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On an Elliptic Equation with Exponential Growth.

J. A. AGUILAR, CRESPO - I. PERAL ALONSO (*)(**)

ABSTRACT - In this paper we deal with the following nonlinear degenerate elliptic
problem

where bounded domain in RN and V( x ) is a given function
in (q depending on the relationship between N and p). In particular,
we study the existence of solutions in W6’ P (S2), considering the cases: 1) Ex-
istence of solution for A small and V possibly changing sign in Q. 2) Conditions
for positivity of solutions, with V changing sign in Q. 3) Existence and behav-
ior of the minimal solution for V(x) ~ 0 in Q and p  N. 4) Existence of sol-
ution for V possibly changing sign in Q and p ~ N. 5) Full analysis of the radi-
al solutions for V = 7- ’~, a  p, x ~ I = r. It has to be remarked that these re-
sults are new even for the semilinear case, p = 2.

Introduction.

We study the following problem,

bounded domain, and V(x) is a given func-
tion which may change sign in Q.

The case V = constant has been studied in [GP] and [GPP] for gen-

(*) Ind’lrizzo degli AA.: Departamento de Matemdticas, Universidad Aut6-
noma de Madrid, 28049 Madrid, Spain.

(**) Both authors supported by project PB 94-0187 CICYT MEC Spain.
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eral p. The semilinear case p = 2, with constant V too, has been exten-
sively studied; see for instance the papers [Bd], [F], [Ge], [GMP], [JL],
[MP11 and [MP2]. Motivation for the model in this case p = 2 can be
found in [Ch], [FK] and [KW].

On the other hand, the case p = 2 and V a given function has a few
precedents, see [BM] and [KW] for N = 2; the general case is new at
all.

The aim of this paper is to show the following results for 
where q &#x3E; 1 for p &#x3E; N, q &#x3E; 1 for p=N or q &#x3E; N/p &#x3E; 1 for 1  p 
 N.

(1) If A is small enough, then there exists at least one solution to
problem (P) for q &#x3E; &#x3E; 1.

(2) If A is small enough, then there exist at least one solution to
problem (P) for p ~ N.

(3) If ~, is large enough and V ~ 0, the problem (P) has no
solution.

(Obviously, if V  0 then the maximum principle implies that prob-
lem (P) has one negative solution).

In addition, we find a sufficient condition related to the existence of
positive solutions to (P) with V changing sign in S~, a result new even
for the semilinear case p = 2.
We also prove that the first eigenvalue for the p-Laplacian with

weight V E V(x) ~ 0, is simple and isolated. This result is an ex-
tension to our context of those by [An], [B] and [L]; it will be used in
the study of the nonexistence of solutions to (P).

The paper is organized as follows: first, we show the existence of
solution to (P) for V E L q ( S2 ), in case V may change sign in S~ and a suffi-
cient condition about the positivity of the solution when V changes sign
is obtained. Next section is devoted to study the behavior of the mini-
mal solution for 1  p  N, V ; 0. Variational methods are used for the
case p ~ ,N, V possibly with non constant sign. Finally, after dealing
with the nonexistence of solutions, we analyze the radial solutions on
the unit ball for V(r) = r -a , a  p, r = ~ lxl.

Before studying the existence of solutions, we give some definitions
for solutions to the problem (P).

DEFINITION. We say that u E a regular solution (P) if
and only if eU E L 00 (Q), and the equation holds in the sense of
W -1’ p~ (,S~ ). we say that u is a singular solution of
(P), and the equation holds in the sense of 
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Obviously, if Morrey’s Theorem [GT,
C h. 7] implies that e u e L 00 (Q). So, we just need e L  ( Q ). On the
other hand, by using the Stampacchia’s lemma [S] and Trudinger’s in-
equality [GT, p.162], we get that a solution of (P) for p = N, u E
E Wo ~ N (,S~ ), verifies u E L °° ( S~ ) whenever the function V belongs to

&#x3E; 1. In other words

PROPOSITION. If Ve L  (Q), with either 
then any singular solution of (P) ac regular sol-
ution.

1. - Existence of solution for ~, small.

We show in this section the existence of solution to the prob-
lem

by means of a fixed point argument, where ~, &#x3E; 0, x E Q, a bounded
domain, and V( x ) is a given function in 
p = N and q &#x3E; otherwise.

It has to be noted that V may change sign in S~.

