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An Approximation Theorem of Wong-Zakai Type
for Stochastic Navier-Stokes Equations.

KRYSTYNA TWARDOWSKA (*)

SUMMARY - We present an extension of the Wong-Zakai approximation theorem
for stochastic Navier-Stokes equations defined in abstract spaces and with
some Hilbert space valued disturbances given by the Wiener process.By ap-
proximating these disturbances we obtain in the limit equation the It6 cor-
rection term for the infinite dimensional case. Such form of the correction
term was proved in the author’s papers [24] and [25], where the approxima-
tion theorem for semilinear stochastic evolution equations in Hilbert spaces
was studied. A theorem of this type for nonlinear stochastic partial differen-
tial equations, more exactly for the model considered by Pardoux ([19]) one
can find in [23].

0. - Introduction.

We consider a generalization of the Wong-Zakai approximation the-
orem ([27]) for stochastic Navier-Stokes differential equations. Similar
equations were already studied e.g. by Bensoussan ([2]), Bensoussan
and Temam ([3]), Brzezniak and others ([4]), Capinski ([6]), Capinski
and Cutland ([7]), Fujita-Yashima ([10]). In the above papers mainly
the existence and uniqueness theorems were given.
We are dealing with the approximation theorems of Wong-Zakai

type. A thorough discussion of generalizations of this theorem in finite
and infinite dimensions can be found in [25]. We only mention that for a
linear equation in the infinite-dimensional case some generalizations

(*) Indirizzo dell’A.: Institute of Mathematics, Warsaw University of Tech-
nology, Plac Politechniki 1, 00-661 Warsaw, Poland.
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are known, where the Wiener process is one-dimensional and the state
space is infinite-dimensional (see Aquistapace and Terreni ([l]), Brzez-
niak and others ([5]), Gy6ngy ([12])). In [241 and [25] some extensions of
the Wong-Zakai theorem to nonlinear functional stochastic differential
equations as well as to stochastic semilinear evolution equations in a
Hilbert space with a Hilbert space valued Wiener process are given.
For the latter equations the unbounded operator is the infinitesimal
generator of a semigroup of contraction type and the other operators
are nonlinear and bounded. The Wong-Zakai approximation theorem
for stochastic nonlinear partial differential equations with unbounded
monotone and coercive operators defined in Gelfand triples is given
in [23]. The infinite-dimensional It6 correction term derived here com-
ing from a Hilbert space valued Wiener process is exactly the same as
in [9] and [23]-[25].

The author is grateful to the referee for helpful remarks which en-
abled the author to improve this paper.

1. - Definitions and notation.

Let (S~, F, (Ft)t E [0, TI, P) be a filtered probability space on which an
increasing and right-continuous family o, Tj of sub-a-algebras of F
is defined such that Fo contains all P-null sets in F.

Let L(X, Y) denote the vector space of continuous linear operators
from X to Y, with the operator norm 11 ~ , where X and Y are arbit-

rary Banach spaces (we put L(X) = L(X, X)); p ~ 1,
denotes the usual Banach space of equivalence classes of random vari-
ables with values in X which are p-integrable (essentially bounded for

with the norm ~~ ’ X) - We put LP (Q) = LP (Q; R).
Moreover, 21 (X, Y) is the Banach space of nuclear operators from X

to Y with the trace norm ~~ ’ y) and 22 (X, Y) is the Hilbert space of
Hilbert-Schmidt operators with the norm 11 - IIRs, where X and Y are ar-
bitrary separable Hilbert spaces. 21 (X, Y) and 22 (X, Y) are some sub-
spaces of L(X, Y).

