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On Soluble Groups
in which Centralizers Are Finitely Generated.

JOHN C. LENNOX (*)

The aim of this paper is to consider some evidence for an affirmative
answer to the following question of the author (see [3]): is a soluble

group polycyclic if all centralizers of its finitely generated subgroups
are finitely generated?

Of course all subgroups of polycyclic groups are finitely generated
and so the converse question has a positive answer.

We note that the hypothesis implies that the group in question is
finitely generated.

In what follows we shall abbreviate finitely generated to f.g. and if
G is a group we shall abbreviate the usual centralizer notation CG (X) to
c(X) where there is no ambiguity as to the identity of the group G with
respect to which centralizers are being taken.

THEOREM A. A soluble group of finite rank is polycyclic if all
centralizers of f.g. subgroups are f.g.

Now soluble groups of finite rank are nilpotent by abelian by finite
and so Theorem A is an immediate consequence of the somewhat

stronger

THEOREM B. that G is a nilpotent by polycyclic group in
which the centralizer of each polycyclic subgroup is f.g. Then G is
polycyclic.

(*) Indirizzo dell’A.: School of Mathematics, University of Wales, Cardiff,
Wales, U.K.

The author wishes to thank the Alexander von Humboldt Stiftung for a
Fellowship and Professor Hermann Heineken of the University of Wurzburg for
hospitality during the completion of this work.
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As a further corollary of Theorem B we have that a soluble linear
group is polycyclic if the centralizer of each of its polycyclic subgroups
is f.g.
We remark that the hypothesis of Theorem B only requires the cen-

tralizers of polycyclic subgroups to be f.g. If we further weaken this hy-
pothesis to require only that centralizers of cyclic suybgroups are f.g.,
we have

THEOREM C. Suppose that G is an abelian by nilpotent group in
which the centralizer of each cyclic subgroup is f.g. Then G is poly-
cyclic.

This result is deduced in turn from

THEOREM D. Suppose that a group G has an abelian normal sub-
group A such that G/A is nilpotent and CG (a) is f.g. for all a in A. Then
G is polycyclic.

We do not know whether Theorems C and D hold if «nilpotent» is
replaced by «polycyclic».

Proof.

PROOF OF THEOREM B. We first of all need.

LEMMA 1. Suppose that G is a soluble group and that c(X) is f.g.
for every polycyclic subgroup X of G. Then this property passes to G/P,
where P is a polycyclic normal subgroup of G. 

PROOF. Suppose that L/P = cG/p(H/P), where H/P is polycyclic.
Then L normalizes H. Now nG (H)/cG (H) is a soluble group of automor-
phisms of a polycyclic group and is therefore polycyclic by Mal’cev’s
Theorem. Since CG (H) is f.g. and contained in L, it now follows that L is
f.g., as required.

We now proceed with the proof of Theorem B and we suppose that G
is a f.g. nilpotent by polycyclic group in which cG (H) is f.g. for every
polycyclic subgroup H of G. Let N be a nilpotent normal subgroup of G
such that G/N is polycyclic. Since G is f.g. it is countable and so N is
countable.

Suppose that N = ~ a1, a2 , ... , an , ... ~. Set Un = (aI’ an).
Then Un is f.g. nilpotent and so polycyclic and hence Cn = c( Un ) is f.g.
by hypothesis.



133

(*) Furthermore, CI N a C2 N : ... ~ ... so that, since G/N is
polycyclic, we must have that there exists a positive integer k
with I finite for all r ; 1.

We set K = Ck and consider V = coreg (KN). Since G/N is polycyclic,
it follows by a result of Rhemtulla [4], that V is the intersection of
finitely many conjugates of KN. Suppose that 01, ... , gs will do as the
conjugating elements and put x = Then ai , ... , ak belong to N and
so there exists a positive integer t such that Uk is contained in Ut . It
then follows that Ct ‘ Kx . Hence Ct N ~ and using (*) we have
that the latter subgroup contains Ka for some positive integer a. Since s
is finite we deduce that Kb  V for some positive integer b.

