RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITA DI PADOVA

NICOLAE POPESCU

CONSTANTIN VRACIU
On the extension of a valuation on a field K to K (X).-II

Rendiconti del Seminario Matematico della Universita di Padova,
tome 96 (1996), p. 1-14

<http://www.numdam.org/item?id=RSMUP_1996__96__1_0>

© Rendiconti del Seminario Matematico della Universita di Padova, 1996, tous
droits réservés.

L’acces aux archives de la revue « Rendiconti del Seminario Matematico
della Universita di Padova » (http://rendiconti.math.unipd.it/) implique 1’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RSMUP_1996__96__1_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

REND. SEM. MAT. UNI1v. PADovA, Vol. 96 (1996)

On the Extension of a Valuation on a Field K to K(X). - I1.

NICOLAE POPESCU (*) - CONSTANTIN VRACIU (**)

SUMMARY - Let K be a field and » a valuation on K. Denote by K(X) the field of ra-
tional functions of one variable over K. In this paper we go further in the
study of the extensions of v to K(X). Now our aim is to characterize two types
of composite valuations: r.a. extensions of first kind (Theorem 2.1) and the
composite of two r.t. extension (Theorem 3.1). The results obtained are based
on the fundamental theorem of characterization of r.t. extensions of a valua-
tion (see [2], Theorem 1.2, and [6]) and on the theorem of irreducibility of lift-
ing polynomials (see [7], Corollary 4.7 and [9], Theorem 2.1). The result of this
work can be utilised, for example, to describe all valuations on K(Xi, ..., X,,)
(the field of rational functions of % independent variables) and elsewhere. A
first account of this application is given in[10].

1. — Notations. General results.

1) By a valued field (X, v) we mean a field K and a valuation v on
it. We shall utilise the notations given in[8, §1] for notions like:
residue field, value group, etc. Denote by K a fixed algebraic closure of
K and denote by v a (fixed) extension of v to K. Then Gy is just the ratio-
nal closure of G,(G; = G, ®;Q) and k; is an algebraic closure of k,. If
a € K, the number [K(a) : K] will be denoted by deg a (or degka if there
is danger of confusion). An element (a, ) € K XG5 will be called a
minimal pair with respect to (K, v) if for any b e K, the condition
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v(a — b) = 6 implies dega < degb. We shall say simply «minimal pair»
if there are no doubts about (K, v).

Let K(X) be the field of rational functions in an indeterminate X
over K. If r e K(X), let degr = [K(X) : K(7)]. A valuation w on K(X) will
be called a r.t. (residual transcendental) extension of v to K(X) if the
(canonical) extension k, C k,, is transcendental. The r.t. extensions of v
to K(X) are closely related to minimal pairs (a, ) € K XGj5.

Let (a, ) be a minimal pair. Denote by: f the monic minimal polyno-
mial of @ over K and let y = 2, inf (6,%(a — a')), where a’ runs over all
roots of f. o

Moreover let v’ the restriction of v to K(a) (it may be proved that v’
is the unique extension of v to K(a)).

Finally let ¢ be the smallest non-zero positive integer such that
ey e Gy, .

If FeK[X], let:

F=Fy+F,f+..+Ff°, degF;<degf,
be the f~expansion of F. Let us put:

1 w(a,a)(F)=0<iIilf;s(5(Fi(a))+i7)-
Then one has:

THEOREM 1.1 (see[2],[6]). The assignment (1) defines a valuation
on K[ X] which has a unique extension to K(X). This valuation, denoted
by w, s 18 an r.t. extension of v to K(X). Moreover one has:

a) Gw(a,é) = Gv’ + Z‘}/ gG;.

b) Let h € K[X] be such that deg h < deg f and that v’ (h(a)) = ey.
Then r=f¢/h is an element of K(X) of smallest degree such that
Wa, 5)(1) =0, and such that r* the image of r in the residue field, is
transcendental over k,. One also has: kg sy = k, (r*).

o) If (a, d), (a’, &') are two minimal pairs, then wg sy = Wy, 5
whenever 0 =06 and v(a —a') = 9.

d) If wis a r.t. extension of v to K(X), there exists a minimal pair
(a, 8) (with respect to (K, v)) such that w = w, s)-

If w= 1wy, s, we shall say that w is defined by the minimal pair
(a, 0) and v

Let w =w,, s, be an r.t. extension of v to K(X). We keep the nota-
tions of the previous theorem. Let g be a monic polynomial in k, [r*],
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(with respect to the «indeterminate» r*), i.e.:
gr*) =r* + Ajr* -1+ +A,, Aek,, 1<i<m.

