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On the Extension of a Valuation on a Field K to K(X). - II.

NICOLAE POPESCU (*) - CONSTANTIN VRACIU (**)

SUMMARY - Let K be a field and v a valuation on K. Denote by K(X) the field of ra-
tional functions of one variable over K. In this paper we go further in the

study of the extensions of v to K(X). Now our aim is to characterize two types
of composite valuations: r.a. extensions of first kind (Theorem 2.1) and the
composite of two r.t. extension (Theorem 3.1). The results obtained are based
on the fundamental theorem of characterization of r.t. extensions of a valua-
tion (see [2], Theorem 1.2, and [6]) and on the theorem of irreducibility of lift-
ing polynomials (see [7], Corollary 4.7 and [9], Theorem 2.1). The result of this
work can be utilised, for example, to describe all valuations on ... , 

(the field of rational functions of n independent variables) and elsewhere. A
first account of this application is given in [10].

1. - Notations. General results.

1) By a valued field (K, v) we mean a field K and a valuation v on
it. We shall utilise the notations given in [8, § 1] for notions like:
residue field, value group, etc. Denote by K a fixed algebraic closure of
K and denote by v a (fixed) extension of v to K. Then Gv is just the ratio-
nal closure of = Gv and kv is an algebraic closure of kv . If
a E K, the number [K(a) : K] will be denoted by deg a (or degk a if there
is danger of confusion). An element be called a
minimal pair with respect to (K, v) if for any b E K, the condition
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v(a - b) a 3 implies deg a ~ deg b. We shall say simply «minimal pair»
if there are no doubts about (K, v).

Let K(X) be the field of rational functions in an indeterminate X
over .K. If r E K(X), let deg r = [K(X) : K(r)]. A valuation w on K(X) will
be called a r.t. (residual transcendental) extension of v to K(X) if the
(canonical) extension kv c kw is transcendental. The r.t. extensions of v
to K(X) are closely related to minimal pairs (a, ð) E K x Gv .

Let (a, d ) be a minimal pair. Denote by: f the monic minimal polyno-
mial of a over K and let y a’)), where a ’ runs over all
roots of f. 

a’

Moreover let v’ the restriction of v to K(a) (it may be proved that v’
is the unique extension of v to K( a ) ) .

Finally let e be the smallest non-zero positive integer such that
ey e Gvt.

let:

be the f-expansion of F. Let us put:

Then one has:

THEOREM 1.1 (see [2], [6]). The assignment (1) defines a valuation
on K[X] which has a unique extension to K(X). This valuation, denoted
by W(a,,3) is an r. t. extension of v to K(X). Moreover one has:

a) Gw(a, 6 = Gv’ + Zy g Gv .
b) Let h E K[X] be such that deg h  degf and that v’ (h(a)) = ey.

Then r = f /h is an element of K(X) of smallest degree such that
w(a, a ~ (r) = 0, and such that r * the image of r in the residue is
transcendental over kv . One also has: kw(a, 5) = kv, (r * ).

c) If (a, ð), ( a’ , d’ ) are two minimal pairs, then = w(a - , a, ~
whenever 6 = d ’ and v( a - a’ ) : 3 . 

’ ’

d) If w is a r.t. extension of v to K(X), there exists a minimal pair
(a, ~ ) (with respect to (K, v)) such that W = w(~, a~ .

If W = W(a,,3), we shall say that w is defined by the minimal pair
( a, d ) and v.

Let W = W(a,,5) be an r. t. extension of v to K(X). We keep the nota-
tions of the previous theorem. Let g be a monic polynomial in k,, [r * ],



3

(with respect to the «indeterminate» r * ), i. e.:

By a lifting of g to K[X] with respect to w we mean (see [9]) a poLynomi-
al G e K[X] such that:

It is clear that there are many liftings of g to K[X] with respect to w.
However one has the following result:

THEOREM 1.2 ([9]). Let g be an irreducible polynomial of [r*]
with non-zero free term. Then any lifting G of g to (with respect to
w) is also an irreducible polynomial.

2) The reader can refer to [11] for the notion of composite valua-
tions appearing in the next result.

THEOREM 1.3. Let w = be a r.t. extension of v to K(X). Let
g E kv’ [r* ] be an irreducible polynomial with non-zero free term and
let G be a lifting of g to K[X] (with respect to w). Let u ’ be the valuation
on (r * ), trivial on kv, , defined by irreducible polynomial g. Denote
by u the valuation on K(X) composite with w and u’ . Then:

i) Gu (the value group of u) is isomorphic to the direct product
Gw x Gu - , ordered lexicografically.

ii) Let F E K[X ] and let

be the G-expansion of F. Then one has:

PROOF. It is well know that G., = Z. We shall divide the proof in
two steps.