Since K is f.g. soluble we have that is finite, so that KN/V is fi-
nite (note that N ~ V). Now suppose that a is any element of N. Then
certainly c(a) N for some c &#x3E; 0. We also have for all g in G that

= V ~ Thus for any h in G

since c(a) N. So K cb centralizes aG N’ /N’ .
But G/N’ is a f.g. abelian by polycyclic group so, by a theorem of P.

Hall [2], N/N’ is f.g. as a G-module. It follows at once from the above
that = M centralizes N/N’ for some w &#x3E; 0. Moreover, N is nilpotent
and we may apply a result of Robinson [5] to deduce that [N,qM] = 1,
for some q &#x3E; 0.

We now set W = MZ, where Z is the centre of N. Then W is f.g.
since it is of finite index in K and K is f.g. But [N, qM] = 1 and so W is a
f.g. hypercentral by polycyclic group. Hence W/Zq (W) is polycyclic.
Hence W is polycyclic and so Z is a f.g. abelian group.

By Lemma 1 the hypotheses pass to G/Z and induction on the nilpo-
tency class of N completes the proof.

PROOF OF THEOREM D. Here we shall need

LEMMA 2. Suppose that G is a group and A an abelian normal
subgroups of G such that G/A is polycyclic and CG (a) is fg. for all a in
A. Then if B is a normal subgroup of G contained in A, we have that

fg. for all a in A.

PROOF. Set = H/B, so that A ~ cG ( a ) ~ H. Moreover,
H/A is polycyclic and CG (a) is f.g. by hypothesis, so that H is f.g. and
the result follows.

We now proceed with the proof of Theorem D and suppose that G is
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a non-polycyclic group with an abelian normal subgroup A such that
G/A is nilpotent and cG (a) is f.g. for all a in A. Thus G = cG ( 1 ) is f.g.
and so by Hall’s theorem A satisfies Max-G. This fact together with
Lemma 2 allows to assume that if B is a non-trivial normal subgroup of
G contained in A then G/B is polycyclic. From this it is not difficult to
deduce that we may assume that G is just non-polycyclic (j.n.p.): for
either G is j.n.p. or there is a non-trivial normal subgroup N of G with
G/N not polycyclic. It follows that N n A = 1 and so N is polycyclic. In
G/N we have [ gN, aN] = 1 if and only if [ g, a] E N n A = 1. Thus G/N
inherits the hypothesis in an obvious way. Since G satisfies Max-n we
may factor out the maximal such N and so assume G is j.n.p. as

stated.

By results of Groves [1] (or Robinson and Wilson [6]) there are two
cases that arise:

Case 1. A is torsion free of finite rank.

Case 2. A has finite exponent a prime p.

In Case 1 (see [6]) G is a finite extension of a f.g. metabelian group.
It not hard to see that we can come down to a subgroup of finite index
and assume that G is metabelian. (If the new group is not j.n.p. we can
repeat the argument and assume that it is). But then CG (a) is normal in
G for all a in A. Hence a G is contained in the centre of the f.g.
metabelian group cG (a) and so, again by Hall’s theorem, aG is f.g. as an
abelian group. But G is j.n.p. and so G/aG is polycyclic. Hence G is poly-
cyclic, a contradiction.

So we may assume that we case in Case 2. Put C = cG (A). Then G/C
is nilpotent. Let Z/C the centre of G/C. By Hall’s theorem A is the nor-
mal closure in G of finitely many elements al , ... , an , say. Denote CG ( ai )
by Ci . The Ci contains C and is normalized by Z, since [Z, G]  C.

Hence Ci] = 1. But Ci is f.g. abelian by nilpotent and so by the
usual argument its centre and hence is a f.g. abelian group and
therefore is finite since it is a p-group. It follows that the normal clo-
sure B of (ai , ... , an) under Z is finite. Furthermore, C ; Z, so
that D = is normal in G.

However, 1 = [B, D] = [B, D]G = [A, D] so that D = C.
Thus Z/C = Z/D embeds in Aut B, which is a finite group. There-

fore Z/C is finite. But G/C is a f.g. nilpotent group and hence is finite.
Thus C is f.g. and abelian by nilpotent. By a final application of Hall’s
result, the centre of C is f.g. Hence A is f.g. and so G is polycyclic, a
contradiction.
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