By a lifting of g to K[ X] with respect to w we mean (see [9]) a polynomi-
al G e K[X] such that:

i) degG = me,
i) w(G) = mey,
iii) (G/R™)* =g.

It is clear that there are many liftings of g to K[X] with respect to w.
However one has the following result:

THEOREM 1.2 ([9]). Let g be an irreducible polynomial of k, [r*]
with non-zero free term. Then any lifting G of g to K[X] (with respect to
w) 18 also an irreducible polynomial.

2) The reader can refer to[11] for the notion of composite valua-
tions appearing in the next result.

THEOREM 13. Let w = w s be a r.t. extension of v to K(X). Let
gek,[r*] be an irreducible polynomial with mon-zero free term and
let G be a lifting of g to K[ X] (with respect to w). Let u' be the valuation
on k, (r*), trivial on k, , defined by irreducible polynomial g. Denote
by u the valuation on K(X) composite with w and w'. Then:

i) G, (the value group of w) is isomorphic to the direct product
G, X G, ordered lexicografically.

i) Let F e K[X] and let
F=Fy+F,G+..+F,G?, degF;<degG, 0sj<gq
be the G-expansion of F. Then one has:
uw(G) = (mey, 1)
wF) = s“}fs q('w(Fj) + mjy, j) .

Proor. It is well know that G, = Z. We shall divide the proof in
two steps.

A) At this point we shall prove that G, = G,, X Z, this last group
being ordered lexicografically. According to the general theory of com-
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posite valuations (see (11) or (5)) there exists the exact sequence of
groups:

005G, 56, 5G,—0

where ¢ and p are defined in a canonical way. Now look at the Theorem
1.1. Let a € K(X). Since G, = G, + Zy, and ey € G, one has w(a) =
=q +ty, where qe G,, and 0 <t <e. Let us denote:

A={Hf', HeKIX], degH <mn, 0<t<e}.

For any a € K(X) there exists a’ € A such that w(a) = w(a'). Thus one
has w(a/a') =0 and u(a/a’) = e(u’' ((a/a’)*)). Hence

@) w(a) =wu(a') + e(u’ (a/a’)*)).
Now we shall prove that the subset:
B={u(a)|laecA}

is a subgroup of G and B N &(G,,.) = 0. Indeed, let b = u(Hf*) € B. Then
p(b) = w(Hf") =v' (H(a)) + ty. If b=-¢e(c), then p(b) =0, and so
v' (H(a)) = 0,and t = 0. But then ¢ = u' (H(a)*) = 0, since H(a)* € k.,
and %' is trivial over k, . Hence B N &(G,') =0, as claimed.

Let w(Hf*), u(H' f*") be two elements of B. In order to prove that B
is a subgroup, one must show that their difference: b = u((H, JH')ft1)
also belengs to B. First, let us assume that t —¢' = 0. Let H" € K[ X]

“be such that degH" <n and that w(H'') =v'(H"(a)) = w(H/H').
Then b=wu(H"f*""). Indeed, one has w((H/H')H")=0 and so,
according to ([7], Corollary 1.4), (H/H')H")* €k, . Therefore,
w ((H/HYfY/H'f*~V)*)=0, and so w((H/H)ft ¥)=b=
=u(H"f'"")eB.

Now consider the case t—t'<0. Then (H/H)f' "=
=(H/H'fo)f* . Let H" € K[X],deg H" < m, be such that w(H") =
= w(H/(H'f*?)). As above, one has: w((H/H') f* =) = w(H"f¢**~ ") e B.
Therefore B is a subgroup of G,, and by (2) it follows that there exists
an isomorphism of groups:

G, 5B x &G,).

If B X &(G,,) is ordered lexicografically, then j is an isomorphism of or-
dered groups. Indeed, let a, € K(X) be such that u(a) < u(B). Let
a', B’ € A be such that w(a) = w(a’) and w(B) = w(B'). Then u(B) =
=wu(B') + e(u' ((B/B')*)). Since u(a) < u(B), it follows that w(a) < w(B)
and so w(B/a’) = 0. Since the restriction of p to B defines an isomor-
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phism of ordered groups to B onto G,, it follows that w(8') =
= u(a').

