemma 3.3 we know that

Then, for-everyf E WF), we can find f E Ext) WF ) such

We obtain

and hence, by the Hahn-Banach’s theorem, we can find a distribution T,
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of order m’ and support in { 0 } such that

The last part of the statement follows because the restriction map

always has a dense image.

The dual space of Ext~ WF ) is a quotient of the space of distri-
butions with compact support in F and, using the Fourier-Laplace
transform and Ehrenpreis fundamental principle, it can be identified to
the inductive limit for K c c F and of

where HK(~) = sup Im(x, ~) is the supporting function of K. Here we
K

use o(V) for the space of holomorphic functions on V (continuous on V
and holomorphic at non-singular points of ~.

Note that H{o} (~) = 0. In particular, the dual of Wlol) is
identified to the space of restriction to V of holomorphic polynomi-
als in en.

Therefore, by Lemma 3.4, we have the following:

THEOREM 3.5. The pair ({ 0}, F) is of evolution for in the Whit-

ney class if and only if the following Phragmén-Lindelöf principle
holds:

VK cc F and 

3m’ c &#x3E; 0 such that

if f r= 0 satisfies

then it also satisfies
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PROOF. If the pair ({0}, F) is of evolution, since

and

then, by Lemma 3.4 the Phragmén-Lindelöf principle holds.
Vice versa, let us assume that the Phragmén-Lindelöf principle is

valid.

By Lemma 3.1 we need only to prove that the homomorphism (3.2)
has a closed image, i.e. that the dual inclusion homomorphism

has a closed image.
The family

is a fundamental covering of OF (V), (cf. [4]), therefore it suffices to

prove that 1il/p n is closed in for all K cc F.
Let us fix m e N and K c c F, and let f E X9"~~ be such that fn - f in
(V) for a sequence c n 

We want to prove that f E Plp.
Indeed, by the Phragmén-Lindelöf principle, there are m’ e N and

c &#x3E; 0 such that

This means that the sequence is bounded and hence relatively
compact in n ~ o } ~ ( V ).

In particular, there is a subsequence {fnh} such that

and hence

Since fnh - f in dxm) (V), we finally have f = f 
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For P e 101 we set

and

which is a finite dimensional vector space over C.

Then, by the Phragmén-Lindelöf principle above we have:

THEOREM 3.6. A necessary and sufficient condition for the pair
({0}, F) to be of evolution for in the Whitney class is that for every
compact convex subset K of F and every integer m ~ 0 the space n
n is finite dimensional.

PROOF. Necessity follows from Theorem 3.5.
Vice versa, let us set E n 
If E is finite dimensional, then

is a compact subset of E.
Then E c ( ~/ ~ )c’~ ~ ~ for some m’ e N, and E is a compact subset of

(P/p)(m’).
It follows that

and it is a maximum.

Let d = dime V ~ 1. By the preparation lemma (cf. [2]), after a real
linear change of coordinates in C" we can assume that the following
conditions are satisfied:

(1) The projection map .7r: by

is proper and surjective.
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(3) is integral over ... , ~d ].

(4) For all j = 1, ..., n - d, we can find an irreducible polynomial
Pj ( ~ 1 , ... , ~ d , ~ d + ~ ) in p ... , ~ d , ~ a + ~ that is monic with re-
spect 

(5) p n C[C1, ..., Cd, Cd + 1] is a principal ideal generated by Pl.
(6) Let d = d ( ~ 1, ... , ~ d ) be the discriminant of PI with respect

to ~d + 1- Then there are polynomials ~2 , ... , ~n - a E ~[ ~ 1, ... , ~a + ~ ~
such that

Moreover, in (7) we can take, by a suitable choice of real coordinates,
m = 1, and also we can assume that the principal parts of Pl , ... , Pn - d
are monic with respect to ~ d + 1, ... , ~ n respectively.

