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An Approximation Theorem of Wong-Zakai Type
for Stochastic Navier-Stokes Equations.

KRYSTYNA TWARDOWSKA (*)

SuMMARY - We present an extension of the Wong-Zakai approximation theorem
for stochastic Navier-Stokes equations defined in abstract spaces and with
some Hilbert space valued disturbances given by the Wiener process.By ap-
proximating these disturbances we obtain in the limit equation the Itd cor-
rection term for the infinite dimensional case. Such form of the correction
term was proved in the author’s papers [24] and [25], where the approxima-
tion theorem for semilinear stochastic evolution equations in Hilbert spaces
was studied. A theorem of this type for nonlinear stochastic partial differen-
tial equations, more exactly for the model considered by Pardoux ([19]) one
can find in [23].

0. — Introduction.

We consider a generalization of the Wong-Zakai approximation the-
orem ([27]) for stochastic Navier-Stokes differential equations. Similar
equations were already studied e.g. by Bensoussan ([2]), Bensoussan
and Temam ([3]), Brzezniak and others ([4]), Capinski ([6]), Capiniski
and Cutland ([7]), Fujita-Yashima ([10]). In the above papers mainly
the existence and uniqueness theorems were given.

We are dealing with the approximation theorems of Wong-Zakai
type. A thorough discussion of generalizations of this theorem in finite
and infinite dimensions can be found in [25]. We only mention that for a
linear equation in the infinite-dimensional case some generalizations

(*) Indirizzo dell’A.: Institute of Mathematics, Warsaw University of Tech-
nology, Plac Politechniki 1, 00-661 Warsaw, Poland.

The research of the author was partially supported by KBN grant No. 2
P301 052 03.



16 Krystyna Twardowska

are known, where the Wiener process is one-dimensional and the state
space is infinite-dimensional (see Aquistapace and Terreni ([1]), Brzez-
niak and others ([5]), Gyongy ([12])). In [24] and [25] some extensions of
the Wong-Zakai theorem to nonlinear functional stochastic differential
equations as well as to stochastic semilinear evolution equations in a
Hilbert space with a Hilbert space valued Wiener process are given.
For the latter equations the unbounded operator is the infinitesimal
generator of a semigroup of contraction type and the other operators
are nonlinear and bounded. The Wong-Zakai approximation theorem
for stochastic nonlinear partial differential equations with unbounded
monotone and coercive operators defined in Gelfand triples is given
in [28]. The infinite-dimensional It correction term derived here com-
ing from a Hilbert space valued Wiener process is exactly the same as
in [9] and [23]-[25].

The author is grateful to the referee for helpful remarks which en-
abled the author to improve this paper.

1. - Definitions and notation.

Let (2, F,(F;);c10, 77, P) be a filtered probability space on which an
increasing and right-continuous family (F}), .o, r; of sub-o-algebras of F’
is defined such that F, contains all P-null sets in F.

Let L(X, Y) denote the vector space of continuous linear operators
from X to Y, with the operator norm || - || v, where X and Y are arbit-
rary Banach spaces (we put L(X) = L(X, X)); LP(2; X), » =2p=1,
denotes the usual Banach space of equivalence classes of random vari-
ables with values in X which are p-integrable (essentially bounded for
p = ) with the norm |- | z»c0. x)- We put LP(R2) = LP(2; R).

Moreover, £ (X, Y) is the Banach space of nuclear operators from X
to Y with the trace norm |- [|¢1(x, v, and £2(X, Y) is the Hilbert space of
Hilbert-Schmidt operators with the norm || - ||;s, where X and Y are ar-
bitrary separable Hilbert spaces. £! (X, Y) and £2(X, Y) are some sub-
spaces of L(X, Y).

