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A Duality Approach
for Solving Identification Problems

Related to Integrodifferential Maxwell’s Equations.

A. LORENZI - V. PRIYMENKO (*) (**) (***)

SUMMARY - We determine a memory term in Maxwell’s equations related to polar-
ized media by means of some additional physical measurement. In the con-
text of duality spaces we prove some existence, uniqueness and stability
results

0. Introduction.

In the investigation of quickly changing electromagnetic fields,
whose frequencies need not to be small in comparison with the ones
characterizing electric and magnetic polarization of the medium, the
dependence of vectors D and B on E and H is usually expressed by say-
ing that the values D(t) and B(t) at time t depend on the corresponding
values E(t) and H( t ) only. Yet, in some physical situations [5, chpt. 9]
we are forced to assume that the values D( t ) and B( t ) at time t depend
not only on E( t ) and H(t), but also on the preceding values and

with 7 - t. This situation expresses the fact that the electrical and

magnetic polarizations of the medium are affected by the past history
of the electromagnetic field.
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When dealing with such quickly changing fields we usually assume
that vectors D and E are related by an equation of the following
type

where - denotes the Fourier transformation with respect to time
and

according to the causality principle [3].
On the other hand the magnetic conductivity [A, unlike the dielectric

one, differs very little from 1, when frequency grows up comparatively
quickly. This allows us to assume 03BC = 1 everywhere Hence we get the
following constitutive law:

In this paper we deal with the following Maxwell’s equations, where ’
denotes differentiation with respect to time, T is a positive number and
Q is a bounded, open and connected set in R3 with a smooth

boundary:

Here Y+ , 6(t) and ® denote the Heaviside function, the Dirac measure
at t = 0 and the tensor product of distributions respectively. We stress
here that f may denote the Dirac delta (or a derivative of its) with re-
spect to space variables.

From equations (0.1)-(0.6) we easily derive the following differen-
tial system for the pair (E, H)
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We assume now to know the histories of the electric and magnetic fields
in the past (i.e. for t  0). Explicitly, this means that we are given the
equations

where the pair (Eo , Ho ) satisfies the equations

REMARK 0.1. From (0.12)-(0.13) we derive that Ho = Dq, q being
any (scalar) harmonic function in Q. For the sake of simplicity we shall
assume in the sequel Ho = 0.

As far as boundary conditions are concerned, we assume to be able
to measure the magnetic field on the boundary 9G of the body S~ start-
ing from the time t = 0. In other words, we have

H: [ o, T ] X S~ --~ 11~3 being a prescribed (smooth) vector function. Ac-
cording to equations (0.9), (0.11), (0.14) and Remark 0.1 function H
may be supposed to satisfy the additional equations:

Condition (0.16) guarantees the continuity (with respect to time) of
vector H at t = 0.

We assume now that the kernel c~~C~([0, T ]) is itself unknown.
Thus our problem consists in determining the triplet (E, H, a). To this
purpose it is necessary to provide an additional information. Taking the
previous results into account, we give the following information involv-
ing the magnetic field H

Here p denotes a (smooth) prescribed function, while (., -) stands for a
pairing between some function spaces (for details cf. Section 1).

We notice that a problem similar to ours has been dealt with by
Wolfersdorf [8]. However, he considers essentially the onedimensional
case and assumes that the geometry under consideration is either the
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whole space or a slab. On the contrary, we stress that we deal with the
threedimensional case, the geometry involved being represented by a
general bounded, open, connected set. This forces us to prescribe ex-
plicit boundary conditions (cf. equation (0.14)). The novelty of our pa-
per consists just in treating such conditions in the framework of duality
spaces.
We recall also that an identification problem related to Maxwell’s

equations in thredimensional domains (though with a different formu-
lation and in the framework of usual Sobolev function spaces) has been
dealt with in [4].
We conclude this section replacing identification problem (0.7)-

(0.11), (0.14), (0.17) by an equivalent one involving the pair (H,a)
only.

To this purpose we apply then the rot operator to equation (0.7) and
differentiate equation (0.8) with respect to time. Using the differential
identity rot2 = - 4 + grad div, where grad denotes the space gradient,
and taking into account remark 0.1, we easily realize that the magnetic
field H solves the initial-boundary value problem

To simplify the integral term in (0.18) we recall the continuity of func-
tion t - H(t, .) in (- oo, T ] and use the following distributional formu-
la, where [H"] denotes the second-order pointwise derivative:

Whence, by an integration by parts, we get the equation
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Hence equation (0.18) can be rewritten in the following equivalent
form

We observe now that, once we have determined a solution (H, ac) to
problem (0.17), (0.18’)-(0.21), from (0.7) we immediately get the follow-
ing equation for the electric field E

From (0.24) and (0.10)-(0.12) we easily derive the equation

Introduce now the kernel b E C1([0, T ]) which solves the linear Volter-
ra integral equation
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From (0.25)-(0.26) we finally get the desired representation formula
for E:

Assume now that (E, H) solves problem (0.7), (0.10), (0.18)-(0.21). Ap-
ply then the rot operator to both members in (0.7) and subtract from it
memberwise equation (0.17). Using the equation (im-
plied by (0.18)) we derive the following equation

From (0.28) we derive that there exists a function C: S 2013&#x3E; R3 such
that

Equations (0.10)-(0.13) imply C = 0 in Q and

Assume then that for a.e. 

