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Well Posedness in C~

for a Weakly Hyperbolic Second Order Equation.

PIERO D’ANCONA (*)

§ 1. Introduction.

We consider here the Cauchy problem on [0, T] x Rx ( T &#x3E; 0)

where the coefficients a, b, d, f are C °° functions on [0, T] x Rx . We
will assume that Pb. (1), (2) is weakly hyperbolic and that the coeffi-
cient a(t, x) is bounded, namely

and that the first order term satisfies a Levi-type condition of the
form

We will be interested in the global solvability of problem (1), (2)
in C °° .

It is well known that the above assumptions are not sufficient for
the well posedness in C °° of Pb. (1), (2); see e.g. [CS], where it is con-
structed an equation of the form

with a(t) non negative and infinitely differentiable, which is not locally
solvable in C °° .

In this counterexample the coefficient a(t) oscillates an infinite
number of times in a neighbourhood of the initial line. On the other

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università di Pisa, Via
Buonarroti 2, Pisa.
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hand, in the case when the coefficient a(t, x) = a(t) depends only on
time, if it oscillates only a finite number of times on [0, T], it is possible
to prove that the Cauchy problem (1), (2) is well posed in C °° , with a fi-
nite loss of derivatives depending on the number of oscillations. More-
over, in the proof of Nishitani’s result (see [Nil]) about the local well
posedness in C °° for (1), (2) with analytic coefficients, a crucial step is a
careful analysis of the zeroes of a( t, x).

These considerations lead to the following question: is it possible to
obtain a global existence result for (1), (2) in C °° , under some a priori
knowledge of the oscillating behaviour of the coefficient a( t, x)?
We propose here a partial answer. Denote with GR the rectangle

[0, T ] x [ -R, R]. Let Pj(x), 1 ~ j ~ 1~ - 1 (k depending of R) be abso-
lutely continuous, H61der continuous functions, such that the set

~~ (x) = 0} has a boundary with measure 0 (or more generally, coin-
cides almost everywhere with a set whose boundary has measure 0).
Let moreover 0 ; ~ 1 ( x ) ~ ... ~ ~ k _ 1 ( x ) ~ T . Then, writing 0 for the
line t = 0, ~ k for the line t = T , and denoting with GR the set

we shall assume that:

ASSUMPTION (A).

3) in each region Gh, one of the following inequalities holds, for
some constant K (depending on j):

In § 2 we shall prove the following.

THEOREM 1. Under assumptions (3), (4) and (A), problem (1), (2)
is globally 2ueLL posed in Coo.

Moreover, in § 3 we will show that a real analytic, nonnegative func-
tion a(t, x) satisfies assumption (A). As a consequence, we shall obtain
the following theorem, which extends the local result in [Nil]:

THEOREM 2. Assume (3), (4) hold, and that a(t, x) is real analytic.
Then problem (1), (2) is globally well posed in Coo.

REMARK 1. Assumption (A) is of course modelled on the behaviour
of real analytic functions, but is in fact more general than that. For in-
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stance, it is satisfied by any equation of the form

for any p, q E N, ~ e C °° (R ): choose

(and of course ~ o = 0, § = T ).

REMARK 2. Condition A.2 is invariant under a regular change of
variables. More precisely, suppose we are given the partial differential
operator

and a curve t = and perform a C °° change of variables (t, x) -
-~ ( s, y ) leaving the form of the principal part unchanged:

Denote the transformed curve with s = ~( y). Then

Using an equivalent terminology, A.2 can be restated by saying that
the function t - is a time junction with respect to the operator
d2t - a(t,x) d2x.

REMARK 3. As it is well known, condition (4) is not necessary for
the well posedness in C °° of (1), (2). Necessary and sufficient conditions
on lower order terms can be found in [Ni3], where the problem is inves-
tigated in detail.

Acknowledgments. We would like to thank Prof. S. Spagnolo for
many useful discussions about the subject of this work.

§ 2. Proof of Theorem 1.

The idea of the proof is the following. We prove a priori estimates
for the solution of (1), (2). These estimates are of two different types.
In the regions where x ) ; - Kac( t, x), we use a method due to 0.
Oleinik (see [0]). She made a similar assumption about a(t, x), but the
form of the region was very simple (a strip). Here the region is bound-
ed by two absolutely continuous curves, and this causes some addition-
al difficulties. We prove that any derivative of the solution in the re-
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gion can be estimated by some norm of the solution restricted to the
lower boundary of the region. In the complementary regions we get a
similar result, but the technique used is the usual energy estimate of
Petrowski (modified, of course, to take into account the particular form
of the region). Thus we can estimate, in a finite number of steps, the
solution on the whole strip [0, T ] x Rx by its norms at the time
t=0.