Let H and K be real separable Hilbert spaces with scalar products
(*, du, (+, *)x and with orthonormal bases {l,}; -1, {ky}n-10f H and K,
respectively. We also consider a real separable Hilbert spaces V and W
which are continuously and densely embedded in the Hilbert space H.
Moreover, the inclusion V — H is compact. Then, identifying H with its
dual space H* (by the scalar product in H) we have, denoting by V* and
W#* the dual spaces to V and W, respectively,

WcVcH=H*cV*cW*.
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The embeddings are continuous with dense ranges. The above spaces
are endowed with the norms | [|w, [|- v, | -Ilz and |- [[y+, [t [+, re-
spectively. The pairing between V and V* (as well as between W and
W*) is denoted by (-, -).We consider a K-valued Wiener process'
(w(t)); <10, 71, adapted to the family F;, with nuclear covariance operator
J. It is known ([8], Chapter 5) that there are real-valued independent

Wiener processes {é)(t)}fll on [0, T'] such that
wit) = 3 int)
j=

almost everywhere in (¢, w) € [0, T'] X Q, where {k;};", is an orthonor-
mal basis of eigenvectors of J corresponding to eigenvalues {4,};~,,

2 Aj< », with

j=1
*) B[4t 4] = (t - $)4;6;;

for A% = in(t) — in(s) and s <t (8;; is the Kronecker delta). We put
(L1) w™($) = 3 wlt)k;= 3 (t), kk;.
)= J]=

Now we define the n-th polygonal approximations of the processes
(W())icro, 1 and (w™(t)); 10, 77, respectively, by

(12) W (£) = il w; (D,
2

(1.3) wit (t) = j; w;, () K

where for t <t<{! with 0=¢{<..<ity=T,

t—tr, J tr—t g
14) Wy, (D) = e W) + ——— Wt ).
=t A 74

DEFINITION 1.1. Denote by & the o-algebra of sets on [0, T] X
generated by all Fi-adapted and left continuous X-valued stochastic
processes.

An X-valued stochastic process (X;); (o, ) is called predictable if the
mapping (¢, w) — X;(w) is P-measurable.
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2. — Description of the abstract model.

We consider the stochastic nonlinear differential equation

@1) du(t) + A(t) u(t) dt + G(u(t)) dt + B(t, u(t)) dw(t) = f(t)dt,
) 'H/(O) = uO ’

where (u(t)); [0, is an H-valued stochastic process and

(A1) wug is an H-valued square integrable F-measurable random vari-
able, that is, u, e L*(2, F,, P; H).

For every m e N we consider the approximation equation
Ainy (8) + A(E) Ugny () dE + Gugny (1)) dt +
22, + B(t, U (1)) dw,) (t) = f(t) dt,
Uy (0) = ug,
where w, (t) is given by (1.2). Moreover, we consider the equation
du(t) + At) u(t)dt + G(u(t)) dt + B(t, u(t)) dw(t) +
@3) + % tr (JDB(, 4(t)) B(t, (b)) dt = f(t) dt ,
u(0) = uy,

with tr (JDB(t, u(t)) B, u(t))) to be described later in this section.We
assume that the family of operators A(t) e L(V, V*) defined for almost
every (a.e.) t e (0, T') has the following properties:

(A2) growth restriction: there exists a constant § such that
A®)

v+ < Bllu|y for every w eV and for a.e. t,
(A3) coercivity: there exist constants a > 0 and A, ¥ such that
2(A@) u, u) + Al|ull% + 7 = allu|? + | B, w)|is
for every u € V and for a.e. t,
(A4) measurability: the mapping
0, T)at—>(A)u,v)eR

is Lebesgue measurable for every u, ve V.
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The family of operators B(t, -): V— £2(K, H) defined for a.e.
t € (0, T') satisfies the following assumptions:

(A5) boundedness of B(t, -): there exists a constant L such that
|Bt, w)|gs<L forall ueV,

(A6) the operator B(t, :)eC}, ie., is of class C! with bounded
derivative (in the Hilbert-Schmidt topology) and this deriva-
tive is assumed to be globally Lipschitzean,

(A7) the boundedness of DB(t, -) is meant on V in the sense of the
norm in H: there exists a constant L such that

IDB(t, whllus<L|hlly for al ueV, heH,
(A8) measurability: for every u e V the mapping
(0, T)st— B(t, u) e £2(K, H)
is Lebesgue measurable.