LEMMA 1.1. Let 83 = ~ cp E I  ð, = 0}, 3 &#x3E; 0. Let

Fi : B8 - L oo ( Sd ) defined = 1jJ, where 1jJ verifies the follow-
ing problem,

Then,

where C = C( p, N, Q) and y &#x3E; 0.

PROOF. Case p &#x3E; N. In this case, and by
Sobolev inequality we obtain the following estimate
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Case 1  p  N. Since 9) is bounded, we get that AV(x) e ~ belongs
to Hence, belongs to W -1 ~ ’’ ( S~ ) for r &#x3E;

&#x3E; 1). Then, there exist fl , f2 , ~ ~ ~ , fN in such that, E

E W1, p0(Q), 

where f = (fi, 12, ... , fN) and div f (see [Br, Prop. IX.20]).
For k &#x3E; 0, if we take as test

then ’
Then

That is

For p  N, by the Sobolev’s inequality being the best constant for
this inequality, p * = Np/(N - p»

The case p = N is reduced to the case p  N because of the embedding
Wo ~ N ( S~ ) c Wo ~ ~ ( S~ ) for 1  p  N (Q is bounded). Therefore
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If 0  k  h, A(h) e A(k). Then

Finally

In other words

Since r &#x3E; 1), the exponent for I is greater than 1. So, we
can apply Stampacchia’s Lemma, [S], to conclude that there exists some
h for which I = 0, that is, tp E L °° (Q) and

In addition, the inequalities in RN

imply the following result

L E MMA 1.2. Given consider 
such that - L1pUi = fi, i = 1, 2. Then:
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As a consequence

Now we can state the existence theorem

THEOREM 1.3. If A is small enough, then there exists one solution
to the problem (P).

PROOF. Lemma 1.1 implies that, for A small enough, Fi applies the
ball of radius 6 in L 00 (Q) to itself. On the other hand, if 1/J 1 = Fi q 1,
1/J2 = FA CfJ2’ where 991, 99 2 E B,5, Lemma 1.2 implies

by means of the mean value theorem. Therefore by either Sobolev in-
clusion in the case p &#x3E; N, or by Stampacchia method in the general
case,

where y(p) &#x3E; 0. So we have proved that Fl is contractive if A is small
enough; therefore, the classical Banach-Picard point theorem al-
lows us to conclude the proof.

REMARK. In the case p = N, the potential can be considered with
less regularity. Precisely V E L 1 (log L) P (Q), the usual Zygmund space
with {3 &#x3E; N -1, gives that each iteration in the proof of Theorem 1.3
verifies u e L ’ (Q). (See [BPiU ).
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2. - A sufficient condition of existence of positive solution.

When the sign of the potential V is constant, it is easy to know the
sign of the corresponding solutions. In this section we will give a suffi-
cient condition related to positive solutions with V changing sign. This
result is new even for the semilinear case, p = 2, which is treated

following.
Let us consider the problem,

where x E Q, a bounded domain, and V(x) is a given function in L q (Q)
changing sign N/2 otherwise). We assume that
Q verifies the classical interior ball condition.

Let us assume that w &#x3E; 0 in S2, that is, if G(x, ~ ) is the Green’s func-
tion for Q,

where wl , W2 are the solutions of the problems

Let y(x) be the function defined in S~ by

where v is the exterior unit normal to This function is well defined,
positive and continuous in S~ by the Hopfs Lemma. Let us suppose that
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min y(x) = 1 + m for some m &#x3E; 0. That implies w, &#x3E; (1 + m) w2 . Let M
X IE 9

be such that M = llyll. -
Now, if we take a function 99 such that 0  ~p  6 log(y(x)), with

3 &#x3E; 0 to be determined, we can define for ~, &#x3E; 0 the application 7~ as
follows

Thus

then we can take 3 small enough to get

Then, Ti cp is positive if 3 is small enough. By fixing a 3 in tyhese hy-
pothesis, Ti sends the ball of radius M(5 in L ’ (Q) to itself and is con-
tractive for A small enough, by Theorem 1.3. In this way the existence
of one positive solution to the problem

can be shown by means of a fixed point argument (u = u), as a conse-
quence of the positivity of the solution to (P’).

Then we conclude with the following result.

PROPOSITION 2.1. Let p = 2, wi, w2 as above. If WI (x) =
= (1 + to(x)) w2 (x) bounded function and ~o(x) ~ m &#x3E; 0 in Q, then prob-
Lem (P") has at least one positive solution for A small enough.