(cf. also Section 1). From (0.30) we immediately deduce that the pair
(E, H) satisfies also equation (0.8).
We have thus shown the equivalence of problems (0.17)-(0.11),
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(0.14), (0.17) and (0.17), (0.18’)-(0.21) (cf. Section 1 for the functional

details).
We conclude this section by reducing our identification problem

(0.17), (0.18’)-(0.21) to a problem with null boundary data, useful for
our abstract formulation (see Section 2). To this purpose we need to in-
troduce the new unknown

Consequently, according to equation (0.16), our problem transforms
into the following

,

1. The main result.

In order to state our basic result we need to introduce the following
functional spaces related to a bounded, connected, open set of class
Cl, i:



38

REMARK 1.1. According to the results in Temam [7, chpt. 1], we
deduce that W is dense in H and separable, W being a closed subspace
in R3).

REMARK 1.2. Let - J E 2(W; W*) be the linear operator defined
by the equation

Then, according to Theorem 2.2.3 in Tanabe [6] and well-known regu-
larity results for elliptic equations, we deduce the equations

We can now introduce the following Hilbert spaces

REMARK 1.3. If Q is of class for 1 }, from
(1.4)-(1.7) and the regularity results for elliptic operators we deduce
the relations

REMARK 1.4. According to Sobolev embedding theorems we get
the algebraic and topological inclusions when s &#x3E; 3/2.
Hence C(S2 ) * ~ W - ~ when s &#x3E; 3/2.

REMARK 1.5. From definitions (1.6)-(1.7) we easily get -9
for any j = 1, ... , p.
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Finally, we introduce the following Banach space useful to solve,
our identification problem

As far as data are concerned, we assume that they fulfill the following
properties for some and To &#x3E; 0 (recall that Ho = 0):

Finally, we assume that

and the following inequalities are satisfied

where (., .)r denotes the (canonical) pairing between w-r and wr.
Our main result is

THEOREM 1.1. Let Q be an open, bounded, connected set in 1~3 of
class cr-3,1 with r ~ 5 and be a function satisfying (1.14). Assume
that data (F, f, Eo , H, g) satisfy properties (0.12), (0.15), (0.16), (1.1l)-
(1.13), (1.15)-(1.16).

Then there exists T E ( o, To ] such that problem (0.7-11), (0.14)
(0.17) admits a unique solution 
x V 313 - r X C1 ([o, T]) continuously depending on data in the norms
pointed out. Moreover the map Data --3- ,Sotution is uniformly continu-
ous on bounded sets in C 1 ([ o, T ]; W 2 -r) x W 3 - r x X vT~ 3 - r X

T]) consisting of vector functions (F, f, Eo , H, g) such that

for some positive (fixed) constant m.
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REMARK 1.6. In the case where f = z for some Xo E S2 and some
vector z E C(~ )3, according to our assumption r ~ 5, we derive that

Moreover, taking advantage of the equation

we can rewrite ( 1.17) in the form

2. An abstract setting.

Let H and W be two real Hilbert spaces such that 

densely, W * denoting the dual space to W. Assume that a: W x W - R
is a symmetric, positive, W-elliptic and bounded bilinear form satisfy-
ing the following estimates, where denotes the norm in W:

(2.1) a(v, v) for any v E W and some a E R+ ;

(2.2) 1 a(v, u) ~ ~ Mllvlll Iluill for any v, u e W and some M ~ Il~+ .

Then there exists an operator A E 2(W; W * ) such that

Here ~ ~, ~ ~1 denotes the pairing between W and W*.
We recall that A: 6D(A) c H -~ H is a closed linear self-adjoint, (un-

bounded) positive operator.
We define now the spaces W8 ( s = 0, ... , N) by the equations

and we endow them with their graph-norms denoted by 11 - lis. We re-
call [ 1, chpt. 8, Theor. 3.13] tat

1.

Then we define the dual spaces
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and endow them with their usual norms. Moreover (’, )s denotes
the pairing between W - ~ and W8 ( s = 1, ... , N).