Let us assume that u(a) < u(8) and u(a') = u(8'). Then by (2), it fol-
lows: e(u'((B/B)*)) > e(u’ ((a/a’)*)). Hence jw(B))>j(u(a)), as
claimed.

We have already noticed that B = G, and since G, = Z we may as-
sume that

G,=G,xXZ

where the right hand side is ordered lexicografically. Moreover, if a e
e K(X) and a' € A is such that w(a) = w(a'), then, by (2), one has:
w(a) = (w(a), u' ((a/a')*)) € G, X Z.

B) Let G be a lifting of g (with respect to w). Now we shall deter-
mine % using G and w. Since w(G) = mey then we may choose H € A be
such that w(H)=mey. Then w(G)= (w(H), ' (G/H)*)). But
(G/H)* = (G/h™)* (h™ /H)* = ag, where a € k, (see[T7] Corollary 1.4).
Hence ' ((G/H)*) = 1. Therefore, one has:

wG) = (w(H), 1) = (mey, 1).
Now let F e K[X] be such that degF' < degG. We assert that:
3) w(F) = (w(F), 0).

Indeed, let a € A, a = Hf* be such that w(a) = w(F). Also, let F = F,, +
+ Fif+ ...+ F,f° be the fexpansion of F. Since w(F)=w(a)=
= ' (H(a)) + ty, then the smallest index i such that w(F) = w(F;) + iy
(see (1)) is necessary bigger than £, and thus

s (F. *
4) (Flay* = 2 (—’ff - ”) :
=i\ H
It is clear that if j — ¥ 0(mod e), then w(F; JHf? =) > 0 and so we may
assume that only terms with j — ¢ = 0(mod e) appear in (4). If we write
for a such term:

__If];fj—t*= th(j—t)/e wf fi-t \*
H H pU—De

then, according to ([7], Corollary 1.4), it follows (4) is an element of
k, [r*] whose degree (relatively to the variable r*) is smaller than m =
= degg. Hence u' (F/a)*) =0, and so (3) holds, as claimed.
Furthermore, let F € K[X], and let F =Fy+ F,G + ... + F,G be
the G-expansion of F. Let ¢ be the smallest index such that w(F;) +
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+ 1w(G) < w(F;) + juw(G) for all j, 0 <j<gq, and such that w(F;) +
+ w(G) < w(F;) + jw(G) for all j <i. We assert that one has:

) w(F) = w(F;) + 1w(@).

For that, we shall prove that an inequality in (5) (necessarily >) leads
to a contradiction. Indeed, since w(F;G’ /F;G;) =0 for all j, 0 <j<g,
by the choice of ¢ one has:

(6) 1+ 2( it ) =0

1.

or equivalently, since (G/h™)* =g,
M 1+ Z( ”‘h‘"‘) 9‘=0.

At this stage it is easy to see (according to the above considerations)
that for all ¢, the non-zero coefficients of g° in (6) are of the form U/V
where U, Ve k[r*] and that deg U < m, degV < m (the degrees with
respect to r*). This shows that (6) is impossible, and so (5) holds, as
claimed.

Furthermore by (7) it follows that u’'((F/F;G")*)=0 so that
w(F/F;GY) = e(u’' (F/F;G)*)) =0. Since degF;<degG we then
have

w(F) =u(F;G") + w(F[F;G*) = u(F;) + tw(G) = (w(Fy), 0) + i(w(G), 1) =
= (w(F), i) = inf (wF;G),j)=_inf (w(F)) +mejy,j).
0sj<gq 0<j=<gq

The proof of Theorem 1.3 is now complete.

2. — Extensions of the first kind in general setting.

We shall freely use the notations and definitions given in the previ-
ous section.

Let (K,v) be a valued field. A valuation % on K(X) will be
called an r.a. (residual algebraic) extension of v if  is an extension
of v and the extension k,ck, is algebraic. The r.a. extension u
is called of the first kind if there exists an rt. extension w of
v to K(X) such that % <w. Theorem 4.4 in[8] describes all r.a.
extensions of the first kind of v when K is algebraically closed.
Now we shall describe these extensions in the general setting (i.e.
K is not necessarily algebraically closed). The results of this section
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generalise the results given in ([8], Section 3). Moreover, we give
a simplified proof.