The bilinear continuous mapping G: V X V— W* satisfies the follow-
ing assumptions:

(A9) (G(u,v),v)=0 for every ueV and ve W,
(A10) boundedness: there exists a constant C such that
G, D)l < Cllullif2 1wl lealli/? 1]l
for all u,veV.
Finally, we assume
(A11) feL2((0, T) X £; V*) and f is nonanticipating.
Put
G(u) = G(u, u)
for every ueV.

REMARK 2.1. Assumption (A7) ensures the correctness of the defi-
nition of DB(t, hy)oB(t, hy) e L(K, L(K, H)) for h,e H because
DB(t, h,): HoV— L(K, H) is bounded on V (in the Hilbert-Schmidt
topology) in the norm of H.
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REMARK 2.2. We shall also use a weaker assumption than (A6) for
the operator B, that is, the following Lipschitz condition: for all » € H,
ke K and N € R, there exists a constant L = L(h, k, N) such that

(A12) |(h, B(t, w)k)y — (h, B(t, Vk)y| < L|u - vy

for all u, veV with |uly, ||[v]|y < N.
By assumption (A7) we may replace (Al12) by

(A12) |(h, B(t, ) k) — (b, B(t, v)k)g| < L|u — v|g.

Now we observe ([9],[23]-[25]) that the Fréchet derivative
DB(t, h,) e L(V, L(K, H)) for h; eV and a.e. t.

Consider the composition DB(t, k,)-B(t, h,) € L(K, L(K, H)),
where the Fréchet derivative is computed for #; € H due to the exten-
sion made in (A7). Let ¥ e L(K, L(K, H)) and define

By, (h, 1) := (W(h)(R'), ky)z € R

for h, k' € K. By the Riesz theorem, for every h; € H there exists a
unique operator ¥(h,) e L(K) such that for all &, k' € K,

(@), b)) = (PR, g

Now, the covariance operator J has finite trace and therefore the
mapping

& Hah —»tr(J¥(h)) e R

is a linear bounded functional on H. Therefore, using the Riesz theorem
we find a unique h; € H such that E(k;) = (hy, ;). Denote

k= (Jw).

We observe that (171 , k) is the trace of the operator J¥(k;) e L(K) but
tr (J¥) is merely a symbol for 4.

DEFINITION 2.1. Suppose we are given an H-valued initial randoin
variable w, and a K-valued Wiener process (w(t)); .o, r;- Suppose fur-
ther that an H-valued stochastic process (u(t)); o, r; has the following
properties:

() (w(®))ero, ;y is predictable,
(i) w(t) e L2((0, T) x ; V)N L*(2; L= (0, T; H)),
(iii) there exists a set Q'c 2 such that P(2') =1 and for all
t,w)el[0,T]1x Q" and ye YcH (Y is an everywhere dense, in the

?
|
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strong topology, subset of H) equation (2.1) is satisfied in the following
sense:

t
24)  (y, ut, o)y = (y, wog(w))y — j((A(S)u(s, w), y) +
0

t
+(G(u(s, w)), y))ds — (y,JB(s, u(s, w)) dW(S)) +(f(t, w), ¥).
0

H

An equivalent formulation of (2.4) is understood in W?* (see
e.g.[7]).

It is known ([14],[19]) that the above integrals are well defined.
Moreover (see[14]),

t t
(y, IB(s, u(s, w)) dw(S)) = J@B(s, u(s, )) du(s),
0

H 0

where 3 € L(H, R) is the operator given by the formula yv = (y, v)y,
ve H.

Then (u(t));c(o, 77 is called a solution to (2.1) with initial condition
Uy -

DEFINITION 2.2. Let n e N. We say that a mapping %,,: [0, T]—
— H is a solution to equation (2.2,) if u,, € L2(0, T; V) N L= (0, T; H),
Uy € L2%(0, T; W*) and if equation (2.2,) is satisfied for all 0 <

sts<T.

3. — Applications for Navier-Stokes equations.

Here we denote by © an open bounded set of R? with a regular
boundary 09. Let H®(O) be the Sobolev space of functions y which are
in L%(0O) together with all their derivatives of order <s; s >2/2 + 1.
Further, H} (0) is the Hilbert subspace of H!(0), made up of functions
vanishing on 80. We also introduce the product Hilbert spaces (L2(0))?,
(H3 (0, (H*(0)).