Then we can consider 1P/p as a ... , ~ d ]-module.
When the pair ({0}, F) is of evolution for 1P/p in the Whitney class, it

follows that for every KccF the sequence

gives a good filtration of elp as a ... , ~ d ]-module.
According to Hilbert’s theorem, we have

for some rational numbers ao , al, ... , as with a~ # 0, and some integer s
with 0 ~ s ~ d, for every rn greater or equal to some mo ; 0.

Hence we deduce:

THEOREM 3.7. A necessary and sufficient condition for the pair
(10 1, F) to be of evolution for in the Whitney class is that for every
compact convex subset K of F we can find k &#x3E; 0 such that

From the preparation lemma we have also that for every polynomial
Q e 1P there is a unique polynomial Q’ E ~ [ ~’ 1, ... , ~ d , ~ d + 1 l, of degree
with respect to ~d + 1 less than the degree ml of PI with respect to ~d + 1,
such that 

Hence we have:

THEOREM 3.8. A necessary and sufficient condition for the pair
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({0}, F) to be of evolution for in the Whitney class is that for every
compact convex subset K of F we can find 0 such that if a polyno-
mial P E ... , ~ d , ~ d + 1 l has degree with respect to ~ d 1 1 less than
the degree mI of P1 with respect and belongs to Or) (V), then its
degree as an element of elp does not exceed km.

PROOF. Let us assume that for every compact convex subset K of F
we can find k &#x3E; 0 such that if a polynomial P E ~[ ~ 19 ... , ~ d , ~ a + 1 ] has
degree with respect less than the degree mI of PI with respect

and belongs to c~ ~m~ ( V ), then its degree as an element of elp
does not exceed km, and let us prove that the pair ( ~ 0 ~, F) is of evolu-
tion for 1il/p in the Whitney class.

Let us take Q E 1il/p fl Or) (V ).
By Theorem 3.7 we have to prove that Q E (elp)(k-) for some

k&#x3E;0.

By the preparation lemma we know that there exists a unique poly-
nomial Q’ E ~[ ~ 1, ... , ~ d + 1 ] of degree with respect less than

ml, such that Q’ - 4Q E p. This means that Q’ = 4Q on V.
Since Q e 0~(V), we have that

where v is the degree of L1 as an element of elp.
Therefore Q’ E (9~ ~ ~~ (V) and hence, by hypothesis, its degree as an

element of Tlp is less or equal to k(m + v) for some k &#x3E; 0.
This means that 4 Q has degree, as an element of 1P/ p, less or equal to

k(m + v).
Since the ideal generated by 4 is closed in (9K (V), we have a closed

map of Frechet spaces

This is then a (strong) homomorphism and hence the estimate found for
L1Q yields to a similar estimate for Q.

The vice versa is obvious.

EXAMPLE 1. Let us consider the Schr6dinger operator
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The corresponding algebraic variety is

Then we can identify 0/ p = ~[ ~ 1, ... , ~ n ] by the map

For each convex compact subset K of ~n + 1, the inequality

becomes

and hence

It follows that P has degree less or equal to 2m and therefore P has de-
gree less or equal to 2m as a polynomial 

Therefore the pair ({ 0 }, lE~n + 1 ) is of evolution for L in the class of
Whitney functions.

EXAMPLE 2. Let us consider the heat operator

in Rn + 1. 
The corresponding algebraic variety is

If K is a compact convex set contained in R~ + = ~(t, x) e lE~n + 1 :
t ~ 0}, then HK (r, ~) = 0 for ~ e and so we can argue as in the case
of the Schr6dinger operator.

It follows that the pair ({ 0}, R + + 1 ) is of evolution for L in the class
of Whitney functions.
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EXAMPLE 3. Let us consider the Cauchy-Riemann operator

in R2.
The associated algebraic variety is

If K is a compact convex subset of R) = ~(x, y) E R~ : 0 1, then

It follows that every P e P/ p which satisfies

also satisfies

Therefore P has degree less or equal to m as an element of 
It follows that the pair ({ 0 }, 1E~2 ) is of evolution for L in the class of

Whitney functions.

EXAMPLE 4. Let p be a principal ideal in C[ ~ 1, ~ 2, ~ 3] generated
by P(~) = ~l~2 + and let V = V( p ).