THEOREM 2.1. Let (K, v) be a valued field. Let u be an r.a. exten-
ston of the first kind of v to K(X). Let w be an r.t. extension of v to K(X)
such that w < w. Let u' be the valuation induced by w on k,, such that u
is the composite with valuations w and u'. Then one has:

1) There exists an isomorphism of ordered groups G, = G, X Z,
the direct product being ordered lexicografically.

2) Let u' be defined by the monic irreducible polynomial g e
€ k, [r*], whose free term is not zero (i.e. g&r*). Let G be a lifting of g to
K[X] with respect to w. If F e KIX] and F =Fy+ F,G + ... + F,GY is
the G-expansion of F, then one has:

wF) = inf (w(F;G'),j).
0<j=gq

3) Let u' be defined by r*. If Fe K[X]land F=Fy+ F,f+ ... +
+ F,f? is the f-expansion of F, then one has:

w' (F) = s“}fs q(w(ijj), [j/e]) .

4) If u' is the valuation at the infinity (i.e. defined by r*~1')
then:

wF) = inf q(u(ijj), —[j/eD).
(Here [j/e] means the integral part of a real number).

ProoF. The points 1) and 2) have been proved in Theorem 1.3, so
we have to prove only 3) and 4).

Consider again the set A defined in the proof of Theorem 1.3. Let
a € A be such that w(a) = w(F'). Let ¢ be the smallest index j, such that,
according to (1), one has:

()] w(F) = wF; ) = w(a).
By this equality it follows that i = ¢. Hence:
_F_)*_ S (fi j—t)*

( a jgi at :

By (7) it follows that for any j such that j — i#0(mode), one has
((F; /H)f? ~*)* = 0. Therefore, we may assume that in the last equality
only terms with j — ¢t = 0(mod e) appear. Since every term in the right



8 Nicolae Popescu - Constantin Vraciu

hand side of the last equality may be written as:

By N (B gt £ ) -
i —| LpG-0/e — . p¥*0 —b/e
(Hf] ) (H" pa-or | = 4"

where a,;ek, (see[7], Corollary 1.4), and since a; =0, then one
has:

w (Ffay) =1L

if ' is defined by r*, and

W (Flay) = - L,
if ' is the valuation at infinity. (Here i’ is the smallest index j such
that w(F) = w(F;f). )
The proof of 3) and 4) follows by these two last equalities and (2).

3. — Composite of r.t. extensions.

Now, we are considering the Theorem 4.3 of[8] in the general
setting. '

Let (K, v) be a valued field (K is not necessarily algebraically
closed) and let w be an r.t. extension of v to K(X). As always, we pre-
serve the notation and hypotheses given in Theorem 1.1. Let 2z’ be a
valuation on k, and %' an extension of z' to k, = k, (r*). Let z be the
valuation on K composite with the valuations v and 2z’ and let u be the
valuation on K(X) composite with the valuations w and «'. It is easy to
see that u is an extension of z to K(X). Moreover, according to ([8], Sec-
tion 4.2), it follows that « is an r.t. extension of z to K(X) if and only if '
is an r.t. extension of z' to k, (r*).

In this section we shall describe » by means of z', 2z, u’, v and w. We
shall use also Theorem 4.3 of [8]. _

Let K be an algebraic closure of K and let z be an extension of z to K.
Let % be a common extension of % and z to K(X) (see [3], Section 2). Let
s:G,— G, be the canonical homomorphism of ordered groups for
which su = w. Let G, = G, ®;Q and let s : G; — G, be the unique ho-
momorphism of ordered groups which naturally extends s. Let w = su.
It is easy to see that w is a valuation on K(X) which extends w. Let v be
the restriction of w to K. It is clear that v is an extension of v to K and
that w is a common extension of » and w to K(X). Also it is easy to see
that (under the notation in [8]) one has: 2 < 7 and % < w. Denote by %'
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the valuation induced by % on kg and denote by z' the valuation induced
by z on k;. It is clear that %' is an r.t. extension of 2’ and z' is an exten-
sion of z' to k;. Moreover, %' is a common extension of %' and z' to k.
One should note that k; = k;(t), where ¢ is a suitable element of k5, and
t is transcendental over k; (¢t will be defined later).