We consider the set V(0O) of functions from C¢” with a compact sup-
port in ©. Put

o
i _g

2
8=1y = (Y1, ¥2): i€ 9(0), divy= 2 3
i=1 OW;
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and
H = the closure of & in (L2(0))?,
V = the closure of & in (H}(0))?,

W = the closure of & in (H*(0))?.

For y,ze H we put
2
(2= 2 [vi@a@)ds.
o

For y,zeV we put

2
(g, 2= 2 de

,j=1
J v}

oy, (x) 9z;(x)
I ow;  Ox;

to obtain

(—vday, z) =v((y, 2)y.
These spaces have the structure of the Hilbert spaces induced by
(L*(0)), (Hj (0))%, (H*(0))?, that is

2

((?/, z))H = igl(%, zi)Lz(O) )
2

(y, )y = igl(yh 2)ui o) »

2
(y, DDw = igl(yiy 2)Hs(0) -

It is obvious that W, V and H have all properties from § 1.
Let v>0 be fixed. We define the family of operators A(t)e
e L(V, V*) by

(A y, 2) = v((y, 2))v

for all y, z € V. Therefore, assumptions (A2), (A3) and (A4) (for a = v,

A=0, v =0) are satisfied. Further we consider a trilinear form

9z; (x)
ax,-

w; () da

2
by, 2, w) = ,leyi(x)
o

i,j=
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defined and continuous on V X V X W. We recall ([15], p.67 and p. 71)
that for a positive constant C; we have

8.1) [bCy, ¥, w)| < Cillylsopllwl e o

for all y,we V.
It is also proved in [15], Lemma 6.2, p. 70, that there exists a positi-
ve constant C, such that

3.2) vl Zop < Co ”v”uarg(o))2 vllz2 o

for all v e (H}(0)).
Now we define a bilinear continuous operator G: VX V— W*
by

(G(y, 2), w) = by, 2, w).

for all y,zeV and we W.

It is easily to check that assumptions (A9) and (A10) are satis-
fied.

We consider the following stochastic Navier-Stokes equation

du — vAudt + (u-V)udt + Vpdt + B(u) dw(t) = f(t)dt,
=0 onZX=[0,T]xd0,

w(0) =uy in O,

divu=0 in [0,T]X 0O,

33)

where u = u(t, x) is the velocity field of a fluid and p = p(t, ) is the
pressure.

The reduction to the abstract form (2.1) is completely calssical
(see [21]) and we omit it. Further, we shall understand equation (2.1) as
the above Navier-Stokes equation for © c R%.

The uniqueness of solution is understood in the sense of trajecto-
ries.

The existence and uniqueness of solution to (2.3) under assumptions
(A1)-(A4), (A8)-(A12) follows from the following modification of Theo-
rem 6.3 in [7]. Namely, we omit the assumption on the periodic bound-
ary condition that we only need to prove the uniqueness of the solution.
The uniqueness we obtain from [6].

For each n € N the existence and uniqueness of solution to (2.2,) un-
der assumptions (A1)-(A4), (A8)-(A12) follows e.g. from a slight modifi-
cation of the existence and uniqueness theorems in[15].
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4. - Auxiliary lemmas.

Let us denote by W, =V, =H, =V¥=W}* the vector space
spanned by the vectors [y, ..., [, and let P,, e L(H, H,,) be the orthogo-
nal projection. We recall that {l,}, -, is an orthonormal base of H. We
assume that [, e W for every n e N. Otherwise the equalities

Wy =V = Hy, = Vi = W

would not be satisfied. We introduce in H,, the norm

m 1/2
Jul = (,2 |uj|2)
j=1

for w = (u,, ..., 4,), and the usual scalar product (-, -). We extend P,
to an operator V* — V} by

Pyu= 2 (u, )l forueV*.
i1

Analogously we define ﬁmu for w e W*,

We denote by K,, the vector space spanned by the vectors
ki, ..., k. Let I1,, e L(K, K,,) be the orthogonal projection.