Let H and K be real separable Hilbert spaces with scalar products
( ’ , ’ )H , (’~ ’ )K and with orthonormal of H and K,
respectively. We also consider a real separable Hilbert spaces V and W
which are continuously and densely embedded in the Hilbert space H.
Moreover, the inclusion V -~ H is compact. Then, identifying H with its
dual space H * (by the scalar product in H) we have, denoting by V* and
W* the dual spaces to V and W, respectively,
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The embeddings are continuous with dense ranges. The above spaces
are endowed with the norms II. liB and 11 - llv., re-

spectively. The pairing between V and V* (as well as between W and
W*) is denoted by ~ ~ , ~ ).We consider a K-valued Wiener process-
(w(t))t E [ 0, T I , adapted to the family Ft, with nuclear covariance operator
J. It is known ([8], Chapter 5) that there are real-valued independent
Wiener processes 1 on [0, T] such that

almost everywhere in (t, E [ o, T ] x S~, 1 is an orthonor-
mal basis of eigenvectors of J corresponding to 

i 
= 

i J
for = iv( t ) - k(s) and s  t is the Kronecker delta). We put

Now we define the n-th polygonal approximations of the processes
(w( t ) )t E ~ o, T ~ and (~,u m ( t ) )t E ~ o, T ~ , respectively, by

where for  with 0 = to  ...  tn = T,

DEFINITION 1.1. Denote by 1P the a-algebra of sets on [0, T] x Q
generated by all Ft-adapted and left continuous X-valued stochastic
processes.

An X-valued stochastic process o, T ~ is called predictable if the
mapping ( t, is 0-measurable.
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2. - Description of the abstract model.

We consider the stochastic nonlinear differential equation

where is an H-valued stochastic process and

(Al) uo is an H-valued square integrable Fo-measurable random vari-
able, that is, Fo , P; H).

For every n e N we consider the approximation equation

where is given by (1.2). Moreover, we consider the equation

with tr (JDB(t, K(t))) to be described later in this section.We
assume that the family of operators A( t ) e L( V, V*) defined for almost
every (a.e.) t e (0, T ) has the following properties:

(A2) growth restriction: there exists a constant B such that

(A3) coercivity: there exist constants a &#x3E; 0 and h, T such that

for every u e V and for a.e. t,

(A4) measurability: the mapping

is Lebesgue measurable for every u, v E V.
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The family of operators B(t, ~ ): V --~ ~ (K, H) defined for a.e.

t E ( o, T ) satisfies the following assumptions:

(A5) boundedness of B(t, ): there exists a constant L such that

(A6) the operator i.e., is of class C1 with bounded
derivative (in the Hilbert-Schmidt topology) and this deriva-
tive is assumed to be globally Lipschitzean,

(A7) the boundedness of DB(t, ~ ) is meant on V in the sense of the
norm in H: there exists a constant L such that

(A8) measurability: for every u e V the mapping

is Lebesgue measurable.

The bilinear continuous mapping G: V x V -~ W * satisfies the follow-
ing assumptions:

(A9) (G(u, v), v) = 0 for every u E V and v E W,

(A10) boundedness: there exists a constant C such that

for all u, v E V.

Finally, we assume

(All) fe L~((0, T ) x Q; V* ) and f is nonanticipating.

Put

for every u e V.

REMARK 2.1. Assumption (A7) ensures the correctness of the defi-
nition of DB(t, hl) o B(t, hl) E L(K, L(K, H)) for h, E H because
DB(t, H) is bounded on V (in the Hilbert-Schmidt
topology) in the norm of H.
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REMARK 2.2. We shall also use a weaker assumption than (A6) for
the operator B, that is, the following Lipschitz condition: for all h E H,
k e K and N E R+ there exists a constant L = L(h, k, N) such that

for all u, v e V with llullv, N.

By assumption (A7) we may replace (A12) by

Now we observe ([9], [23]-[25]) that the Frechet derivative
DB( t, hl ) E L(V, L(K, H)) for hl e V and a.e. t.

Consider the composition DB(t, B(t, hl) E L(K, L(K, H)),
where the Frechet derivative is computed for h, E H due to the exten-
sion made in (A7). Let tp E L(K, L(K, H)) and define

for h, h’ E K. By the Riesz theorem, for every h1 E H there exists a
unique operator E L(K) such that for all h, h’ E K,

Now, the covariance operator J has finite trace and therefore the

mapping

is a linear bounded functional on H. Therefore, using the Riesz theorem
we find a unique h 1 E H such that = h1 )H . Denote

We observe that (hl , h1 )H is the trace of the operator e L(K) but

tr (JW) is merely a symbol for hl . 
, :

.