Suppose firstly that u(t, x) is a solution of (1), (2) with compact sup-
port (in [0, T ] x Rx) say with support contained in [0, T ] x [ - R, R].
We can then assume that the coefficients are bounded functions (with
all their derivatives), and that (4) holds with a constant M fixed.

In order to simplify the exposition of the proof, we introduce some
notations.

Given two absolutely continuous functions, Holder continuous func-
tions §(r) % §(r) on [ -R, R], such that the set = 0 1 has a
boundary with measure 0 (or differs for a negligeable set from a set
whose boundary has measure 0), and that the products a(~, x) ~’2,
a(~, x) ~’2 are less then 1, we write

and we call G( ~, ~ ) a regular domain for a. Since u( t, x ) is 0 for I x I ~
~ R, we will not distinguish between this domain and the infinite strip
obtained by continuing ~, ~ as constants outside [ - R, R ].

Moreover, if with y we denote the set of points

we shall write for j integer and v(t, x) a C °° function

more generally, for any set A, we will write

We begin with a technical lemma.

LEMMA 1. Let v(t, x) be a Coo function on [ 0, T ] x vanishing
for I ~ R, and let ~(x) be a continuous function on [ -R, R]. Denote
with y the set ~(t, x): t = ~(x)~. Then there exists a C2 function w(t, x),
which is Coo outside y, and such that, in the points of y, D " v = D " w for

I « ~ I ~ 2. Moreover, w vanishes for I x I &#x3E; R + 1, and the second deriva-
tives of w can be estimated by the second derivatives of v along y: for
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any compact set K there exists a constant c(K) such that

PROOF. The proof is a simple application of Whitney’s extension
theorem, for which we refer to [Fe], Th. 3.1.14. With the notations
used there, we define functions with a = (~( ~), ~) E y and b =
= ( t, x ) which are nothing but the Taylor series development of v( t, x ) in
a, truncated to the second order and computed in the point b. It is easy
to verify that the assumptions of Whitney’s theorem are fulfilled.
Moreover, the estimate of the second derivatives of w is a consequence
of the explicit expression for w (see [Fe], p. 226), and w can be chosen
to vanish for R ’ for any R’ &#x3E; R (it is sufficient to multiply by a
suitable regular function of x alone with compact support).

We can now prove the energy estimates, beginning with the regions
where at : - Ka.

In the following Lemmas 2 and 3, we will assume that v(t, x) is a 
solution of the equation

(6) (a(t, bl (t, x) vx + cl (t, x)

where a( t, x ) is the same coefficient as in eq. (1), while the other coeffi-
cients may be different. In particular, we shall assume that

For brevity, in the following computations we shall omit the index 1
from the coefficients.

LEMMA 2. Let G = G(~, ~) be a regular domain for a, and suppose
that at ( t, x ) ~ - Ka(t, x ) in G for some constant K. Denote with y the
lower boundary of G, and with Dt c Rx the set

Then for inf ~ ~ t ~ sup ~ one has

where C is a constant depending on M, T, ~, ~ and the 
cients.
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PROOF. Suppose firstly that v, vt and vx vanish along y. Denote with
Gz the domain Gn(R,, x [0, r]), and define for (t, x) E G~

The function V is well defined and continuous on G , and vanishes
along the upper boundary of G ; moreover

where defined a.e., means 0 where ~ &#x3E; r and ~’ else-
where (indeed, the function z /~ ~ (x) is absolutely continuous and hence
almost everywhere differentiable). Thus Vt and Vtx are C °° functions;
note that Vx is the sum of a continuous function of (t, x), which is regu-
lar in t, and a function of x alone, which is integrable on R.

Multiply now equation (6) by Ve’, where 0 % 0 is to be chosen, and
integrate over G . Consider the resulting terms one by one as in [01];
for brevity, we omit the domain of integration G, in the following
integrals.

Thanks to the particular form of the set G , the first 
is easy to compute:

we have used the fact that v = vt = 0 on y, while V = 0 on the upper
boundary ~t = ~(x)~.