Now we take p general. The corresponding result is the follow-

ing
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THEOREM 2.2. Let w be the solution of

where V E changes sign in Q q &#x3E; 1 if p = N,
q &#x3E; N/p otherwise) and y(x) verifies that there exists a positive con-
stant m such m &#x3E; 0. Suppose that w &#x3E; 0 in Q; then, if A is
small enough, there exists one positive solution to (P).

PROOF. Let 6 = log ( 1 + m)1/2 (hence, e 2a = 1 and =

= ( 1 + m ) -1 ~2 ) . Theorem 1.3 now implies that there exists one solution
to (P) belonging to the ball B,6. Let y such a solution. then

That is

The weak comparison principle allows us to conclude that

3. - V ~ 0 and 1  p  N. Minimal solution.

We show in this section the existence of a solution to the problem
(P) for the case comparison arguments. The follow-
ing results are extensions to the variable coefficients case of those
in [GPP]. We give the proofs of the results that need some

changes.

DEFINITION. We say that U E W6’ P (Q) for
1  p £ N) is a regular supersolution of problem (P) if

We say that um , a solution of (P) is minimal if, for each supersolu-
tion u of (P), we have u.
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With this definition at hand, we study the existence and behavior
of minimal solution of (P).

LEMMA 3.1. Let uo be a regular supersolution of (P). Then, there
exists 0 ~ uo , um being a minimal regular solution of (P).

COROLLARY 3.2. If there exists regular solution of (P) for Ào &#x3E; 0,
then there exists regular solution for all ~, ~ 

THEOREM 3.3. If q &#x3E; N/p &#x3E; 1, there exists a constant
A* such that if A  A*, problem (P) has one positive solution.

THEOREM 3.4. If uo E WJ’ P is a singular solution of

where q &#x3E; N/p &#x3E; 1, then, for all A E ( 0, ~, * ) the problem

has one positive minimal regular solution u E W6’ P (Q) fl L 00 (Q).

PROOF. If uo is a singular solution, then V(x ) e "0 (Q) and we
can consider E W -1 ~ ~ ~ { S~ ). The function

is a solution of the problem

and it verifies and
V( x ) e ’°i E W -1’ p ~ ( S~ ); moreover
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If we consider the problem

then by using the weak comparison principle, we have
and

By the convexity of f(t) = for 0  t  1, we get

Then, if

Since

In addition,

By replacing v for u2 in the last equality, we arrive to

Now, by the homogeneity and (*)

If we assume that u~~~ p -1 ~ E ~o ~ ~ ( ~ ), by applying the weak compari-
son principle,
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and

Therefore, if V(x) E with q &#x3E; N/p &#x3E; 1, then E 

for r &#x3E; N/p (by the H61der inequality). So, the Stampacchia’s lem-
ma [S] implies that u3 E L °° (Q), U3 being the third iteration. In this
way, we have obtained a regular supersolution of (P~). Lemma 3.1
states that there exists one positive minimal regular solution of

(P l).
It remains to show that We observe that

since and

It we define Wk as

By multiplying (**) by the Holder inequality gives

Then is uniformly bounded in and therefore the limit

We need the following result.

LEMMA 3.5. Let u = be a minimal regular solution of (P). If
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we define the set X as

the following functional

is well defined on 9c. Then, the minimizer u e ~i for J is the minimal
solution u. Moreover, u satisfies the estimate

(See [GPP] for a proof).

THEOREM 3.6. be an increasing sequence such that

I n - I * = sup I A I (PI) has solution I

If V E L q (Q), q &#x3E; N /p &#x3E; 1, and u_ n = U n (A) is the corresponding mini-
mal solution of (Pln), then u * strongly in W6’ P (Q), V(x) e u n -~

in L p * ~~ p * -1 ~ (Q), and u* is a singular solution of (Pl.).

PROOF. If un is the minimal solution of (Pln) we get, taking w = Y:n
and using Lemma 3.5, 

’~

Let us introduce the sets 8n = ~ x E &#x3E; 2(p - 1 ) ~. Then, in Q - 8n ,
0  wn  2( p - I ) and
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Therefore

and we get

Then, if we take a subsequence 

(2) By monotone convergence e ~ ~* -~ e * in L 1 ( S~ ).
is monotone (remember that In is increasing). Hence

the limit u* is unique and the whole sequence converges. In order to
prove that u* is a singular solution of (Pl*), we consider the following
inequalities:

If we take cp
we arrive to

in the above inequalities,

Taking a such that

we get, using the Young’s inequality,

If we also assume that
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then we obtain by H61der inequality

this quantity is finite if

that is

Since the following is always true

all the requirements about the value of a hold: there always exists some
a verifying them. 

