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History-Dependent Scalar Conservation Laws.

PIERANGELO MARCATI - BRUNO RUBINO (*)

ABSTRACT - We study the global existence of weak solutions in LP for a scalar
conservation law with memory as a model equation in the theory of viscoelas-
ticity. The key idea is to relate the theory of scalar conservation laws with
memory and the linearly degenerate hyperbolic systems.

1. - Introduction.

The purpose of the present paper is to study the global existence of
weak solutions in the framework provided by the Compensated Com-
pactness in L ~ spaces, to some equations modeling the theory of vis-
coelastic materials.

In particular we are interested to investigate those mathematical
models where the stress-strain relation depends on the past history of
the solution. Several degrees of complications could be taken under
consideration but along this paper we shall bound ourselves to take un-
der consideration only a simple, but significant problem, which has
been previously considered by several different authors.

We study a scalar conservation laws with memory, which was inves-
tigated by Dafermos [6] with a method completely different from ours,
under more severe technical assumption that are completely removed
by our method. He used this example as a test model for the techniques
of Compensated Compactness and shows some very interesting rela-
tions with the theory of relaxation for nonlinear hyperbolic systems
(see [11, 2,13]) and with some models of singular perturbation investi-
gated in [ 15] and [ 14].

(*) Indirizzo degli AA.: Dipartimento di Matematica Pura ed Applicata,
Universita degli Studi di L’Aquila, via Vetoio, loc. Coppito, 67010 L’Aquila,
Italy.

E-mail: {marcati.rubino}@smaq20.univaq.it.
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The equation that we will investigate is given by the following his-
tory-dependent conservation law

with the Cauchy datum

Let us conclude this introduction with definition of weak solutions to
(1.1).

DEFINITION 1.1. Let us a measurable function; we say that it is a
solution to (1.1) if and only if u e Lloc, f o u e o u e and

for any test E C °’ , supp ~ c R x [0, + (0), one has

For the general theory of viscoelastic materials we refer to the book of
Renardy, Hrusa and Nohel [17] and the references therein.

In particular we recall that for small initial data (1.1) possess glob-
ally defined smooth classical solutions which decay to equilibrium as t
goes to + 00 (see for instance [7, 8, 9,12, 5]). When the initial data are
large enough, smooth solution should develop singularities in finite

time, see for instance [4, 16].
We use a completely new idea which shows the connection between

the theory of scalar conservation laws with memory and the linearly
degenerate hyperbolic systems.

The paper is organized as follows: in section 2 we prove an a priori
estimate on solutions and discuss the hypotheses of the main result
(Theorem 2.1), while in the final section we conclude with the Proof of
Theorem 2.1.

2. - Global existence.

We consider in this section the problem of global existence in L 2 for
the equation (1.1).

Let us rewrite (1.1) as an hyperbolic system with artificial viscosity,
by setting zt = g(u)x and z(x, 0) = 0 and integrating by parts, namely
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we will study

with the initial condition

aS
We assume that (2.1) possesses globally defined solutions 

with enough regularity and decay at infinity, and we shall concentrate
only in the study of the behavior as E -~ 0 + .
We obtain uniform L 2 bounds on solutions of (2.1) by using a suit-

able entropy inequality and the hypothesis:
There exists cl &#x3E; 0 such that, for all u e R

For the weak formulation of (1.1) to make sense one needs a quadratic
growth bound on f and g.

Additionally, to avoid possible concentration effects and to use the
L2-Young measure representation of weak limits we require slight
more:

With these two hypotheses, it is possible to prove the weak continuity
of f with respect to the subsequence associated with the Young
measure.

However the hypothesis (2.3) is too weak to insure that g is also
weakly continuous.

One needs either additional compactness by making appropriate hy-
potheses on the kernel K of the memory term or additional coupling be-
tween f and g. We choose the latter alternative to study this prob-
lem :

(2.5) If f is affine on an open interval, then g is affine on that interval
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A stronger hypothesis implies compactness of the sequence in the

strong topology of q  2:

(2.6) f is never affine on any open interval.

In some sense this hypothesis represents the genuine nonlinearity in
its weak-est form. Let us assume the kernel K( t ) satisfies the

following

THEOREM 2.1. The following results hold:

Global existence. Assume the hypotheses (2.3), (2.4), (2.5). Then
for any initial datum uo e and T &#x3E; 0 there exists a weak sol-
ution of (1.1)

Compactness. With the hypotheses (2.3), (2.4) and (2.6) there
exists a subsequence of viscous solutions ~ u £ ~ of (2.1) strongly converg-
ing in Lq([O, T]; L~(R», q  2, 1 ~ ~  2, to a weak solution of
(1.1).

We postpone the proof to the last section.