Now, we define the families of operators A™(t): V,,— V¥ by

@.1) A™®)u:=P,At)u for ueV,,

and G™: V,, xV,,—» W} by

42) G™(u, v):=P,G(u,v) for u,veV,,

as well as B™(t, -): H,, —» £*(K,,, H,) by

4.3) B™(t,uw):= P,B(t,u) forueH,.

Let w™(t) be the Wiener process with values in K, defined by

w™(t) = I, wt).

Clearly, it can be represented by formula (1.1). Moreover, we put
f"=PnfeL*(Qx(0,T); V)

and

wl =P, upe L%(R; H,,).
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Now, we consider the following stochastic differential equation of
Itd type in the space R™ for the i-th coordinate of a process v™(f) =
=@r@), ..., v () e H,:

(4.4) dv(t) + A™ (@) v™(t));dt + G (v™(t)) dt +
+ B (¢, v™(t)) dw™ (1) +

. OB (¢, v™ (1)

i=1i=1 o]

v™(0) = ug*,

where (B (¢, v™(t)));,j=1, .., m iS the matrix representation of elements
of B™(t,v™(t)), and (A™(t)v™(t)); is the i-th coefficient of the
vector

A™ () v™(t) = P, A(t)u = ﬁl(A(t)v"L(t), AT

Equation (4.4) is a finite dimensional stochastic differential equa-
tion. Therefore, from the slight modification of the existence and
uniqueness theorems, e.g. in [2],[3], we observe that under our assump-
tions equation (4.4) has exactly one solution v™(¢) € H,, for any m =
=1, 2, ... such that

v™e L2((0, T) x Q; V,,) NL2(2; L*>(0, T; H,)).
For every » € N, we also consider the approximation equation
dv®y () + A™ () vy (@) dt + G™ (viy (1)) dt +
(4.57) +B™(t, vim (1)) dwiny (B) = f" (B)dt,

Vi (0) = uq*

where w(y (t) is given by (1.3). We observe that dw(y, (¢) = w( dt on
every interval (¢ i, t!'] so equations (4.5;}) are of deterministic nature
for almost every w e £2.

Let us start from

LEMMA 4.1. Let v™(t), u(t) be the solutions to equations (4.4) and
(2.3), respectively, under assumptions (Al)-(A4), (A8)-(A12). Then for
each te[0,T], 0<T < o, we have

46) Jim_ E[[lo™ () — @)1= 0.
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ProOF. From the proof of the uniqueness of the solution to equa-
tion of the type (2.3), see Theorem 3.2 in [6], taking u, ({) = »™ (%) and
Uy (t) = u(t) we immediately deduce that v™(t) — u(t) in the sense of
(4.6).

Further, we have

LEMMA 4.2. The correction term

m m  GBT(t, v™(t
(%) (_1_ 2 EA—M

B*(t, v™(t
2 <= o if (& v ()).

i=1,...,m

in equation (4.4) is the result of applying the projection operators P,
and I1,, to operator B(t, -) and to the Wiener process (w(t)); 1o, 71 in the
construction of the term (1/2) tr (JDB(t, u(t)) B(t, u(t))), that is,

3BT (t, v™ (1))

4D jgl = 1,11 ™

I M3

B} (¢, v™ (1))

converges to tr (JDB(t, u(t)) B(t, u(t))) weakly in H.

ProoF. We have A™(t)u =P, A{t)u= 2 (A(t)u, [;)l;e V¥ for
=1

weV, and B™(t, u) = B, u)|g, = P, oB(, w)|k, € £(K,, H,) for
weH, because B(,)|g,: Hy— £3(K,, H) and B, u)|x,e
e £2(K,,, H). The restriction mapping we understand in the following
sense

(Hp3u— B, w)|g,): Hy,— (K, H).

Now we consider the Fréchet derivative of B™(t, ) for v € H,,
that is, DB™(t,w)e L(H,,, £*(K,,, H,)) and DB™(t, u)(x)e
e £2(K,,,H,) for xeH,. Now we consider the composition
DB™(t, w)oB™(t, u) € LK, £2(Ky, Hy)).