- 1)Then, we have proven that and

converges in W -1 ~ p~ ( S~ ) by the monotone convergence theo-
rem. The continuity of ( - 4 y~): W -1 ~ ~~ ( S~ ) -~ Wo ~ p ( ,S~ ) implies that the

converges strongly in W6’ P (Q). Therefore, if we
take 

The next result gives the conditions in which the limit minimal sol-
ution is regular or singular.
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THEOREM 3.7. If V, A* and u* are as in Theorem 3.6 and the di-
mension satisfies

then u * E L °° (Q) and it is regular solution for ( P~ * ).

PROOF. We have to show that with r &#x3E; N/p, since
the Stampacchia’s lemma [S] implies C uniformly in A, and
so the limit u* is regular. If we apply H61der inequality

We are assuming that q &#x3E; N/p. then, the above quantity is
finite if

or

But we are also assuming that

Then
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REMARK. If we take VEL 00, the last relationship transforms
in

This is the relationship appearing in [GPP], where V = 1.

The previous results show that, under the regularity hypothesis
above cited about V ; 0, there exists at least one positive regular sol-
ution of (P), for 1  p  N. However, for the subcritical case p ; N, we
can do a variational argument.

4. - V changing sign and p ~ N.

We will assume in this section the following hypotheses:

(3) There exists an open ball B such that V(x) &#x3E; 0 for
x E B.

In these hypotheses the comparison argument don’t work in gener-
al. But the condition p ; N allow us to state a result by critical points
methods. More precisely we have the theorem:

THEOREM 4.1. There exists a constants Ào &#x3E; 0 such that if i  
problems (P) has two regular solutions at least.

Hypothesis (3) imply that V’ 00: it plays a fundamental role in the
existence of two solutions: notice that for V  0 (i.e. V+ = 0) there is
only one negative solution. The proof of 4.1 follows the argument used
in [GP] for the case of constant potential.

The energy functional corresponding to our problem is

It satisfies the following inequality
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where and (k1, k2 are the
constants that appear in Trudinger’s inequality [GT, p. 162]).

LEMMA 4.2. The functional J verifies the Palais-Smale condi-
tion.

PROOF. Let c Wo° p (S2) be a Palais-Smale sequence for J;
i.e.

It is necessary to show that any Palais-Smale sequence contains a

subsequence which converges strongly in = J’ ( u~ ) then
in W -1 ’ p~ ( S~ ); therefore, we can assume that 1,

and

where

since

is a continuous function defined in the whole R that verifies g(x) - 0-
and g(x) as x - oo. Hence g attains a minimum value

-Co0.
Thus, the sequence {uj} is bounded in the rest of the proof

of Lemma 4.2 is identical to the one appearing in [GP] for
V= 1.
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As in [GP], it is easy to show the following properties of the func-
tional J for 0  ~,  ~, o :

( 1 ) If J( 0) = - A f V(x) 0, i.e. iffV(x) dx ; 0, the functional
sa Q

J verifies that, for A small enough there exist R, &#x3E; 0, e E R such
that = R 1, then J( u ) &#x3E; ~o &#x3E; J(0): by taking Ri = 1, ~o = 1 /2 p ,
Ä  we get

we have

whenever

(3) There exits wo E Wo ~ p ( ,S~ ), with = R2 &#x3E; R, and J( wo ) 
 J( o ); for eö (B) c 0, where is the ball
where V is positive, we have

The graph of J is then contained in the region above the graph
of

f has two critical points: a local minimum near 0 and a local maximum
i.e., the geometrical conditions required for the existence of critical
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points of J are fulfilled. Therefore, we can use the Mountain Pass Lem-
ma (see [AR]) to get

LEMMA 4.3. There exists a constant Ào &#x3E; 0 such that if 0  A  Ao,
problem (P) admits a solution corresponding to a critical point of the
functional J with critical value

E (C([0, 1 ]), = 0, ~p( 1 ) = wo } for some
wo E such that J(wo ) ~ J(O). Moreover, c &#x3E; J(O).