DEFINITION 2.1. Suppose we are given an H-valued initial random
variable uo and a K-valued Wiener process Suppose fur-
ther that an H-valued stochastic process has the following
properties: 

’

(i) I is predictable,

(iii) there exists a set S~’ such that P( S~’ ) = 1 and for all
and y E Y c H ( Y is an everywhere dense, in the
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strong topology, subset of H) equation (2.1) is satisfied in the following
sense:

An equivalent formulation of (2.4) is understood in W* (see
e.g. [7]).

It is known ([14], [19]) that the above integrals are well defined.
Moreover (see [14]),

where i E L(H, R) is the operator given by the formula yv = ( y, v)H ,
vEH.

Then I is called a solution to (2.1) with initial condition
uo. 

’

DEFINITION 2.2. Let n e N. We say that a mapping u~n~ : [0, T ] -~
- H is a solution to equation (2.2n ) if u~n~ e L 2 ( o, T ; V) rl L °° (0, T ; H),

W*) and if equation (2.2n ) is satisfied for all 0 ~
s t s T.

3. - Applications for Navier-Stokes equations.

Here we denote by o an open bounded set of 1E~2 with a regular
boundary Let H~ (C~) be the Sobolev space of functions y which are
in L2(ð) together with all their derivatives of order ; s; s &#x3E; 2/2 + 1.
Further, HJ (ð) is the Hilbert subspace of H 1 (c9), made up of functions
vanishing on We also introduce the product Hilbert spaces (L2(ð»)2,
(Ho (ð»)2, (Hs (ð»2.
We consider the set of functions from ~°° with a compact sup-

port in n. Put
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and

the closure of

the closure of

the closure of

For y, z e H we put

For y, z E V we put

to obtain

These spaces have the structure of the Hilbert spaces induced by
(L 2 (ð»2, (ð»2, (H8 (ð»2, that is

It is obvious that W, V and H have all properties from § 1.
Let v &#x3E; 0 be fixed. We define the family of operators A( t ) E

E L(V, V*) by

for all y, z E V. Therefore, assumptions (A2), (A3) and (A4) (for a = v,
A = 0, v = 0) are satisfied. Further we consider a trilinear form
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defined and continuous on V x V x W. We recall ([15], p. 67 and p. 71)
that for a positive constant C1 we have

for all y, ~,u e V.
It is also proved in [15], Lemma 6.2, p. 70, that there exists a positi-

ve constant C2 such that

for all v E (Ho (ð»2.
Now we define a bilinear continuous operator G: V x V- W *

by

for all y, z e V and w E W.
It is easily to check that assumptions (A9) and (A10) are satis-

fied.
We consider the following stochastic Navier-Stokes equation

where u = u(t, x) is the velocity field of a fluid and p = p(t, x) is the
pressure.

The reduction to the abstract form (2.1) is completely calssical
(see [21]) and we omit it. Further, we shall understand equation (2.1) as
the above Navier-Stokes equation for 

The uniqueness of solution is understood in the sense of trajecto-
ries.

The existence and uniqueness of solution to (2.3) under assumptions
(Al)-(A4), (A8)-(A12) follows from the following modification of Theo-
rem 6.3 in [7]. Namely, we omit the assumption on the periodic bound-
ary condition that we only need to prove the uniqueness of the solution.
The uniqueness we obtain from [6].

For each n e N the existence and uniqueness of solution to (2.2n ) un-
der assumptions (A1)-(A4), (A8)-(A12) follows e.g. from a slight modifi-
cation of the existence and uniqueness theorems in [15].
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4. - Auxiliary lemmas.