We have that

Let us write Cj = rjeiOj for j = 1, 2. Then for all (C1, C2, C3) in V we
have:

and hence

Therefore for ~ = ( ~ 1, ~ 2 , ~ 3 ) E V we have that
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and hence for r, r2 &#x3E; 0 we obtain:

Therefore

On the other hand we cannot have any inequality of the form

Indeed, if we consider points of the form

we would have

which is not true for t -~ + ~ .
Let us fix m ; 0 and let us assume that ~2 , ~3 ] satis-

fies

and that v = deg q &#x3E; m.

Since (3.5) is trivial for polynomials of degree less or equal to m, we
can assume that q is of the form

for qj homogeneous of degree j.
By (3.5), for ~ with t real &#x3E; 0 and 6 e V n we have that

q~(8)=0 for j=m+1, ..., v.
Therefore every qj can be written, mod p , in the form
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where ~(~) is homogeneous of 0 and q~ (8) ~ 0 for some
() e V n R3.

From (3.5) we obtain that

and hence

for j=m+1, ...,v.
Let oj E Vn be such that 0. Since 4j is homogeneous and

0, U (( 0, t, we can assume f)j =
=(1,0,0) or ~=(0,1,0).

In the first case we consider points ~ E V of the form

whereas in the second case we consider points C E V of the form

Then we have

the left hand side of (3.6) is O(t’ - hj ~2 ), and the right hand side of (3.6) is
for t - +00.

Therefore j - h~ /2 ~ m, and we have that j ~ 2m.
This shows that a polynomial q E ~[ ~ 1, ~ 2 , ~ 3 ] satisfying (3.5) has

degree at most 2 m mod p.
We have thus proved that:

formal power series solution of
a e N3
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then we can find u e C °° solving

and

4. - Local extension of formal power series solutions.

Let us give some reduction thoerems.

THEOREM 4.1. The following conditions are equivalent for a 0-
module M of finite type:

(i) ( { 0 }, a local evolution pair for M

(ii) ( { 0 }, an evolution pair for M.

PROOF. (ii) ~ (i) is trivial.
Let us prove that (i)==&#x3E;(ii).
It suffices to consider the case where M = 1P/ p for a prime ideal p in

1il.

If (i) holds, by Lemma 1.3 we can find E &#x3E; 0 such that the pair
({0}, BE) is of evolution, where BE = {x e}.

By Theorem 3.7 we have that there exists an integer k &#x3E; 0 such

that, if V = V( p ) and p e 0/ p satisfies

then

We have to prove that for every R e R and n (V)
then the degree of p is bounded by some integer depending only on R
and m.

For p E 1P/ p n (V) we consider



226

This is a semi-algebraic function which is finite for r » 1 since

p E O(m)BR(V).
Therefore by the Tarski-Seidenberg theorem (see [7] th. A.2.5)

there are a constant A &#x3E; 0 and a rational number q &#x3E; 0 such that

Therefore p satisfies an estimate of the form

From the previous remarks we have that p has degree less or equal to
k(m + 1).

Then (ii) follows by Theorem 3.7.

Let us consider now the case where 0 E 3F.
We shall make the following assumption on F:

ASSUMPTION 1. We can find a semi-algebraic compact convex set K
in with 0 E K such that for some E &#x3E; 0 and some neighbourhood U of
0 in R~ we have:

REMARK. a) This property is satisfied if U n F is semi-algebraic
for some open neighbourhood U of 0 in 

b) It is also satisfies if aF is of class C2 in a neighbourhood of 0 and
the hessian of any defining function of F is positive definite on the tan-
gent hyperplane to aF at 0.

Indeed, assuming that F is contained in the half space {x E zi a
~0}, we have in a neighbourhood U of 0 in 

where

and q2 is a homogeneous polynomial of second degree with
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Then we can take

c) More in general, Assumption 1 holds if we have a representa-
tion of F fl U of the form (4.1) with a polynomial q2 (x’ ) that is positive
on Rn -1 B 10 1 and with an error term that is o(q2 (X’)) for x’ - 0.