The second and the third terms, are

more difficult, since it is necessary to integrate by parts in the variable
x. To justify this passage, it is sufficient to observe that, at t fixed, the

( x, t ) E is open, then it consists of a countable union on in-

tervals, and in each of these the integration by parts can be performed.
Since vx vanishes on y, while V vanishes on the upper boundary
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It = ~(x)~, no boundary terms appear. Thus we have:

note that, thanks to (13), the right hand member is well defined. To es-
timate the first integral at right in (15), consider the function aV,2e"’:
thanks to (13) it can be differentiated w.r. to t, giving

and hence, as at % - Ka,

On the other hand,

and recalling the Levi condition (8),

Let now 03BC = M + I K 1. Choosing 0 = 03BC in (16) and (17) and summing, we
get:

Now we integrate over G T. Firstly we integrate in t, at x fixed, be-
tween t = and t = T A v (x) (when these limits coincide, the corre-
sponding section of G, is empty); note in particular that

(since the function is nonnegative); but, by (13),

and hence the function
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is equal to 0 when §(r) &#x3E; r, while is equal to

when §(r) % r; we have used the assumption a(~, x) ~’2  1.
Thus we can integrate (18) also in x (note that we are forced to inte-

grate first in time, then in space), to get

Now it is sufficient to observe that the functions in (21) are all inte-
grable on GT, and to apply Fubini’s theorem, to ensure that (21) does
not depend on the order of integration and is thus valid in the ordinary
Lebesgue sense.

The remaining terms are harmless; they give (recall that 0 = ~u )

We can now sum (14), (21), (23), (24) obtaining

where the constant C depends on the oo norms of a, bx , 9 c, ct , 9 d.
Now the left hand member of (25) gives
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since v vanishes along y, while directly from def. (10) it follows
that

introducing (26) and (27) in (25) we find

Rearranging the first term, since

we have

The constant C1 depends on M, T, R and the supremum norms of a, bx ,
c, ct , d (recall that we are assuming that v has compact support).

To conclude, define

from this it follows that

Thus (28) implies

Applying now Gronwall’s lemma, we conclude the proof in the special
case of v, vanishing on the initial curve (the boundedness of y im-
plies the boundedness of y’ from eq. (29) itself).

To deal with the general case of v not vanishing along y, we reduce
ourself to the preceding one by a straightforward application of Lem-
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ma 1: we consider the function w(t, x) furnished by Lemma 1 and apply
the above estimate to the difference v - w; this difference satisfies

eq. (6) with f replaced by another function, whose L 2 norm can be esti-
mated by llfll2 and the values of v and its first and second derivatives
along y (by (5)).

We now consider the regions where the reverse inequality holds,
at ~ Ka. Let v denote again a solution of (6), such that (7), (8)
hold.

LEMMA 3. Let G = G(~, x) be a regular domain for a, and assume
that at £ Ka on G for some constant K. Let as above Dt =

 t  x( x ) }, and consider the energy of v, defined as

Then, denoting with y the lower boundary of G, for inf ~ ~ t ~ sup X one
has

where C is a constant depending on M, T, and the supremum
norms of some derivatives of the coefficients.

PROOF. We need a formula for the derivative of an integral whose
domain varies with time.

More precisely, let F(x) be a C 1 function supported on [ - R, R ], let
an absolutely continuous function on [ - R, R], and consider the

integral

where

In general, the function is not even continuous (consider for in-
stance the case F = 1, ,8 = const.). But if we assume that the set

has Lebesgue measure zero, then we claim that If3 (t) is absolutely con-
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tinuous, and its derivative is given for almost any t by the formula

indeed, we shall prove that the set

is finite for almost any t, and thus the sense of (31) is clear.
To prove the claim, we shall use some basic tools from geometric

measure theory. The standard reference is [Fe].
The derivative of is defined almost everywhere, let us denote

with Y2 the set where the derivative of f3 does not exist. We define then
the set

which is of course a negligible set.
For a measurable set M c Rn , the essential boundary is defined as

follows:

(where as usual B(x, p) is the open ball centered in x with radius p,
while IMI I denotes the n-dimensional Lebesgue measure of the set M).