Let us denote by W. = Vm = Hm = V~ = Wm the vector space
spanned by the vectors 11, ..., Lm and let P~ E L(H, Hm) be the orthogo-
nal projection. We recall is an orthonormal base of H. We
assume that ln e W for every n e N. Otherwise the equalities

would not be satisfied. We introduce in Hm the norm

for u = (ul , ... , and the usual scalar product ( ~ , ~ ). We extend Pm
to an operator V* 2013~ VQ by

Analogously we define Pm u for u E W * .
We denote by Km the vector space spanned by the vectors

... , km . o Let II m E L(K, Km) be the orthogonal projection.
Now, we define the families of operators A m ( t ): Vm - VQ by

Let wm (t) be the Wiener process with values in defined by

Clearly, it can be represented by formula (1.1). Moreover, we put

and
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Now, we consider the following stochastic differential equation of
lt6 type in the space ~’~ for the i-th coordinate of a process =

where vm =1, ..., m is the matrix representation of elements
of and is the i-th coefficient of the
vector

Equation (4.4) is a finite dimensional stochastic differential equa-
tion. Therefore, from the slight modification of the existence and

uniqueness theorems, e.g. in [2], [3], we observe that under our assump-
tions equation (4.4) has exactly one solution E Hm for any m =
= 1, 2, ... such that

For every n E N, we also consider the approximation equation

where w~n~ ( t ) is given by (1.3). We observe that dw’) (t) = dt on

every interval ( ti 1, so equations (4.5~) are of deterministic nature
for almost every o e S~ .

Let us start from

LEMMA 4.1. Let u(t) be the solutions to equations (4.4) acnd
(2.3), respectively, under assumptions (Al)-(A4), (A8)-(Al2). Then for

T], 0  T  ~ , we have
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PROOF. From the proof of the uniqueness of the solution to equa-
tion of the type (2.3), see Theorem 3.2 in [6], taking = v’~ ( t ) and
u2 ( t ) = û( t) we immediately deduce that v m ( t ) --~ u( t ) in the sense of
(4.6).

Further, we have

LEMMA 4.2. The correction term

in equation (4.4) is the result of applying the projection operators Pm
acnd 17m to operator B(t, .) and to the Wiener process (w(t»t e [0, T~ in the
construction of the term ( 1 /2) tr (JDB(t, û(t»B(t, û(t»), that is,

converges to tr (JDB(t, û(t»B(t, u(t))) weakly in H.

e 22 (Km, H). The restriction mapping we understand in the following
sense

Now we consider the Frechet derivative of u ) for u e Hm,
that is, and DBm (t, u)(x) E

for x E Hm . Now we consider the composition

Then DBm(t, U)(X) e 22(Km’ Hm) is given by the matrix
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We put

Let

and for 

Omitting X and Y in the last sum we obtain the matrix

Consider the trace

where k = 1, ... , m, is the restriction of the covariance opera-
tor J to R~ (= We rewrite it in the form of the inner product of
two vectors in 

Taking into account the result of Lemma 4.1, we observe that the
first vector is exactly the correction term hl obtained in Section 2. Re-
placing B by Bm and w by w m we repeated step by step the construction
of hi from Section 2. Therefore, we obtained the finite-dimensional
form of the correction term that converges by the above construction to
tr (JDB(t, i(t)) B(t, i(t))) as m --~ ~ . Thus we have proved (4.7).

REMARK 4.1. Note that the definition of the correction term in the
finite-dimensional case depends on the restriction to Rm of the operator
J, i.e. it depends on ..., Am. This is because of our definition of 
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(see (*) in § 1). Moreover, since

taking in particular Y = DB( t, hl ) B( t, hl ) we get

Thus in the infinite-dimensional case we have the same situation
with the term tr (JDB(t, hl) B(t, which depends on the covariance
operator J, i.e. it depends on i (see (***)).
We also have

LEMMA 4.3. Let ), Gm(.) acnd Bm(t, .) be given by (4.1)-
(4.3), respectively, under assumptions (Al)-(A4), (A8)-(A12). Let

given by ( 1.3). Assume that v~n~ ( t ) and u~n~ ( t ) are solutions to
equations (4.5~) and (2.2n), respectively. Then, for every t E [ o, T ],
0  T  00, we have

where is an arbitrary increasing sequence depending on m.