To obtain the other critical point, we make the truncation in the
functional appearing in [GP]. Let us consider a cut-off function 7: E

e e°’ ( S~ ) such that for the previously defined R1 and R2

and z nonincreasing. Thus, we obtain the truncated functional

It has to be noted that

(1) J and F are the same if Ri.

(2) If then

creasing for u with I I Vu 11, =--R1. Hence, J and F are the same in a neigh-
borhood of u and the Palais-Smale condition for J implies the subse-
quent Palais-Smale condition for F.

Then there exists a subsequence which converges strongly to u E
E 
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LEMMA 4.5.

PROOF. Let w be a function in (B) E Wo ~ p ( S~ ), w &#x3E; 0, where B is
again the open ball where V &#x3E; 0. If = 1, and o  R1, then

whenever e is small enough

By the same argument as in [GP] we have the following result.

LEMMA 4.6. There exists a positive constant Âo &#x3E; 0 such that if
0  A  Â 0, then problems (P) has a solution corresponding to a critical
point of the functional J, with critical value c’  J(O).

With the lemmas we conclude the proof of Theorem 4.1 in an inmedi-
ate way.

5. - A remark on eigenvalues and nonexistence results.

Let Q be a bounded domain, e e2, fJ and now we assume V(x) ~ 0,
V(x) 1 otherwise),
with Q: V(x) &#x3E; 0} ~ ~0. ~ I means the Lebesgue measure.

Let us consider the problem (1  p  oo ):

DEFINITION 5.1. We say that I is an eigenvalues if (P~) admits
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a solution. such solution is said an eigenfunction corresponding
to the eigenvalue A.

We now define the first eigenvalue, ~,1, as

This problem when V E L °° , was studied by [An], [BI] and [L]. We need
the case Ve L , with q in the hypothesis above.

The proof follows closely the one in [An], and then we concentrate
our attention only in the points that need some change.

The two next results are well known.

LEMMA 5.2. If u is a solution of (P,4), Moreover, if
u ~ 0 then u &#x3E; 0 in Q and  0 on aS2, where v denotes the unit
exterior normal vector to (Hopfs lemma).

LEMMA 5.3. an eigenvalue and every eigenfunctions Ul corre-
sponding to ~,1 does not change sign in S2: either ul &#x3E; 0 or ul  0.

We consider I(u, v) defined as

with

we get the following results (see [An, Prop. 1 and Th. 1]):

PROPOSITION 5.4. V(u, v) E DI, I(u, v) ~ 0. Moreover, I(u, v) = 0 if
and only if there exists a E (0, (0) such that u = av.

The proof of this proposition consists of the calculation of

to show that I(u, v) is the integral of a sum of two non-negative func-
tions, hence I(u, v) ~ 0. Moreover, I(u, v) vanishes if there exists some
a E (0, (0) such that u = av. As a consequence we get
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PROPOSITION 5.5. Â1 is simple, i. e. if u, v are two eigenfunctions
corresponds to the eigenvalue ~,1, = av for some a.

With respect to the isolation, we extend the results by
Anane [An]:

PROPOSITION 5.6. If w is an eigenficnction corresponding to the
eigenvalue A, A &#x3E; 0, A 0 A 1, then w changes sign in Q: w ’ 0 0, w - 0 0
and

where Q- = {x E Q: w(x)  0}, 6 = -2q’ if p &#x3E; N, 6 = -qN/(qp - N) 
if 1  p  N and Å. ¡ is the first eigenvalue for the p-laplacian with
weight V in Q.

PROOF. Let u, w be two eigenfunctions corresponding to A 1 and Å.

respectively, with IIVullp = IIVullp = 1. If 2u does not change sign, by ap-
plying Lemmas 5.2, 5.3 and Proposition 5.4 we get

But

and we arrive to a contradiction.
If w - replaces to w in (P¡), we get

with 1 /q + 1 /a + 1 /,B = 1. Now we are considering two cases
(1) p a N. By Sobolev’s inequality

Thus, if we take a = ~B = 2 q ’ then
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where p* = Np/(N - p)). by Sobolev’s inequality

Hence

REMARK 1. If q’ - 1 (q - m ), we obtain the estimation by Anane
(see [An, Prop. 2]).

REMARK 2. As Lindqvist pointed out, we can also extend these re-
sults to any bounded domain (see [L]).

In the hypotheses of Proposition 5.6 we obtain the next theorem
which proof follow [An]. However, we include it for the sake of

completeness.