We remark that, since (~’(x) ~ 0 almost everywhere, the following
holds:

( 32) a* Bf = 3~ almost everywhere

(this means that the two sets coincide, apart from a negligible set). In
fact, it is well known that the derivative of an absolutely continuous
function f3(x) is given, where it exists, by the usual limit

and assuming that this limit is different from 0 at some point x e 
taking h small enough it is easy to see that
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But in fact, if Z, we have instead of (32)

since, for such values of t, 9~ consists exclusively of points where 
exist and is different from 0. This fact will play an important role in the
following.
We shall need a special case of the so-called Fleming-Rishel formu-

La (or coarea formula); for the general result see [Fe 4.5.9] or [Gi]. It
states that if g(x) is a nonnegative Borel function on R (or bounded
Borel), and f (x) is absolutely continuous on the bounded open set ~2 c R,
then

where is the Hausdorff zero-dimensional measure on R, which is
nothing but the counting measure on R. (To be precise, the usual
coarea formula holds for f(x) Lipschitz continuous; but in dimension 1
this assumption can be relaxed to since there exists ([Fe] 3.1.16) a
sequence of compact sets such that S~ B U Kk is negligible and
f (x) restricted to Kk is Lipschitz).

Note the following consequence of the formula: given a function
f e the set a* f (x) &#x3E; t} is finite for almost any t (a fact that is
not immediately intuitive).
We apply now the coarea formula with

(recall 0 a.e.) and, fixed t2 &#x3E; tl ,

We thus obtain

but recalling (33), the observation following it and the definition of
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this can be rewritten as

This means that is absolutely continuous, and that (31) holds.
An immediate consequence of (31) is the following more general for-

mula, valid for any F( t, x ) of class C 1 (say) and vanishing for x outside
some compact set:

We shall now apply (35) to prove an energy estimate for solutions
of (6).

Suppose v(t, x) is a solution of (6) vanishing with its derivatives up
to the second order along y. The function v( t, x ) defined as

is also C2 (but is a solution of (6) only T).
Now we shall construct a sequence of absolutely continuous

functions such that, on [ - R, R ], x( x ), 0 almost every-
where, xk - x uniformly on [ - R, R ], and eventually

To this end, we take a sequence of positive numbers Ek 10 with the
property that the = ± E k I have measure 0. Moreover,
we recall that the = 0} coincides a.e. with a set A whose boundary
has measure 0. Let C be the closure of R B A; C and A have the same
boundary. Moreover, the function p(x) = dist (x, C) is Lipschitz contin-
uous, and by the properties of C it follows that p’ - 0 a.e. on C and p’ =
= ± 1 elsewhere. Then the functions = have all the

required properties.
Let now Bt = 0 ~ t and consider
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Note that Ek (t) is an integral of the form IXk(t), fulfilling the assump-
tions relative to formula (35). Applying (35) we get, for almost every t,

(note that in the last sum = t). The first integral Ik(t) gives

(we have integrated by parts and used equation (6); note that since Vt
vanishes in the region between t = 0 and t = ~(x) the above inequality
is correct, even though v is not a solution of (6) there); estimating the
lower order terms with Ek , and using the Levi condition, we get

(recall the above expression for where the constant C depends on
the supremum norms of b, c, d and on M, R, T . Now, since

x) x k ( x )2 ~ 1, we have

and summing up

Integrating between 0 and t (as evidently Ek(0) = 0) we have

We can now pass to the limit k ~ ~ observing that



79

and that Ek (t) (E(t) (in fact we have

since v vanishes below we get

Since at % Kac in the region G under consideration, the second term is
t

not greater than I K I Thus we get

and applying Gronwall’s lemma we obtain the estimate

with C depending on M, R, T, vo and the supremum norms of the
coefficients.

In the general case, when v does not vanish up to the second order
along y, we apply as above Lemma 1.

We can now conclude the proof of Theorem 1.
Let u be a solution with support in [0, T ] x [ - R, R]. Suppose that

in the first region GR (with lower boundary the initial line) at * - Ka
(the other case is of course similar). Then Lemma 2 allows to estimate u
in the norm Ltoo (Lx ) and thus in the norm of 

Now differentiate eq. (1) with respect to x. It is easy to verify that
the equation thus obtained is again of the type (6), with (7) and (8) ful-
filled. In fact, b is replaced by ax , for which a condition analogous to (8)
holds, namely the well known inequality (ax )2 s cllaxxlloo a; moreover,
1 + fx + dx u, which is a sum of terms for which L 2 estimates are already
available. Similarly, proceeding by induction, one can estimate all k-
derivatives of u in the L 2 norm on the first region. Now derivate with
respect to t once, and any number of times with respect to x; applying
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again the Lemmas we can estimate all the derivatives of u of the form
Dt Dx in term of the initial values and of the derivatives already esti-
mated. Proceed by induction. At the end, we obtain a L 2 estimate for
all the derivatives of u in the first region. This implies also the bound-
edness in L °° of all the derivatives of u by Sobolev immersion; indeed,
we remark that the embedding theorems for Sobolev spaces holds also
for our regular domains, with different indexes depending on the Hold-
er regularity of the boundary (see e.g. [Ma]). In particular, we have L °°
estimates for the value of u and its derivatives along the upper bound-
ary of the first region, which is the lower boundary of the second re-
gion. Thus one can start again the method in the second region, apply-
ing Lemma 1 or 2 according to the type of the region.