A) At this point we shall prove that Gu = G~ x Z, this last group
being ordered lexicografically. According to the general theory of com-
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posite valuations (see (11) or (5)) there exists the exact sequence of
groups:

where E and p are defined in a canonical way. Now look at the Theorem
1.1. Let a e K(X). Since Gw = G,, + Zy, and ey E one has w(a) =
= q + ty, where q E G,,, and 0 ~ t  e. Let us denote:

For any a E K(X) there exists a’ E A such that w(a) = w( a’ ). Thus one
has w( a/a’ ) = 0 and u( a/a’ ) = ê(U’ «a/a’)*». Hence

Now we shall prove that the subset:

is a subgroup of G and B n e(Gu’) = 0. Indeed, let b = u(Hft) e B. Then
p(b) = = v’ (H(a)) + ty. If b = E(c), then p(b) = 0, and so

v’ (H(a)) = 0, and t = 0. But then c = u’ (H(a)* ) = 0, since H(a)* e kv, ,
and ~’ is trivial over k.,. Hence = 0, as claimed.

Let u(Hf t), u(H’ft’) be two elements of B. In order to prove that B
is a subgroup, one must show that their difference: b = u«H/H’)ft-t’)
also belongs to B. First, let us assume that t - t’ ~ 0. Let H" E K[X]
be such that deg H"  n and that w(H’ ’ ) = v’ (H"(a)) = w(H/H’ ).
Then b = u(H"ft - t’). Indeed, one has w((H/H’ ) H") = 0 and so,

according to ([7], Corollary 1.4), ((H/H’ ) H")* E ku, . Therefore,
= 0, and so 

E B.
Now consider the case t - t’  0. Then 

 n, be such that w(H") _
As above, one has: u«H/H’)ft - t’) = u(H "f e + t - t’) E B.

Therefore B is a subgroup of Gu , and by (2) it follows that there exists
an isomorphism of groups:

If B x e( G u’) is ordered lexicografically, then j is an isomorphism of or-
dered groups. Indeed, let e K(X) be such that u(a) ~ Let
a ’ , E A be such that w(a) = w( a’ ) and = w(~3’ ). Then 
= u(fl’ ) + E(u’ «{3/{3’)*». Since u(a) 5 it follows that w(a) ~ 
and so 0. Since the restriction of p to B defines an isomor-
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phism of ordered groups to B onto Gw , it follows that 
~ u( a’ ).

Let us assume that u( a )  and u( a’ ) = u(~3’ ). Then by (2), it fol-
lows : ~(u’ ((~/(3’ )* )) &#x3E; E(u’ ((a/a’ )* )). Hence &#x3E; j(u(a)), as

claimed.
We have already noticed that B = Gw and since Gu, = Z we may as-

sume that

where the right hand side is ordered lexicografically. Moreover, if a E
and a ’ E A is such that w(a) = w( a’ ), then, by (2), one has:

u(a) = (w(a’ ), u’ «a/a’)*» E Gw x Z.
B) Let G be a lifting of g (with respect to w). Now we shall deter-

mine u using G and w. Since w(G) = mey then we may choose H e A be
such that w(H) = mey. Then u(G) = (w(H), u’ ((G/H)*)). But

(GIH)* = /H)* = ag, where a e k’ (see [7] Corollary 1.4).
Hence u’ ((G/H)* ) = 1. Therefore, one has:

Now let be such that deg F  deg G. We assert that:

Indeed, let a E A, a = Hf be such that w(a) = w(F). Also, let F = Fo +
be the f expansion of F. Since w(F) = w(a) =

= v’(H(a)) + ty, then the smallest index i such that w(F) = w(Fi) + iy
(see ( 1 )) is necessary bigger than t, and thus

It is clear that if j - t 0 0(mod e), then w(Fj lhfj - t) &#x3E; 0 and so we may
assume that only terms with j - t = 0(mod e) appear in (4). If we write
for a such term:

then, according to ([7], Corollary 1.4), it follows (4) is an element of

kv- [r * ] whose degree (relatively to the variable r *) is smaller than m =
= degg. Hence u ’ ((Fla)*) = 0, and so (3) holds, as claimed.

Furthermore, let F E and let F = Fo + Fl G + ... + Fq G q be
the G-expansion of F. Let i be the smallest index such that w(Fi) +
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+ iw( G ) ~ + jw( G ) for all j, 0 ~j ~ q, and such that w(Fi) +
+ iw(G)  w(Fi) + jw(G) for all j  i. We assert that one has:

(5) w(F) = w(Fi) + iw(G) .