With the same proof of Theorem 4.1, as HK ( ~) is a semi-algebraic
function for a semi-algebraic subset K of Rn, we have:

THEOREM 4.2. Assume that F satisfies Assumption 1. Then the

following conditions are equivalent for a P-module M of finite
type:

(i) ({ 0 }, F) is a local evolution pair for M
(ii) ({ 0 }, F) is an evolution pair for M.

Assume now that is an increasing sequence of compact convex
semi-algebraic sets with 0 e aKn for every n.

Then we consider the convex set

We note that F is a cone and that F B { 0 } is an open half space if aKn is
of class C1 at 0 for some n.

We construct a Frechet space ~(F, {Kn }) by taking the inductive
limit

LEMMA 4.3. Let K be a compact convex semi-algebraic subset of
Rn, and 

Then, the pair ({ 0}, K) is of evolution (for M) if and only if the pair
({ 0 }, AK) is of evolution.

PROOF. Let ({ 0 }, K) be of evolution and let us show that ({ 0 }, AK)
is of evolution, i.e. that the following Phragmén-Lindelöf principle
holds:

Vm 3m’, c &#x3E; 0 such that for every polynomial p(~) with
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then

Indeed, let

This is a semi-algebraic function which is bounded by assumption.
Then, by the Tarski-Seidenberg theorem (see [7], th. A.2.5), we have
that

for some constant A &#x3E; 0.
This implies that

and hence

Since ( ~ 0 ~, I~) is of evolution we have, by the Phragmen-Lindelof prin-
ciple, that there exist c &#x3E; 0 and m’ e N such that

We have thus proved the thesis.

LEMMA 4.4. Let Kl c K2 be compact convex subsets of Rn, and let
us assume that the pair ({ 0}, K2 ) is of evolution for M. Then the
map

has dense image.

PROOF. Let cp E 6Kl be such that
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and let us show that

Let rrt be the (finite) order of cp.
By assumption the pair ({0}, K2) is of evolution, i.e. the map

is onto.

By Banach’s open mapping theorem we have that we can find c &#x3E; 0
and m’ eN* such that for all v in Exto (M, W{o}) there exists v in
Ext~ (M, Wx2 ) such that = v and

Then, for u E Ext~ (M, WK2 ), we have that

By the Hahn-Banach theorem we can find y E (of order m’ ) such
that

But we know that the map

has dense image, and hence for every u in Ext~ (M, W Kl) we can find a
sequence ~ vn } in Ext~ (M, Wx2 ) such that (with all deriva-
tives).

Then

Therefore

as we wanted to prove.

THEOREM 4.5. If ({ 0 }, is a local evolution pair for M for every
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n, then the map

is surjective. In particular, if G is a locally closed convex set with
0 e 8G and for each n we have Kn c G, and ({ 0 }, G) is a local evolution
pair for M, then the map (4.2) is surjective.

PROOF. By assumption the pair ( ~ 0 ~, Kn ) is of evolution for every
n and hence for all fo E Ext°~ (M, W{o} ) we can find fn E Ext~ (M, 
such that fn I I 0} =fo.

Let us construct a sequence Ign I with gn E Ext°~(M, gin 1101 =
= fo and

Let us take g1 = fl. Let us suppose we already constructed gn for some
n ~ 1 and let us construct gn +1:

by Lemma 4.4 we can
find such that

and so we can take
Now we define

Then un + = un and so it defines an element of Ext) (M, 8(F, 1))
with for all n.N

Let us see an application of Theorem 4.5.

EXAMPLE. Let us consider in Cn the convex set 
U { 0 }. We assert that for every formal power series

we can find a holomorphic function f on ( Re l 1 &#x3E; 0 ) such that, for each
set
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we have

Indeed, if we consider the sequence of convex compact sets ~Km ~m . 2
defined by

we have:

(iv) Vs, R we have B~, R c mKm for some m.