Let w = w,, sy (see Theorem 1.1). Then w is also defined by the mini-
mal pair (a, d) (with respect to valuation v). One has the following com-
mutative diagram, whose rows are exact sequences:

0->G, >G,>G,—0

l

0> Gy >Gy>G

€«
€~

— 0.

g|

In this diagram s and s are defined above and &, € are the natural inclu-
sions. Since Gy = G5, then (see [8], Theorem 3.3) we may assume that
Gy is canonically isomorphic to the direct product Gz X Gy ordered
lexicografically.

Let (a’, 0') € k3 X G3, be a minimal pair with respect k,. such that
u' is defined by this minimal pair and z'. Denote by g the monic mini-
mal polynomial of @' over k, . Because r* is transcendental over &, and
k, is a finite extension of k,, then we may assume that g € k. [7*]. Let
us assume that g # r* or, equivalently, a’ # 0. Let G be a lifting of g in
K[ X] with respect to w. Set A = (8, ') € Gy. One has the fundamental
result:

THEOREM 3.1. There exists a root ¢ of G in K such that (c, 1) is a
minimal pair with respect to (K, z), and that u is defined by (c, A) and
z (ie. one has: u = wg, ).

ProOF. Denote by m the degree of the polynomial g with respect to
variable r*. According to the definition of a lifting polynomial, one has
in k,: g =(G/h™)*. Now we shall determine (G/h™)**, the image of
G/h™ in ky. For that, we know that g is transcendental over k,. Then,
according to ([3], Proposition 1.1), there exist the roots cy, ..., ¢, of G(X)
such that (c;, J) is a pair of definition of w and (a — ¢;) = 6, for all 1 <
<1 < p. Moreover, for other roots ¢’ of G, which do not belong to
{c1, ..., ¢c,} one has: v(a — ¢') < 4. Therefore, in K(X), we may write:

P

GX) = [1(X - ¢;)G,, where G, e K[X]. It is clear that w (G, (X)) =
i=1



10 Nicolae Popescu - Constantin Vraciu

=9(Gy(a)). Let d e K be such that 7(d) = 6. We may write:

4 (X~a _ (c;—a)

P
GX) =X -e)Gi(X) =11 ] 3 )G1 X)d?
i=1 1

and thus:

where

* *
t=(£§_‘£) , b=(G‘(X)) eky.

Therefore, in the field kg, one has:

G *[ Gy(a)d?
G,(a)d? ) L™ (a)

*
(G/hm)** = ( ) = b1 w(t)
Now, since 7 is an extension of w to K(X), there exists the natural
inclusion k, =k, (r*) — kg = k3(t). That inclusion is defined by the
canonical inclusion k, ¢ k; and by the assignment:

r* —g(t)
q
where ¢(t) is a polynomial defined as follows: Let f(X) = _HI(X —a)fi,
where a; = a, ag, ..., a, are all the roots of f such that ”(a; — a) = 6, and

fi e K[X]. One has: w(f;(X)) =v(f;(a)), and w(k(X)) = v (h(a)). We

may write:

fe ** _fL *x q B eff(a) **_
® (5)7-r ‘(h(a)) “((EI(X “i)) h(a)) )

- (5= () ()

(t— ( “"‘“)**)eb' =), b ek;.
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Therefore, one has:

(G/)** = (G/W)* (p(t)) = g(@(®)) .

On the other hand, if a;, ..., a,, are all the roots of g(r*) in k;, then,
according to (8) the last equality becomes:

m ’_m(I_ai_a**e'—!_
(9 (G/h)**=jI=]l(<p(t)—a,-)~jI=11(iH1(t ( = ) )b a,)_

d

Denote by a; =a’'. Then, by (9), there exists a root ¢ of G(X)
such that t — ((c — a)/d)* is a root of @(t) —a’', or, equivalently,
o(((c — a)/d)*) = a’'. This ¢ is the root we looked for Theorem 3.1.
We assert that:

, [ )\ c—a\*
10 “‘(h(c))“”(( d ))
i.e. a' is the image of f*(c)/h(c) in k; . Hence we must show that this
last element has an image in k; and this image is just ¢’. In order to do
this, we notice that w(X — ¢) = d, or equivalently, ¥(a — ¢) = 6. There-
fore, for any A € K[X] with degA < n, one has: v(A(a)) = w(A(X)) =
= v(A(c)). Also, one has:

o (ften =3( Il (¢ ~ ap) = Zte ~ ay).