PROOF. For every ?~ &#x3E; 0 we choose an arbitrary increasing se-

quence ln(m)l depending on m, that is, n = is a function of m.
Then and are arbitrary subsequences of and

00

vm) 1, respectively. Let us take Y = U Hm. It is obvious that for(n 
m= 1

every y e Y there exists mo (y) such that for every mo (y) we have
y e Hm. Moreover,

if for m ~ mo ( y ) we take y E Hm . We have the same equalities for B’~
and G’n .
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Now we set

We compute on ti ], for almost every e Q,

where and a ~n~m~~ are some constant derivatives on ( ti 1, of

2v~n~m~~ ( t ) and 2v~n~m~~ ( t ), respectively.
We multiply the above equatlity by and take the sum over

j = 1, 2, .... We recall ([15], p. 71) that after the simple computations
we obtain

and

We obtain
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We replace and get

Let Cl , ... , C7 be some constants. From (3.1), (3.2) and the inequality

which we will use in its equivalent form a&#x26;~~c~+(4~) ~&#x26;~, we
have
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From (A5), (A3), (4.9) and (A12’) we get (further we shall use again the
~ IIH", _ 11 - 

From (A5) we obtain

for a constant Cm , can be estimated by its expected
value.

Now taking the mathematical expectation, applying the above pro-
cedure to all intervals (~-1, and using the Gronwall lemma con-
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clude the proof. More exactly, we compute on the whole interval

as m --~ ~ , where
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and

Further, we have on [0, T ]

Finally, we get on the whole interval [0, T ]

where C£ - 0 
We estimate E and E (s) 1/2 ] by a constant

s s

similarly as in [19], p.112. Using the Gronwall lemma we obtain

(4.8).

5. - Approximation theorem.

Let us start from a modification of the Wong-Zakai approximation
theorem for equations in 

REMARK 5.1. We observe that we can modify the finite-dimension-
al version of the Wong-Zakai theorem in [13], Chapter VI, § 7, Theorem
7.2. Namely, we first change the assumption about the r-dimensional
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Wiener process appearing as the disturbance in this theorem. We now
assume that the Wiener process has different variances in different di-

rections, that is, it satisfies relatoin (*) of the present paper. From this
it follows that the expression c2~ defined by (7.6) in [13], Chapter VI,
§ 7, has now the form:

Therefore, the correction term is now of the form (**) of the present pa-
per. With w(t), cij and the correction term defined in this way, we re-
peat the proof of the Wong-Zakai approximation theorem in [13].
We shall prove the following

THEOREM 5.1. Let and (t) be solutions to equations (2.3)
and (2.2n), respectively. Assume that assumptions (Al)-(All) are sat-
isfied. Take approximations w(n) (t) of the Wiener process w(t) given by
(1.2). Then, for each t E [0, T], 0  T  00,

PROOF. We have

Observe that

because by the definitions and by Lemma 4.2 we can use
the modified finite-dimensional version of the Wong-Zakai approxima-
tion theorem (see Remark 5.1) to obtain (5.3). Indeed, our equation is
now in and assumptions in [13], namely that the diffusion term Q is
in Cb and the drift term b is in Cb , can be used in the proof in [13] in a
weaker form, just as our weaker assumptions, that is, the Lipschitz
conditions on b and a’ instead of higher classes of continuity of b
and a ’ .

More exactly, for every E &#x3E; 0 and every m &#x3E; 0 we choose n(m) such
that for n(m) we have from (5.3) the convergence of (t)
to v m (t).

Now we choose mo such that for every 7% b mo we have by Lemma
4.1 the convergence of to û(t) and we put an appropriate n( m ) to



35

get the previous convergence. Now from Lemma 4.3 we obtain for
every m ; mo the convergence of ( t ) to ( t ), which completes
the proof.
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