Therefore the statement above follows from Theorem 4.5 if we show
that ({ 0 }, Km ) is an evolution pair for every m, for the module 

&#x3E; ..., C2n] and p = (C1 + iCn + 1, ..., Cn + iC2n).
We have:

and

Note that

with m’ = m/(m - 1).
We introduce real coordinates r¡ 1, ... , r¡ 2n in ~~ 1... ~n by:

Let us consider a polynomial p E C[C1, ..., Cn] satisfyng
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In particular we have that

Note that the means:

Let us consider the set

Then we have

and then, since

if R ~ 1 we have that

Let us now consider the map

The cone

is mapped by 0 into A and 0 * p(t) is a polynomial in satisfy-
ing

Since W contains and open cone, it follows that 0 * p has degree in t less
or equal to m(m - 1 ) L, and hence p has degree less or equal to ml.

It follows that ({0}, Km ) is an evolution pair by Theorem 3.7.
We have thus proved the thesis.



233

REMARK. From the Example above we deduce that for every for-
mal power series solution u in 0 e of the Hans Lewy equation

where z E C, t = for w E C, we can find a solution ii E C °° (W) n
of

Indeed, if we consider the manifold in C2

we obtain that if u is a solution of the Hans Lewy equation, then it sat-
isfies the tangential Cauchy-Riemann equations on M.

It follows that we can find a formal power series in 0, which is a sol-
ution of the 9 operator in 0 and which is equal to u in ~ 0 ~ in the sense of
Whitney.

By the preceding Example we can then extend u to a holomorphic
function on ( Im w &#x3E; 0}, which extends to a Whitney function U, having
Taylor series u at 0, on all sets of the form

for 0  A  1.

Restricting U to the manifold M we obtain a function f E C °° (R3) n
n tr(R3 B { O}) which is a solution of the Hans Lewy equation with

= u.

Let us consider the special case where the algebraic variety V( p) is
an algebraic curve in C~ i.e. when d = dimc V = 1.

Let V be the closure of V in CP’ and let Pi , ... , Ps be the intersec-
tion of V with the hyperplane at infinity. 

_

We can fix neighbourhoods Vl , ..., Vs of Pl , P, in V such that
vi n for and yr I ij : Vj - is an mj-fold covering, where
Vj = VjB{Pj}.

Let K be a convex compact semi-algebraic subset of 

PROPOSITION 4.6. The pair ({0}, K) is of evolution for in the
Whitney class if and only if there exists ac constant M such that each Pj
can be approximated, on each connected points is
EM = {C E V: HK(C)  M}.

PROOF. By passing to the normalization of V, we can assume that Vj
is connected for every j. Let us assume that ( f 0 ~, K) is of evolution and
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let us prove that we can approximate each Pj by points in EM for some
M&#x3E;0.

We argue by contradiction: we assume that PI cannot be approxi-
mated in E~ for any M &#x3E; 0.

Let

By assumption cp(r) is not bounded for that

for A # 0 and 
Therefore

where A ’ &#x3E; 0 and q ’ E Q with q ’ &#x3E; 0.

By Weierstrass gap theorem we can find a meromorphic function f
on V with zeros in P2 , ... , P~ and a single pole in PI of arbitrarily high
order.

Thus we can find polynomials on V with arbitrarily high degree, but
bounded in v2 , ... , ~~s-

By (4.3) we can find polynomials p~ satisfying an estimate of the
form

but of arbitrary high degree, so that we cannot find constants c &#x3E; 0 and
such that

for all v E N.
We have thus found functions which violate the Phragmen-Lindelof

principle.
Let us now assume that the points P1, ... , Pg can be approximated

on EM for some M &#x3E; 0, and let us prove that the Phragmen-Lindelof
principle holds.

Indeed, for every polynomial p satisfying

since the points at infinity can be approximated by points where
HK()) % M, after passing to the uniformizing coordinate, we realize
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that the order of pole of p in Pj is bounded because of (4.4), for

~=1, ...,s.
Therefore we can find constants c &#x3E; 0 and nz e N such that

We have thus proved the thesis.
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