RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

F. S. CATER

A. B. THAHEEM

On a pair of automorphisms of C^* -algebras

Rendiconti del Seminario Matematico della Università di Padova, tome 96 (1996), p. 137-142

http://www.numdam.org/item?id=RSMUP 1996 96 137 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1996, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On a Pair of Automorphisms of C^* -Algebras.

F. S. CATER(*) - A. B. THAHEEM(**)

1. - Introduction.

During the last decade or so, a lot of work has been done on the operator equation $\alpha + \alpha^{-1} = \beta + \beta^{-1}$, where α and β are *-automorphisms of a W*-algebra or a C*-algebra M (sav). Among several decomposition results in this context, it is known (see e.g. [1,7,9]) that this operator equation in the commuting case (that is, when α and β commute) leads to a decomposition of the W*-algebra M, namely, $\alpha = \beta$ on Mp and $\alpha = \beta^{-1}$ on M(1-p) for a central projection p in M. In case Mis a factor then $\alpha = \beta$ or $\alpha = \beta^{-1}$. Batty [2] has studied this operator equation for C*-algebras. Recently, Bresar [3] has considered this operator equation in a more general context of rings and has obtained decomposition results analogous to the results of Batty [2] and Thaheem [1,7,8]. There are situations where this operator equation ensures the commutativity of α and β and consequently the commutativity condition can be relaxed from the hypothesis to obtain the decomposition. For instance, it has been proved in [7, Theorem 3.1] that if M is a commutative Banach algebra then the operator equation $\alpha + \alpha^{-1} =$ $=\beta+\beta^{-1}$ implies the commutativity of α and β . Also, it has been shown in [10] that if M is a C^* -algebra and α (or β) is inner, then also the operator equation $\alpha + \alpha^{-1} = \beta + \beta^{-1}$ implies the commutativity of α and β (see also [3, Corollary 3] for an analogous result for rings). Recently, in [4] we have studied this operator equation in a more general context. We consider there the linear combination $a\alpha + b\alpha^{-1}$ (a, b are complex

^(*) Indirizzo dell'A.: Department of Mathematics, Portland State University, Portland, Oregon 97207, U.S.A.

^(**) Indirizzo dell'A.: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Mail Box 469, Dhahran 31261, Saudi Arabia.

numbers, $a^2 \neq b^2$ rather than the sum and obtain several decomposition results for W*-algebras and C*-algebras. If we put b/a = c, then the equation $a\alpha + b\alpha^{-1} = a\beta + b\beta^{-1}$ reduces to the equation $\alpha + c\alpha^{-1} =$ $=\beta + c\beta^{-1}$. The purpose of this note is to look for situations analogous to [7, 10] where the operator equation $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ implies the commutativity of α and β for an appropriate choice of c. For instance. we show (Proposition 2.1) that if α and β are inner automorphisms of a C*-algebra M such that $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ where c is a complex number with $|c| > \max\{1, \|\alpha\|\}$, then α and β commute. In case α and β are automorphisms of a W*-algebra M satisfying $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ where $\|\alpha - 1\| < 1$, $\|\beta - 1\| < 1$ and c is a complex number such that |c| > 4, then we are able to prove a stronger form of the result, namely, $\alpha = \beta$. We conclude this note with a general result on the commutativity of the inner automorphisms α and β on a complex algebra even when the automorphisms satisfy the operator equation $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ for certain specific elements. For more information about the operator equation we refer to [1,8,9,10] which also contain further references. We shall follow Pedersen [5] and Sakai [6] for the general theory of W^* algebras and C*-algebras. All C*-algebras considered here are assumed to have the identity element.

2. - Commutativity of automorphisms.

Recall that an automorphism α of a C^* -algebra M is said to be inner if there is an invertible element u in M such that $\alpha(x) = uxu^{-1}$ for all $x \in M$. We say that α is implemented by u. If u is unitary then α is a *-automorphism.

We now prove a commutativity result analogous to a result of [10, Theorem 2.2] where c is equal to 1.

PROPOSITION 2.1. Let M be a C^* -algebra and α , β be inner automorphisms of M which are implemented by u and v respectively. Assume that $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$, where c is any complex number such that $|c| > \max\{1, v \|\alpha\|\}$. Then α and β commute.