For that, we shall prove that an inequality in (5) (necessarily &#x3E; ) leads
to a contradiction. Indeed, since 0 for all j , 0 % j 5 q,
by the choice of i one has:

or equivalently, since = g,

At this stage it is easy to see (according to the above considerations)
that for all t, the non-zero coefficients of g in (6) are of the form U/V
where U, and that deg U  m, deg V  m (the degrees with
respect to r *). This shows that (6) is impossible, and so (5) holds, as
claimed.

Furthermore by (7) it follows that so that
= E(u’ ((F/Fi G)*)) = 0. Since degFi  deg G we then

have

The proof of Theorem 1.3 is now complete.

2. - Extensions of the first kind in general setting.

We shall freely use the notations and definitions given in the previ-
ous section.

Let (K, v) be a valued field. A valuation u on K(X) will be
called an r.a. (residual algebraic) extension of v if u is an extension
of v and the extension kv c ku is algebraic. The r.a. extension u
is called of the first kind if there exists an r.t. extension w of
v to K(X) such that u ~ w. Theorem 4.4 in [8] describes all r.a.

extensions of the first kind of v when K is algebraically closed.
Now we shall describe these extensions in the general setting (i.e.
K is not necessarily algebraically closed). The results of this section
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generalise the results given in ([8], Section 3). Moreover, we give
a simplified proof.

THEOREM 2.1. Let (K, v) be a valued field. Let u be an r. a. exten-
sion of the first kind of v to K(X). Let w be an r. t. extension of v to K(X)
such that u ~ w. Let u be the valuation induced by u on kw such that u
is the composite with valuations w and u’ . Then one has:

1) There exists an isomorphism of ordered groups Gu = Gw x Z,
the direct product being ordered lexicografically.

2) Let u’ be defined by the monic irreducible polynomial g E
E [r * ], whose free term is not zero (i. e. g 0 r * ). Let G be a lifting of g to
K[X] with respect to w. If F e K[X] and F = Fo + Fl G + ... + Fq G q is
the G-expansion of F, then one has:

3) Let u’ be defined by r* . If F e K[X] and F = Fo + F1f + ... +
+ Fq f q is the f expansion of F, then one has:

4) If u’ is the valuation at the infinity (i.e. defined by r*-1)
then:

(Here means the integral part of cx real 

PROOF. The points 1) and 2) have been proved in Theorem 1.3, so
we have to prove only 3) and 4).

Consider again the set A defined in the proof of Theorem 1.3. Let
a e A be such that w( a ) = w(F). Let i be the smallest index j , such that,
according to (1), one has:

By this equality it follows that i ; t. Hence:

By (7) it follows that for any j such that j - one has
= 0. Therefore, we may assume that in the last equality

only terms with i - t = 0( mod e ) appear. Since every term in the right
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hand side of the last equality may be written as:

where kv’ (see [7], Corollary 1.4), and since ai ~ 0, then one

has: .

if u ’ is defined by r * , and

if u’ is the valuation at infinity. (Here i’ is the smallest index j such
that w(F) = 

The proof of 3) and 4) follows by these two last equalities and (2).

3. - Composite of r.t. extensions.

Now, we are considering the Theorem 4.3 of [8] in the general
setting. 

°

Let (K, v) be a valued field (K is not necessarily algebraically
closed) and let w be an r.t. extension of v to K(X). As always, we pre-
serve the notation and hypotheses given in Theorem 1.1. Let z’ be a
valuation on kv and u ’ an extension of z ’ to kw = kv’ (r*). Let z be the
valuation on K composite with the valuations v and z ’ and let u be the
valuation on K(X) composite with the valuations w and u’ . It is easy to
see that u is an extension of z to K(X). Moreover, according to ([8], Sec-
tion 4.2), it follows that u is an r.t. extension of z to K(X) if and only if u’
is an r.t. extension of z ’ to l~v - ( r * ).

In this section we shall describe u by means of z’ , z, u’ , v and w. We
shall use also Theorem 4.3 of [8]. 