Then DB™(t, u)(x) € £2(K,,, H,,) is given by the matrix

_ DB, u)x) ... DB, (L, u)x)
A, u)(x) =
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We put

&1 M
X=|:leK,, Y=|:i|eK,.
En Nm

Let DB™(t, u)oB™(t, u) X = ¥(X). Then for i =1, ..., m,
m [ m OBl (t, u) [ m
WO V)= EI(EI e RO u>sk)) "

and for pe H,,

m OB (t, u)
(PX)Y, py, = 2 S i Al

B (¢t
=lj=11=1k=1 S, i (t, u)Exm;p;

Omitting X and Y in the last sum we obtain the matrix
m m OB (t, u)

i=1i=1 O Bi: ¢, u)pi) = (Fdjk=1,...,m = ¥p).

gk

Consider the trace

~ m m m  OBT(t, u)
r(nPp) =2 X 32 Aj —5—— Bi}(t, Wpi,
i=1i<14= .
where (J,,)j, j, k =1, ..., m, is the restriction of the covariance opera-

tor J to R™ (= H,,). We rewrite it in the form of the inner product of
two vectors in R™

aBm(t u)

ET B (t, uw)|p;.

tr(J,, #(p)) = 2 (E 2 A
i=1\j=11=1

Taking into account the result of Lemma 4.1, we observe that the
first vector is exactly the correction term &, obtained in Section 2. Re-
placing B by B™ and w by w™ we repeated step by step the construction
of hy; from Section 2. Therefore, we obtained the finite-dimensional

form of the correction term that converges by the above construction to
tr (JDB(t, u(t)) B(t, u(t))) as m — «. Thus we have proved (4.7).

REMARK 4.1. Note that the definition of the correction term in the
finite-dimensional case depends on the restriction to R™ of the operator
J, i.e. it depends on 4,, ..., 4,,. This is because of our definition of w(t)
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(see () in § 1). Moreover, since

tr[J (k)] = » (TP k;, k) = -21 (P(hy) b, T* k) =

Jj=1 )=

- il (@) by, Jhy)g = jil (W) Tk, o) =
2 2

= jgl (P(k)(Aj k), B
taking in particular ¥ = DB(t, k) B(t, h;) we get
(%)  h=f{r[J¥]= El W(k;)(Jk;) =j21[DB(t’ hy) B(t, hy)(k)1(A;K;) .
i< <

Thus in the infinite-dimensional case we have the same situation
with the term tr (JDB(t, h,) B(t, h,)) which depends on the covariance
operator J, ie. it depends on {4,};2; (see (xxx)).

We also have

LEMMA 4.3. Let A™(, ), G™(-) and B™(t, -) be given by (4.1)-
(4.3), respectively, under assumptions (Al)-(Ad), (A8)-(Al12). Let
win, (t) be given by (1.3). Assume that vin (1) and uy, () are solutions to
equations (4.57") and (2.2,), respectively. Then, for every te[0, T],
0<T< o, we have

4.8 Jim_ BT v (8) = sy DIE] =0,
where {n(m)} is an arbitrary increasing sequence depending on m.

Proor. For every m >0 we choose an arbitrary increasing se-
quence {n(m)} depending on m, that is, » = n(m) is a function of m.
Then {Uwmy} and {v{ymy} are arbitrary subsequences of {u.} and

{vim}, respectively. Let us take Y = Qle. It is obvious that for

every y € Y there exists my(y) such that for every m = my(y) we have
y € H,,. Moreover,

(At u, y) = (A™(t)u, y)

if for m = my(y) we take y € H,,. We have the same equalities for B™
and G™.
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Now we set
i ®) = Wy ~ sy ® = 5, GO = 3, G 0, D).
We compute on (¢, t"'], for almost every w e Q,
(h ), ) + (A@) b, i) = — (G W{emy) () — Guimy (1)), ;) —
— (B(t, vsimy (8)) @ fsimy) = B, Uiaomy (1)) @iy » ) +

+HM @) = £, L),

where afyt) and alymy are some constant derivatives on (87, t'] of
Wnmy) (£) and W,y (2), respectively.