THEOREM 5.7. ~,1 is isolated; that is, ~,1 is the unique eigenvalue in
[0, a] for some a &#x3E; ~,1.

PROOF. Let £ a 0 be an eigenvalue and v be the corresponding
eigenfunction. By the definition i (it is the infimum) we have ~, ~

Then, A, ¡ is left-isolated.
We are now arguing by contradiction. We assume there exists a se-

quence of eigenvalues (A k), ~. k ~ ~ 1 which converges to Let (Uk) be
the corresponding eigenfunctions with we can therefore
take a subsequence, denoted again by (uk), converging weakly in W~&#x3E; p ,
strongly in LP (Q) and almost everywhere in S~ to a function u E Wo P.
Since the subsequence converges
strongly in Wo ~ ~ , and subsequently u is the eigenfunction correspond-
ing to the first eigenvalue ~,1 with norm equals to 1. Hence, by applying
the Egorov’s Theorem ([B, Th. IV.28]), converges uniformly to u in
the exterior of a set of arbitrarily small measure. Then, there exists a
piece of S~ of arbitrarily small measure in which exterior Uk is positive
for k large enough, obtaining a contradiction with the conclusion of
Proposition 4.6.

Now we are ready to show a nonexistence result for the problem
(P): if V( x ) E &#x3E; 1 oth-
erwise) V ; 0, and A is large enough then problem (P) does not have a
solution.
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In the end of the proof we use the isolation of the first eigenvalue
with weight V(x).

THEOREM 5.8. Problem (P) does not have a solution if

where V E L q (Q), (q ; 1 for p &#x3E; N, q &#x3E; 1 for p = N, q &#x3E; N /p otherwise),
V ; 0 and ~,1 is the first eigenvalue for the p-Laplacian with weight
V(x).

PROOF. If ~,1 is the first eigenvalue for the p-Laplacian with weight
V(x), take = ~,1 + &#x3E; 0, v, a positive eigenfunction corresponding
to 11 1, and suppose that problem (P) has a solution

and

for small ~, we have (Ag  ~):

By using the weak comparison principle for the p-Laplacian we
obtain

Let v2 be the solution of

We know by regularity results that v2 eel, a (Q). In addition

By applying again the weak comparison principle, we get v2 ~ u.
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Now, let us consider the problems

The solutions of these problems form an increasing sequence such
that

Passing to the limit, we obtain a solution to the prob-
lem

But this is impossible for e small enough, because the first eigen-
value for the p-Laplacian with weight in is isolated by Theo-
rem 5.7.

This argument also shows the nonexistence of positive solutions to
(P) for A large enough when V changes sign in Q:

COROLLARY 5.9. Suppose that V E L q (Q) q &#x3E; 1
for p = N, q &#x3E; N/p otherwise), V chacnges sign in Q acnd there exists a
ball such that V(x) &#x3E; 0 for x E B . If

then (P) has no positive solutions, À 1 being the first eigenvalue for the
p-Laplacian with weight V(x) in B.

PROOF. Let WI a positive eigenfunction corresponding to ~,1 in B
 1, that is, WI verifies

Take AE = A1 + E, E &#x3E; 0, and suppose that problem (P) has a positive sol-
ution u for
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Then, for small E, we have (le  A):

By using the weak comparison principle for the p-Laplacian we
obtain

Using the argument in the proof of Theorem 5.8, we obtain a solution to
the following problem

But this is impossible for E small enough, because the first eigen-
value for the p-Laplacian with weight in L q (B) is isolated by Theo-
rem 5.7.

6. - Analysis of the radial solutions in a ball.

In this section, we consider the problem

where Bi(0) denotes the unit ball in RN and A &#x3E; 0.
In order to study the existence of singular solutions, we just consid-

er the case 1  p  N since for p ~ N every solution is a regular sol-
ution. In this hypothesis, it is easy to prove the nonexistence of singu-
lar solutions for some a:

If we consider the problem
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with p  a  N, A &#x3E; 0 and we try the solutions v(r) = prY, we get
that

and therefore the solution v is not bounded for p  a  N. For a = p we
can take

obtaining ~8 = - (À/(N - p))1~~~ -1 ~ and so v is also not bounded.
If we assume now that u is a positive singular solution of (Pr), i.e.

then

that is, u &#x3E; v. But this leads to a contradiction, since

On the other hand, if a ~ N then the potential V(r) = r-a does not
belong to 

Then we directly assume that a  p, independently on the dimen-
sion. Following the procedure carried out in [GPP], we introduce the
new variables

In the plane (v, w) the radial solutions of (Pr) satisfy the following
autonomous system

By the definition of the new variables, the region of interest is
v  0, Zv  0 (a radial solution of (Pr) is positive and its radial deriva-
tives is negative). In this region we find two stationnary points:
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The point PI is an unstable hyperbolic point. The v-axis is the stable
manifold for this point, and the unstable manifold is tangent to the
straightline w = (N - a)v.