But %(c — a;) = inf (6,v(a — a;)) =w(X —a;), and thus v(f(c))) =
= w(f(X)) = y. In conclusion, v(f*(c)) = ey = w(h) = v(h(c)) and thus
v(fe(e)/h(c)) = 0 i.e. there exists (f*(c)/h(c))*. On the other hand we
can write:

)4 . — ¥k
= by p(t) =b1b_l;[1(t_ ( ¢ a) )

o _ He-er

i=

h(c) h(c)

o e—a)fil) _ Elc—a a-—a;\dfi) _
‘i[Il h(c) ‘igl( d d ) h(c)
ha) fi(o)

R@ 3 Fra

_ g a-(a_ai))e dé
-1

c—
d d ha)
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and thus:

f1@ | _ ((c—-a)*). Ma) jile) "
ey | P\ "4 he) fi(a) ]
In proving (10) we must show that the second factor in the right hand

side of the last equality is 1. This will result by the following
statement:

(A). - Let B(X) € K[X] and let by, ..., b, be the roots of B in K. As-
sume that, for any 1 < i < ¢, one has: v(a — b;) < 6. Then v(c — b;) <9,
1<is<t, v(B(a)) =v(B(c)) and (B(a)/B(c))* = 1.

Proor oF A. Since %(a — ¢) = d, then, by hypothesis, it follows
that v(B(a)) = v(B(c)). Furthermore, we may write:

o (2] op 252)

B(e) i=i\C— o i cC—a

and so, since v(a-c¢)>vc-a;), 1<i<t, it follows that:
(B(a)/B(c))* =1, as claimed.

Now we are proving that (c, 1) is a minimal pair with respect to
(K, z). In order to do this let ¢’ € K be such that z(c — ¢’) = A. We must
show that [K(c): K] < [K(c'): K]. According to the definition of z, one
has: v(c — ¢') = 6 whence (¢', 0) is also a pair of definition of w. Hence
we may write:

(=) - (B - () e (=)

By the hypothesis z(c — ¢') = 4, the following holds:

(11) z'(¢((c;“)*)—?((%)*))><s'.

Now, since (a’, ') is a minimal pair with respect to (k,, z'), by (10)
and (11) it follows that the minimal polynomial of ¢(((c’ — a)/d)*) over
k,, has the degree at least m.

Suppose that [K(c): K] > [K(c'): K]. Let G, be the monic minimal
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polynomial of ¢’ over K and let
G] = Ao + A1f+ T Aqfq

be the f-expansion of G;. By hypothesis, one has: ¢ < (me — 1)n. Let
H e K[X], deg H < n and let 0 < ¢ < ¢ be such that w(G,;) = w(Hf"). Let
i be the smallest index j such that w(G;) = w(4;f") (see (1)). Then,
necessarily, i =t and for any j =i, w((4;/H)f' ') >0 if j—t#0
(mode). Hence g,(r*) = (G,/Hf") belongs to k, (r*) and its degree
(with respect to r*) is at most m — 1. As above (see (A)) it is easy
to see that (f°(c’)/h(c)* = o(((c’ — a)/d))*) is a root of g, (r*). But
this is a contradiction to (11) and to the result which claims that
(¢(((c — @)/d))*), 6') is a minimal pair (with respect to (k,, 2')). In
conclusion (¢, A) is a minimal pair, as claimed.

To finish the proof we must show that u is defined by (¢, 1). In order
to do this let %, be the r.t. extension of Z to K(X) defined by the pair
(¢, A) (see Theorem 1.1). Since s(1) = J, and v(c — a) = 9§ it follows that
(¢, 6) is a pair of definition of w, hence one has: u; < w. According to
([8], Proposition 3.2) one has necessarlly that u; = u and so, the restric-
tion of %, to K(X) is just u. Hence u is defined by the minimal pair (c, 1),
as claimed.
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