We multiply the above equatlity by g;,(f) and take the sum over
i=1,2,.... We recall ([15], p. 71) that after the simple computations

b(Wiimy) ()5 Viimy) (), B (£)) = D(Uinimy) ()5 Ugnimy) ()5 oy () =
= b(P (8), Viaomy) () B (8)) + D(0fimy) (), By (), oy (8)) —
= b(hy (8), Py (), o, (1))
and
b(Vfnmy )y By (1), By (1)) =0, bRy (), B (B), R (£)) = 0.
We obtain
(B, ()5 P () + (A) By (8), By (8)) = = By (), Vi) (2), P (2)) —
— (B, iy (0)) @iy = BE, Uiy () @ity om () —
— (B, Uinimy (8)) @aiomy = B(E, Uiuimy (1) @y » om () +

+(f™(@) = ft), by (D).
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We replace (h,, (%), h,, () by (1/2)(d/dt)||h, (t)||? and get
t
1 (£)]|2 + 2 J (A(8) iy (8), Ty (8)) ds =
th_y
t
=-2 j B (8), V) (8), Tiy (8)) dis +
thoy

i
8- DIE =2 [ (Bls, vty () iy =

-1

t
- B(Sa Un(m)) (s))aa’(:n))a hm (S))ds -2 [ (B(S, u(n(m)) (3)) aztl,’(rin)) -

tf_y

t
— BCS, Uium (8)) Ly » P (8)) d + 2 j (F™(8) = £(8), hpp (8))ds .

thy
Let Cy, ..., C; be some constants. From (3.1), (3.2) and the inequality
a’b'""<ya+(1-y)b fora,b>0, 0<sy<l1,

which we will use in its equivalent form ab < va®+ (4v)~1b2, we
have

t
) | [ 0 (8), iy (), hn (52 s | <
th1

t
<C I (17 ()1t con2 | 0Gmemyy ()| a2 orp ds <

th

t
< G j e ()l g con2 1 om () om0y () |tz o s <

n
2485

t t
sv J ||hm(s)||%H3(o))2ds +C3 J ”hm(s)"%ﬂ(o»? Ilv('ﬁ(m»(s)||?yg<o»2d8-

1 21591
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From (A5), (A3), (4.9) and (A12’) we get (further we shall use again the
notation |- || = &, = |- | z2oy?)

t
2w @B + v f 2 ()| epyds <

thoy

t
< n G-I+ [ I () rgcords +

n
i1

t
+GC; I ”hm(s)“2'|”(73(m))(3)”%f1(}(o))2d3 +

n
t1

t
+2L J ”Hmaén(m))“K”hm(s)llzds+

'y

t
+2 [ 1BGs, iy Dl as | T @loiomy = @by il () s +

n
24

t
+2 [ 1) = £(8) sl (5)]|ds

o1
From (A5) we obtain

@4.10) |k ®)|2<C, +

t
+Cy I (X + [0Gmy (O g on + 1T @G | ) | o ()12 s +

th-1

t
+ C5 I ”Hma%n(m)) - aén(m))”K"hm (S)Hds

thoy

for a constant C,,, where || IT,,, a{numy || x can be estimated by its expected
value.

Now taking the mathematical expectation, applying the above pro-
cedure to all intervals (¢ ,, '] and using the Gronwall lemma con-
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clude the proof. More exactly, we compute on the whole interval

t 2
E| [ 1T tfaimy (8) = @y )l ls | =
0

= E[ i (t‘ﬂ(m) _ t'n("i)) \/(H W(t,l'n(m)) - w(t:‘(_"i)) _
1 i — m
i=1

tyu(m) — t,n(m)
W™ — w(t) w(tE™) — wED)  wE™) — wEr )]2 -
gpom) — guomy 7T gom) g gm) — gpom)

_ % nm _ gy E[\[ Wt™) = wETD)  wt™) = wit?)

i=1 tpm) — ¢m) - £ — g ’
I ,w(tin(m)) ,w(tn(m) w(t'“(m’) — w(tn(m))
™ g g pplon) gt )