With respect to the point P2 , it is

(1) A stable nodus if N ~ p + (4(p - a))/( p - 1).
(2) A stable spiral point if p  N  p + (4( p - a))/( p - 1).

We can see also that a singular selfsimilar solution of (P,,) is

with A being equal to A = (p - a)p -1(N - p). This singular solution
corresponds to the critical point P2 in the phase portrait, and it verifies
the following interesting property:

for every a.
We need some previous lemmas (their proofs are similar to those

in [GPP]).

LEMMA 6.1. Let u be a radical solution of (Pr) and (v, w) the

corresponding trajectory of the autonomous system. Then, u is a

regular solution of ( Pr) ( lim u( s ) = A  (0) if and only if
lim (v(s), W(8)) " ( o, 0). 

s - - oo

s - - oo

LEMMA 6.2. The unique trajectory of the autonomous system cor-
responding to a solution such that lim u( s ) = 00 is the critical
point P2 . 

8~-00

Let be the minimal solution of ( Pr), A* = SUP ( Pr) has sol-
ution I, and A = ( p - a) P - l(N - p). In this way, we arrive to the

THEOREM 6.3. i) If N : p + (4( p - a))/( p - 1) then A * = X, for
each A  Â. we have a unique radial regular solution, and lim 
= u * is a singular solution; 

A A

ii) 
there are infinitely many regular radical solutions, the values at the
origin going to infinity.
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Moreover, in case ii), lim u(A) = u* E L and there exists a positi-
A - A*

ve constant, E0 &#x3E; 0 such that, if 0  I A - X I  E o then the correspond-
ing problems ( Pr) has a finite family of radial solutions.

PROOF. In case i) we show that the trajectory joining PI and P2 , de-
noted by ~, is a monotone curve contained in the region - (p - a) P - 1 
 v  0, - ( p - a ) ~ -1 ( N - p )  w  0. Thus, there exists a unique point
of intersection for each line w = - ~,, i.e., there exists a unique regular
radial solution for each A E (0,(p - a ) p -1 (N - p )) .

First, it is easy to see that 0 is below the line w = (N - p) v. We
need a lower bound for ~; for that, we consider two different
cases.

If N ~ max{p + (4(p - a))/( ~ - 1), 3p - 2a}, and R is the line

we will show that dw/dv  (N - p)/2 along R, whenever

In this way the trajectories (v, ~,u) in the phase plane must cross R from
below; this implies that q5 cannot cut R, since it stars from above.

Then, it suffices to show that

when (v, w) E R, - (p - a)p - 1  v  0 (it has to be noted that dv/ds 
0 in the 

 (N - p)v). So

The factor (( p - a)p -1- ~ v ~ ) is positive; if we write s =

_ ~ v ~ l~~p -1~ /(p - a), and we suppose 1  p  2, the function
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, is increasing in (0, 1). We obtain (remember that

If p &#x3E; 2, then

where f(s) is

for s e (0, 1). This function verifies the following properties:

(3) f has two critical points, the first between 0 and 1, the second
one greater or equal to 1.

This implies that

when ( u, v) e R, - ( p - a ) ~ -1  v  0, and therefore the trajectory 0
cannot cross R.

When p + (4( p - a»/(p - 1) ~ N  3p - 2a, we can do a different
argument. We consider now the curve

contained in the region - ( p - a)P -1  v  0. Then f verifies

connects the two singular points in the phase plane.
(2) f is increasing and convex in ( - (p - 0).
(3) dw/dv  f’(v) on (v, f(v)).

Then, it follows that f is a lower bound for the trajectory 0 and we
conclude the analysis for i).
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In case ii) the line w = - A cross the manifold q5 infinitely many
times. Each point of intersection sj corresponds to a radial solution of
(Pr) by scaling s in such a way that for s = 0 we have as an initial value

The rest is a consequence of the analysis carried out in this
section.
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