_

Let K be an algebraic closure of K and let z be an extension of z to K.
Let u be a common extension of u and z to K(X) (see [3], Section 2). Let
s : G~ 2013~ Gw be the canonical homomorphism of ordered groups for
which su = w. Let Gw = Gw and let s : G~ - Gw be the unique ho-
momorphism of ordered groups which naturally extends s. Let w = s u.
It is easy to see that a valuation on K(X) which extends w. be
the restriction of w to K. It is clear that v is _an extension of v to K and
that w is a common extension of v and w to K(X). Also it is easy to see
that (under the notation in [8]) one has: 3 % 5 and © % zu. Denote by ~’
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the valuation induced by u on kw and denote by z’ the valuation induced
by i on It is clear that u’ is an r.t. extension of z’ and z’ is an exten-
sion of z ’ to kv . Moreover, il’ is a common extension of u ’ and z’ to ki5.
One should note that kw = where t is a suitable element of kw , and
t is transcendental over kv ( t will be defined later).

Let w = W(a,,5) (see Theorem 1.1). Then * is also defined by the mini-
mal pair ( a, ~ ) (with respect to valuation v). One has the following com-
mutative diagram, whose rows are exact sequences:

In this diagram s and s are defined above and e, E are the natural inclu-
sions. Since Gw = Gv , then (see [8], Theorem 3.3) we may assume that
G~ is canonically isomorphic to the direct product Gw x Gü ordered
lexicografically.

Let (a’ , 3’ ) e kv x Gz , be a minimal pair with respect kv’ such that
u’ is defined by this minimal pair and z’ . Denote by g the monic mini-
mal polynomial of a’ Because r * is transcendental over k,, and
kv, is a finite extension of kv , then we may assume that g e k_, [r * ]. Let
us assume that g # r * or, equivalently, a’ # 0. Let G be a lifting of g in
K[X] with respect to w. Set A = (3, 3’ ) E’Gü. One has the fundamental
result:

THEOREM 3.1. There exists a root c of G in K such that (c, I) is a
minimal pair with respect to (K, z), and that u is defined by (c, À) and
z (i. e. one has: u = wee, Â».

PROOF. Denote by m the degree of the polynomial g with respect to
variable r * . According to the definition of a lifting polynomial, one has
in kw : g = Now we shall determine the image of
G/h m in kw . For that, we know that g is transcendental over kv . Then,
according to ([3], Proposition 1.1), there exist the roots cl , ... , cp of G(X)
such that ( ci , ð) is a pair of definition of w and ~( a - ci ) ~ ð, for all 1 ~
% I 5 p. Moreover, for other roots c’ of G, which do not belong to
(ci , ... , cp I one has: v(a - c’ )  6. Therefore, in K(X), we may write:
p

G(X) = fl (X - Ci) G1, where G1 E K[X]. It is clear that w (G1 (X)) =
i = 1
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= v (Gl (a)). Let d e K be such that v(d) = 6. We may write:

and thus:

where

Therefore, in the field kw , one has:

Now, since w is an extension of w to K(X), there exists the natural
inclusion A~==/~(~*)2013~~==~(~). That inclusion is defined by the
canonical inclusion k; ç kv and by the assignment:

q

where (p(t) is a polynomial defined as follows: = TI (X - ai)fi,
i=l i

where a, = a, a2, ... , aq are all the roots of f such that v(ai - a) ~ a, and
fi e K[X]. One has: (X)) = E( fi (a)), and = v (h(a)). We
may write:
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Therefore, one has:

On the other hand, if ai , ... , am are all the roots of g(r *) in then,
according to (8) the last equality becomes:

Denote by a’ . Then, by (9), there exists a root c of G(X)
such that t - ((c - a)/d)* is a root of cp(t) - a’ , or, equivalently,
99(((c - a)/d)*) = a’ . This c is the root we looked for Theorem 3.1.
We assert that:

i.e. a ’ is the image in Hence we must show that this
last element has an image in ~ and this image is just a’ . In order to do
this, we notice that w(X - c) = 3, or equivalently, v( a - c ) ~ ~ . There-
fore, for any A E K[X] with degA  n, one has: v (A(a)) = w(A(X)) =
= v (A( c )) . Also, one has:

But v(c - ai) ? inf (3 , 5(a - ai)) = w(X - ai), and thus v ( f(c))) &#x3E;
~ w( f(X)) = y. In conclusion, ey = w(h) = v (h(c)) and thus

0 i.e. there exists ( f e (c)/h(c))* . On the other hand we
can write:
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and thus:

In proving (10) we must show that the second factor in the right hand
side of the last equality is 1. This will result by the following
statement:

(A). - Let B(X),E K[XI and let b1, ... , bt be the roots of B in K. As-
sume that, for any 1 ~ i ~ t, one has: v( a - bi )  3 . Then v( c - bi)  3,
1 ~ i ~ t, v (B(a)) = v (B(c)) and (B(a)/B(c))* = 1.