2 BT, w(t!™) — I, w(tP) — w(t™) — w(t),
M w(t™) = M, wt?) — w(t!™) — wty)] =
z,l(a £1m — 40, 87 — @, 1 + 40, 87D — @t +
At — 0, B + @, 87D + @™ — at?) =

2 (=@ tH™ + @, t7 + atMm™ — qm) =
t=1

Zl(a = @)™ — at?™) = (a — ay) T —0,

i

as m — ©, where

w(t ™) — w(t ™)
1™ — gy

Al (8) = for se (P, tP™],
E[(w(t), w(s)k] = -21 kf min{t, s},
=
E[(IT,,w(t), w(s))k] = El kf min {t, s},
5

E[(I1, w(t), T, w(s))k] = il k? min{t, s}
j=
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and

Further, we have on [0, T']

t
E J'”Hma%n(m))(s) - azn(m))(s)“K”hm(s)”ds} <
0

<E

t
sup INOIE J'“Hma%'n(m))(s) - a%nm»(s)llxds] <
0

t
< B[sup )] (B [ 17l 0) -
0

~abm@lds | )" < Vita = ap) [E[suplln @IF].

Finally, we get on the whole interval [0, T']

Elllkn )21 < Cs Via - am>\ﬁ [sgp uhm<s>||2] +Cp+

+CrE

t
I(l + ||v(7f(m))(S)H%H&(o»z)”hm(s)“zds],

0
where C,,— 0 as m — .
We estimate E [sup || k., (s)]|?] and E [sup ||v%my (5)||* ] by a constant
8 8

similarly as in[19], p.112. Using the Gronwall lemma we obtain
4.8).

5. — Approximation theorem.

Let us start from a modification of the Wong-Zakai approximation
theorem for equations in R¢.

REMARK 5.1. We observe that we can modify the finite-dimension-
al version of the Wong-Zakai theorem in [13], Chapter VI, § 7, Theorem
7.2. Namely, we first change the assumption about the r-dimensional
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Wiener process appearing as the disturbance in this theorem. We now
assume that the Wiener process has different variances in different di-
rections, that is, it satisfies relatoin (*) of the present paper. From this
it follows that the expression c;; defined by (7.6) in[13], Chapter VI,
§ 7, has now the form:

cij:sij“'";‘éijli, h,ij=1,..,r.

Therefore, the correction term is now of the form (x#) of the present pa-
per. With w(?), c;; and the correction term defined in this way, we re-
peat the proof of the Wong-Zakai approximation theorem in [13].

We shall prove the following

THEOREM 5.1. Let u(t) and uy, (t) be solutions to equations (2.3)
and (2.2,), respectively. Assume that assumptions (Al)-(All) are sat-
isfied. Take approximations wy, (t) of the Wiener process w(t) given by
(1.2). Then, for each te[0,T], 0<T < o,

(5.1) Jim Efllug 1) — @)% =0.

Proor. We have
(52)  (wpy @) — u®), ¥) = (U (&) — vin (1), y) +
+ Wi () — o™ (@), ) + (™ () — u(?), ¥).
Observe that

(53) lim E[ sup |oft (t) — v'”(t)lim] =0
no® 0<ts<T

because by the definitions of A™, B™, G™ and by Lemma 4.2 we can use
the modified finite-dimensional version of the Wong-Zakai approxima-
tion theorem (see Remark 5.1) to obtain (5.3). Indeed, our equation is
now in R™ and assumptions in [13], namely that the diffusion term o is
in CZ and the drift term b is in C{, can be used in the proof in [13] in a
weaker form, just as our weaker assumptions, that is, the Lipschitz
conditions on b and o' instead of higher classes of continuity of b
and o'.

More exactly, for every ¢ > 0 and every m > 0 we choose n(m) such
that for every n = n(m) we have from (5.3) the convergence of v{yyy (t)
to v™(1).

Now we choose my such that for every m = m, we have by Lemma
4.1 the convergence of v™(t) to %(t) and we put an appropriate n(m) to
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get the previous convergence. Now from Lemma 4.3 we obtain for
every m = my the convergence of V{5 (t) t0 Ugymy (1), Which completes
the proof.
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