REMARK 2.2. The system

with the initial condition

is equivalent to ( 1.1 ). Indeed, let us considered a test function ~, with
supple ~(x, t) : t &#x3E; 0}, then ~~x, g(u)~ _ (~ t, z), where ~, ) denotes the
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inner product in the x, t variables. In then follows:

REMARK 2.3. The system (2.9) is hyperbolic with eigenvalues
f ’ ( u ), 0 and (0, 1) and although (1.1) is a
scalar equation, there is the possibility of resonance between the two
nonlinear terms. As noted by Dafermos [6] this can occur when f’ (u) =
= 0 and can also be seen in the loss of strict hyperbolicity in

(2.9).
However in this case, enough of the scalar structure remains and we

prove global existence without the hypothesis of strict hyperbolicity.
The two hypotheses (2.5), (2.6) and the latter implication of com-

pactness helps partially clarify and settle the issue raised by Dafermos
of weakening his assumption of linear nondegeneracy:

This generalizes the Lax definition of genuine nonlinearity and essen-
tially states that the conservation law is nonlinear at all points in the
state space. Typically some versions of linear nondegeneracy will imply
compactness of the solution operator. So it is be reasonable to get com-
pactness from the assumption (2.6).

We conclude this section by proving the a priori estimates on sol-
utions of (2.1).

PROPOSITION 2.4. Let (u, z) a solution for the Cauchy problem,
(2.1 )-(2.2). For all T &#x3E; 0 there exists a constant CT &#x3E; 0, independent of
E, such that
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for T] and

PROOF. Set

and note that from (2.3)

A calculation shows that an entropy-entropy flux pair (7y, q) for the sys-
tem (2.1 ) is given by

There is a constant c such that

Integrating the entropy inequality, we obtain
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Then by the comparison principle, it follows there exists CT &#x3E; 0 such
that

3. - Proof of the Theorem 2.1.

We now prove the Theorem 2.1 by modifying the single entropy ar-
gument for scalar equations due to Chen and Lu [3].

We assume the reader is familiar with the standard methods of com-

pensated compactness and we refer to [10] for the basic LP theory (see
also [18]).

PROOF. We assume we have an L 2-Young measure as-

sociated to a weakly converging subsequence {(uE , zE)} of solutions to

(2.1).
The variable z will play no future role so we integrate it out of the

Young measure and define

namely v ~x, t) = proj V (x, t).
In the argument of Chen and Lu, one applies an L °° -Young measure

to the function (f(u»2. But in this case, (f(u»2 may have superquadrat-
ic growth and not be integrable with respect to an L2-Young measure.
To handle this we use a truncation procedure and first establish the
weak continuity of the truncated L °° function fN. Letting the truncation
parameter N tend to infinity, we obtain weak continuity for f. Weak
continuity for g is shown similarly.

(Weak continuity for,f). ,f(x, t) = f(u(x, t)) for a.e. (x, t) E
e R x [o, T] where f = (v,J(.) and u = (v, u).

Define the Lipschitz continuous functions
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Using the first equation of (2.1) and the estimates from Proposition 2.4
and are L °° functions, the standard argument
shows that for fixed N and k a constant

and

are both in a compact subset of 
Define the function

then Tartar’s commutative relation becomes

where we have replaced k by UN = ~v ~x, t~ , IN (.». By Cauchy Schwarz
inequality, HN ~ 0, hence 

’

Note also that v ~x, t~ is supported on the zero set of HN ( ~, 
We now let N ---~ oo. Clearly, IN(u)-u pointwise in u and

lul. From the theory of LP-Young measures (see Lin [10] or
Ball [I]) as ~u~ 1 ~ 00 implies ~u~ - (v, is in L  (R x
x [0, T]), hence t) for a.e. (x, t) E R x [0, T]. By Lebesgue
dominated convergence, UN = ( v, IN ( u )) -~ ( v, for a.e. ( x, t).
Hence also IN(UN(X, t)) converges to f(u(x, t)) pointwise a.e. in
(x, t).

Similarly, fN ( uN ) - f(u) pointwise in u and fN (u) I ~ f* (u), where
f*(u) = sup 

|u|

Since f* (u)/ I u 0 as lul we also f *  00
a.e. (x, t) and fN - fpointwise a.e. (x, t). Since fN we conclude

f (u) = f for a.e. (x, t).

Step 2. gN = g(uN ) and g = g(u) a.e. (x, t). Recall from the proof of
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step 1 that v is supported in the set

If ZN = ~ uN }, then v is a point mass and gN = g(UN). If uo &#x3E; £N and
HN(uo) = 0, then by considering the Cauchy Schwarz inequality, we
have f’ --- const on the interval [uN , uo ]. Hence uo ] c ZN and ZN is
an interval on which f is affine. By (2.5) gN is also affine and by linearity
9N = Hence gN = g(uN ). For a.e. (x, t) and the same argument as
in step 2 shows that 9 = 

Step 3. u is a weak solution of (1.1). are solutions of

(2.1), then for any smooth function gg, compactly supported in (0, T) x
x R we have:

Letting E -&#x3E; 0+ we can use the representation of weak limits and the
equalities f(u) = f and g(u) = 9 to get

Step 4 (Compactness). Assuming the hypothesis (2.6) that f’ is
never constant on any interval, we conclude that is supported at a
point for a.e. (x, t). Indeed, from step 1, is supported on the zero
set of HN ( ~, UN(X, t)). Strict convexity and (2.6) in Jensen’s inequality
imply that the zero set of HN is a point for a.e. (x, t). From the L2 theory
of Young measures, ue converges strongly in L P (R x [0, T]) for
any p  2. Since u e is also converging weakly in L °° ([ o, T]; L 2 ), we
have by interpolation that u e converges strongly in

Lq ([0, T] x R)) for any p  2, 
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