PROOF. For any $x \in M$, $\alpha(x) + c\alpha^{-1}(x) = \beta(x) + c\beta^{-1}(x)$ implies that $uxu^{-1} + cu^{-1}xu = vxv^{-1} + cv^{-1}xv$. For x = v, we get $uvu^{-1} + cu^{-1}vu = (1+c)v$, or in other words, $\alpha(v) + c\alpha^{-1}(v) = (1+c)v$. This implies that $\alpha^{2}(v) + cv = (1+c)\alpha(v)$ where α^{2} means $\alpha \circ \alpha$. Then $(\alpha - c)(\alpha - 1)(v) = 0$. Put $(\alpha - 1)(v) = y$. Then $\alpha(v) = v + y$ and $(\alpha - c)(y) = 0$ or $\alpha(y) = cy$. This implies $\alpha^{2}(v) = \alpha(v) + \alpha(y) = v + y + cy = v + (1+c)y$. Thus we obtain that $\alpha^{n}(v) = v + (1+c)y = v + (1+c)y$.

 $+c^2+\ldots+c^{n-1}$) y for any natural number $n \ge 1$. Then

$$||y|| \frac{|c^n - 1|}{|c - 1|} = ||\alpha^n(v) - v|| \le (||\alpha||^n + 1)||v||$$

and

$$||y|| ||(c^n-1)(||\alpha||^n+1)^{-1}(c-1)^{-1}| \le ||v||.$$

From $|c| > \max\{1, \|\alpha\|\}$ we conclude that $\|y\| = 0$ and y = 0. So $\alpha(v) = v$ and hence $uvu^{-1} = v$. This implies that uv = vu and consequently α and β commute. This completes the proof of the proposition.

PROPOSITION 2.2. Let α , β be automorphism of a W*-algebra M such that $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$, $\|\alpha - 1\| < 1$, $\|\beta - 1\| < 1$, where c is a complex number such that |c| > 4. Then $\alpha = \beta$.

PROOF. By Sakai [6, Theorem 4.1.19], α and β are inner automorphisms. Therefore, $\alpha(x) = uxu^{-1}$ and $\beta(x) = vxv^{-1}$ for all $x \in M$, where u, v are invertible elements of M. But $\|\alpha\| < 2$, and |c| > 4. Therefore by Proposition 2.1, α and β commute. From the relation $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ together with the commutativity of α , β , we get

(A)
$$(\alpha \beta - c)(\beta^{-1} - \alpha^{-1}) = 0$$
.

We now prove that $N(\alpha\beta - c) = \{0\}$ where $N(\alpha\beta - c)$ denotes the null space of $(\alpha\beta - c)$. Let $x \in N(\alpha\beta - c)$. Then $\alpha\beta x = cx$. It follows that $cx - \beta x = \alpha\beta x - \beta x = (\alpha - 1)\beta x$. This implies that

$$||cx - \beta x|| = ||(\alpha - 1)\beta x|| \le ||\alpha - 1|| ||\beta x|| < ||\beta x||.$$

That is

$$|\|cx\| - \|\beta x\|| < \|\beta x\|.$$

This implies that

$$|c|||x|| < 2||\beta x|| \le 2||\beta||||x|| < 4||x||.$$

If $x \neq 0$, then we get |c| < 4, a contradiction. This implies that x = 0 and consequently $N(\alpha\beta - c) = \{0\}$. It follows from (A) and the commutativity of α , β that for any $x \in M$, $(\beta^{-1} - \alpha^{-1})(x) \in N(\alpha\beta - c) = \{0\}$. Thus we get that $\beta^{-1}x = \alpha^{-1}x$ for all $x \in M$ and hence by the commutativity of α and β , it follows that $\alpha(x) = \beta(x)$ for all $x \in M$. This completes the proof.

PROPOSITION 2.3. Assume that α , β are *-automorphisms of a C*-algebra M and $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ where c is a complex number with |c| > 1 and α is inner. Then $\alpha = \beta$.

PROOF. Because α is inner, $\alpha(x) = uxu^{-1}$ for all $x \in M$ where u is an invertible element of M. Also, $\beta(x) + c\beta^{-1}(x) = \alpha(x) + c\alpha^{-1}(x)$ for all $x \in M$. In particular, when x = u, we get

$$\beta(u) + c\beta^{-1}(u) = (1+c)u$$
.

A procedure similar to the proof of Proposition 2.1 implies that $\beta(u) = u$. Therefore,

$$(\alpha\beta)(x) = \alpha(\beta(x)) = u\beta(x)u^{-1} = \beta(u)\beta(x)\beta(u^{-1}) =$$

$$=\beta(uxu^{-1})=(\beta\alpha)(x), \quad \forall x\in M.$$

Thus α , β commute. But α and β are *-automorphisms. Therefore $\|\alpha\| = \|\beta\| = 1$ and as in the proof of Proposition 2.2, we get that $N(\alpha\beta - c) = \{0\}$. The commutativity of α , β together with the equation (A) in the proof of Proposition 2.2 imply that $\alpha = \beta$ on M.