In a finite number of steps, we reach the line t = T.
To conclude, suppose arbitrary C °° data uo , ul are given. Using a

partition of unity, reduce the problem to the case in which the data uo ,
ul and the function f (t, x) vanish for I &#x3E; R. If we approximate uo , ul
with Gevrey data with compact support (in the topology of C °° ), well
known theorems furnish us a sequence of approximate solutions
(see [Ni2]). They have compact support, since the finite speed of propa-
gation property holds for weakly hyperbolic equations in the class of
Gevrey functions (see the Appendix of [D]); thus we can apply the a
priori estimate obtained above, obtaining the C °° convergence of the

approximate solutions to a solution of the original problem.
Finally, we can sum together the various solutions corresponding to

the compactified data: the sum will be locally finite at every t &#x3E; 0 since
the slope of the domain of influence depends only on the supremum
norm of a( t, x), which is bounded by assumption.

This concludes the proof of Theorem 1.

3. Proof of Theorem 2.

Let a(t, x) be a nonnegative, real analytic function on R2. We shall
prove that the rectangle GR = [ o, T ] x [ - R, R ] can be partitioned in a
finite number of regions satisfying assumption (A).
We shall firstly prove that (A) holds locally, i.e. in the neighbour-

hood of each point ( to , xo). It is not restrictive to assume that

(to, xo) = (0, 0).
We shall need the following properties of the function a(t, x), which

are proved in Lemma 2.2 of [Nil]. By Weierstrass’ preparation theo-
rem the set
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can be described near (0, 0) as the union of a finite number of curves,
ti (x), ... , tm(x), m &#x3E; 0, and, possibly, of the = 0). The curves
t = have the following properties: = 0 for all j,

and more precisely the first 1 functions tl (x), ..., tl (x) are real valued;
moreover is analytic for x ~ 0, H61der continuous, and for x -~ 0
the estimates

hold, for some rational a &#x3E; 0 (depending on j). Writing

we have near (0, 0), for some constants C, K,

(this is an immediate consequence of (2.5) in [Ni]) and

(this is exactly (2.6) of [Nil], together with the argument following it);
one has analogously

Suppose now that at (t, x) vanishes along the (real) curve t 
such that §(0) = 0. By possibly restricting the neighbouhood, we can
assume that one of the following alternatives holds: either 
~ t(x), or t(x). In the first case, it is easy to see that

this follows from (37) and the fact that

for some rational 7 &#x3E; 0. The same argument shows that

Now is it possible to construct the curves required in ass. (A) in a
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neighbourhood of (0, 0). Restrict the neighbourhood so that all the ze-
roes of a(t, x), at (t, x) can be described as above, and each real zero of
at (t, x) verifies one of the inequalities or ~ t(x). Then the

will be the real zeroes lying between - and

t(x), plus the two curves t = - t(x) and t = t(x), arranged in increasing
order. In fact, A.1 is evidently satisfied, A.2 follows from (40) and (41),
possibly restricting the neighbourhood; finally, A.3 is obvious in the

regions bounded by the real zeroes of at (since at has constant sign on
them) and follows from (38) and (39) in the remaining upper and lower
regions.

Now to conclude the proof, divide the rectangle GR in horizontal
strips of height E, and divide each strip in triangular cells according to
the pattern shown in the picture:

The slope a of the oblique sides is given by

With this choice if a piece of one oblique side is used in order to
construct one of the ass. A.2 will be automatically satis-
fied along it.

Since as 6 - 0 the diameter of the triangles can be made arbitrarily
small, we can apply the above local result to each cell; thus we can as-
sume that each cell can be partitioned according to assumption (A).

Now it is sufficient to orderly patch pieces of the horizontal lines,
pieces of the oblique sides, and the curves into each cell, to obtain the
global curves required in ass. (A).
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