PROOF oF A . Since v(a - c) ; 6, then, by hypothesis, it follows
that v (B(a)) = v (B(c)). Furthermore, we may write:

and so, since v( ac - c) &#x3E; v( c - ai), 1 ~ i ~ t, it follows that:

(B(a)/B(c»* = 1, as claimed.
Now we are proving that (c, h) is a minimal pair with respect to

(K, z ). In order to do this let c ’ e K be such that z( c - c’ ) ~ A. We must
show that [ K( c ) : K] % [K( c’ ) : K]. According to the definition of Z, one
has: v( c - c’ ) * 3 whence ( c’ , ð) is also a pair of definition of w. Hence
we may write:

By the hypothesis z(c - c’ ) ; ~,, the following holds:

Now, since (a’ , d’ ) is a minimal pair with respect to (kv, , z’ ), by (10)
and (11) it follows that the minimal polynomial of cp«(c’ - a)/d)*) over
kv" has the degree at least m.

Suppose that [K(c) : K] &#x3E; [K(c’ ) : K]. Let G1 be the monic minimal
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polynomial of c’ over K and let

be the f-expansion of Gi . By hypothesis, one has: q ~ (me - 1 ) n. Let
H E K[X], degH  n and let 0 ~ t  e be such that = w(Hf t). Let
i be the smallest index j such that w( G1 ) = (see ( 1 )). Then,
necessarily, i ~ t and for any j ~ i, w«Aj/H)fj-t) &#x3E; 0 if j - 
(mode). Hence belongs to 1~2; ( r * ) and its degree
(with respect to r * ) is at most m - 1. As above (see (A)) it is easy
to see that ( f e (c’ )/h(c’ ))* _ cp«(c’ - a)/d))*) is a root of ~1(7’*). But
this is a contradiction to (11) and to the result which claims that

(cp(((c - a)/d))*), 6’) is a minimal pair (with respect to z’ )). In
conclusion (c, ~. ) is a minimal pair, as claimed.

To finish the proof we must show that u is defined by ( c, ~, ). In order
to do this let ul be the r.t. extension of z to K(X) defined by the pair
( c, À) (see Theorem 1.1). Since §(h) = d, and v( c - ac) ~ 6 it follows that
( c, ð) is a pair of definition of W, hence one has: W. According to
([8], Proposition 3.2) one has necessarily that u1 = u and so, the restric-
tion of ~c1 to K(X) is just ~c. Hence u is defined by the minimal pair (c, A),
as claimed.

REFERENCES

[1] V. ALEXANDRU - N. POPESCU, Sur une classe de prolongements a K(X)
d’une valuation sur un corps K, Revue Roum. Math. Pures. Appl., 33, 5
(1988), pp. 393-400.

[2] V. ALEXANDRU - N. POPESCU - A. ZAHARESCU, A theorem of characteriza-
tion of residual transcendental extensions of a valuation, J. Math. Kyoto
Univ., 28 (1988), pp. 579-592.

[3] V. ALEXANDRU - N. POPESCU - A. ZAHARESCU, Minimal pair of definition of
a residual transcendental extension of a valuation, J. Math. Kyoto Univ., 30
(1990), pp. 207-225.

[4] V. ALEXANDRU - N. POPESCU - A. ZAHARESCU, All valuations on K(X), J.
Math. Kyoto Univ., 30 (1990), pp. 281-296.

[5] N. BOURBAKI, Algebre Commutative, Ch. V: Entiers, Ch. VI: Valuations,
Hermann, Paris (1964).

[6] L. POPESCU - N. POPESCU, Sur la definition des prolongements residuels
transcendents d’une valuation sur un corps K a K(X), Bull. Math. Soc.
Math. R. S. Roumanie, 33 (81), 3 (1989).

[7] E. L. POPESCU - N. POPESCU, On the residual transcendental extensions of a
valuation. Key polynomials and augumented valuations, Tsukuba J. Math.,
15 (1991), pp. 57-78.



14

[8] N. POPESCU - C. VRACIU, On the extension of valuations on a field
K to K(X) - I, Rend. Sem. Mat. Univ. Padova, 87 (1992), pp. 151-168.

[9] N. POPESCU - A. ZAHARESCU, On the structure of the irreducible polynomi-
als over local fields, J. Number Theory, 52, No. 1 (1995), pp. 98-118.

[10] N. POPESCU - A. ZAHARESCU, On a class of valuations on K(X), to

appear.
[11] P. SAMUEL - O. ZARISKI, Commutative Algebra, Vol. II, D. Van Nostrand,

Princeton (1960).

Manoscritto pervenuto in redazione il 26 luglio 1993
e, in forma revisionata, il 20 marzo 1995.