COROLLARY 2.4. Assume that α , β are *-automorphisms of a type I W*-algebra M such that $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ where c is a complex number such that |c| > 1. Assume further that α leaves the center pointwise fixed. Then $\alpha = \beta$.

PROOF. By Sakai [6, Corollary 2.9.32], α is inner and the result follows from Proposition 2.3.

We conclude the note with the following proposition which gives a more general result on the commutativity of automorphisms α and β on a complex algebra M even when the automorphisms satisfy the operator equation $\alpha + c\alpha^{-1} = \beta + c\beta^{-1}$ for certain specific elements of M.

PROPOSITION 2.5. Let M be a complex algebra with identity 1; let α , β be automorphisms of M which are implemented by u and v respectively; and let c be a complex number different from -1 and 1. Assume that

(i)
$$\alpha(x) + c\alpha^{-1}(x) = \beta(x) + c\beta^{-1}(x)$$
 for $x = u$ and v ,

(ii)
$$\alpha(\beta(x)) = \beta(\alpha(x))$$
 for $x = u$ and v .

Then α and β commute.

PROOF. Let $k = v^{-1}u^{-1}vu$. Then

$$vu = uvk.$$

The proof is complete if we show that k = 1.

We first prove that k commutes with u and v. It follows from (ii) that

$$uvxv^{-1}u^{-1} = vuxu^{-1}v^{-1}$$
.

Then

$$uvxv^{-1}u^{-1}vu = vux.$$

This implies uvxk = vux = uvkx (from (1)). For x = u, we get

$$uvuk = uvku$$
.

This implies that uv(uk - ku) = 0 and since u, v are invertible, we get

$$uk - ku = 0$$
 or $uk = ku$.

Thus k commutes with u. Similarly k commutes with v. Thus (1) may be rewritten as

$$(1') vu = kuv.$$

Put x = v in (i) to obtain

(2)
$$uvu^{-1} + cu^{-1}vu = (1+c)v.$$

Multiply (2) on the right by u, and apply (1') to get

(3)
$$uv + cu^{-1}vu^2 = (1+c)kuv,$$

or what is the same

(4)
$$cu^{-1}vu^2 = (ck + k - 1)uv.$$

Multiply (4) on the left by u to get

(5)
$$cvu^2 = (ck + k - 1)u^2v.$$

Multiply (1') on the left by ku to get

$$kuvu = k^2 u^2 v.$$

Multiply (1') on the right by u to get

$$vu^2 = kuvu.$$

From (6) and (7) we get

$$(8) cvu^2 = ck^2u^2v.$$

From (5) and (8) we obtain

(9)
$$ck^2u^2v = (ck + k - 1)u^2v,$$

or equivalently

$$(ck^2 - ck - k + 1) u^2 v = 0.$$

But u^2v is invertible, so we have

(11)
$$(ck-1)(k-1) = ck^2 - ck - k + 1 = 0.$$

Repeating the above arguments with v in place of u, u in place of v, and k^{-1} in place of k, we get

$$(2) (ck^{-1}-1)(k^{-1}-1)=0.$$

Multiply (12) on the left with ck and on the right with k and combine it with (11) to obtain

(13)
$$(c^2 - 1)(k - 1) = 0.$$

But $c^2 \neq 1$, so k = 1 is clear and the proof is complete by (1).

REFERENCES

- [1] M. AWAMI A.B. THAHEEM, A short proof of a decomposition theorem of a von Neumann algebra, Proc. Amer. Math. Soc., 92 (1984), pp. 81-82.
- [2] C. J. K. Batty, On certain pairs of automorphisms of C*-algebras, J. Austral. Math. Soc. (Series A), 46 (1989), pp. 197-211.
- [3] M. Bresar, On certain pairs of automorphisms of rings, to appear in J. Austral. Math. Soc. (Series A).
- [4] F. S. Cater A. B. Thaheem, On automorphisms of C^* -algebras, preprint.
- [5] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, New York (1979).
- [6] S. SAKAI, C*-Algebras and W*-Algebras, Springer-Verlag, Berlin, New York (1971).
- [7] A. B. THAHEEM, On a decomposition of a von Neumann algebra, Rend. Sem. Mat. Univ. Padova, 65 (1981), pp. 1-7.
- [8] A. B. THAHEEM A. VAN DAELE L. VANHEESWIJCK, A result on two one-parameter groups of automorphisms, Math. Scand., 51 (1982), pp. 261-274.
- [9] A. B. Thaheem, On certain decompositional properties of von Neumann algebras, Glasgow Math. J., 29 (1987), pp. 177-179.
- [10] A. B. THAHEEM, On a functional equation on C*-algebras, Funkcialaj Ekvacioj (1988), pp. 411-413.

Manoscritto pervenuto in redazione l'1 marzo 1995.