Finally, we define, by duality, operators A 8/2 on W - q ( q = 1, ... , N ).
This implies A 8/2 = (Asl2)* E 2(W8-q; ( 1 ~ s  q ~ N). Moreover
we assume

REMARK 2.1. Using equations A -~~2 = A -m (if s = 2m,

from (2.6) we deduce the properties

REMARK 2.2. In our concrete case, where A = - 4 (cf. Section 1),
properties (2.6) are implied by regularity results for elliptic boundary
value problems, requiring the suitable smoothness of the boundary
a,~.

Then we introduce the following Banach spaces VI, -r, basic to our
investigations:

normed by

We consider now the following abstract Cauchy problem, r being a fixed
integer in [2, N]: determine a pair of functions u E C« - 00, T ); X ) n

h E C([ 0, T ]) and a real number f3 such that

where * denotes convolution and

As far as data p, f, ul , g are concerned, we assume that they enjoy the
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following properties for some given To &#x3E; 0:

Using standard arguments (for details cf., e.g. [1, chpt. 16, sect. 4]), we
easily realize that problem (2.10)-(2.12) is equivalent to the following:
determine a pair of functions u e v¥,3-r, he C([ 0, T ]) and a real num-
ber ,a such that

We observe now that ~3 can be a priori determined in terms of data, if
the following condition is satisfied:

In fact, if we compute at t = 0 the duality products of both members in
(2.17) multiplied by p and use equations (2.18)-(2.20), we easily get the
following equation for /3:

From (2.21) and (2.22) we derive the required value for f3:

We rewrite equation (2.17) in the following form

Operator B is assigned by the formula

f3 being defined by (2.23).
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It is immediate to verify that B satisfies the properties:

where

Our basic abstract result is the following

THEOREM 2.1. Let operator A satisfy properties (2.1)-(2.3), (2.6).

be a quadruplet satisfying conditions (2.21) and

Then there exists T E (0, To] such that problem (2.17’)-(2.20) admits a
unique solution (u, h) E TTT~ 3-’’ X C([0, T ]) depending continuously on
dactac with respect to the norms pointed out. Moreover, the map
(p, f, ul , g) ~ (u, h) is Lipschitz continuous on- the bounded sets in
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ments satisfy the bounds

for some constant m.

3. An equivalence result for the abstract problem.

Assume u e T~T~ 3 - r solves problem (2.17’ )-(2.20). Introduce then the
function v e defined by

Differentiating equation (2.17’) and using properties (2.26)-(2.27), we
easily deduce that the pair (v, h) satisfies the identification problem:
determine ac pair (v, h) E Vf,2-r x C([o, T ]) such that

Hence, from (2.18)-(2.20), (3.3)-(3.5) we deduce that our data have to
satisfy the following consistency conditions

Conversely, assume that
Then, the function

solves (3.2)-(3.5).

is easily seen to be a solution to problem (2.17’ )-(2.20) satisfying the
properties ~eC([0,r];W~~), U’ E V¥,2-r. Moreover, from equation
(2.27’) we derive that Au e C([ 0, T ]; this implies
u e C([0, T ]; w3-r). Since u’ e VT’ 2-’’, we deduce u e v¥,3-r.

To check that u satisfies also equation (2.20), we note that, accord-
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ing to (3.1), equation (3.5) can be rewritten in the form

Such an equation is equivalent to the following

Finally, from (3.6)-(3.7) we deduce that u satisfies (2.20).
Assume now, again, that (v, h) E x C([ 0, T ]) solves (3.2)-(3.5)

and take the duality products of both members in (3.2) multiplied by p.
Under assumption (2.32) we deduce the following equation for h:

--L-7-"-

Conversely, assume that solves problem
(3.2)-(3.4), (3.10). Observe then that, owing to (3.2), (3.10) is equiva-
lent to the equation

In fact, using consistency conditions (3.6) and initial condition (3.4),
from (3.11) it is immediate to derive equation (3.5).

In conclusion, we have proved the equivalence of problems (2.17’ )-
(2.20) and (3.2)-(3.4), (3.10).

THEOREM 3.1. Let operator A satisfy properties (2.1)-(2.3), (2.6).
Assume further that ( f, UI, g) e C~([0, T ]; W 1-r ) x W2-r x C3 ([ 0, T ])
satisfies conditions (2.21) and (2.32). Let ( u, h ) E ~’f~T~ 3 - r x C([0, T ]) be
a solution to problem (2.17’)-(2.20). Then the pair 
x C([0, T]), v being defined by formula (3.1), solves problem (3.2)-(3.4),
(3.10). Vice if (v, h) has such a properly, then the pair (u, h), u
being defined by (3.8) belongs to 1~T~ 3-r x C([0, T ]) and solves problem
(2.17’ )-(2.20).

4. Solving the direct problem (3.2)-(3.4).

First we observe that problem (3.2)-(3.4) can be rewritten in the
form
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We have set

According to properties (2.25)-(2.28) we derive that D satisfies the
estimate

where

We are now in a position to prove

THEOREM 4.1. For any integer r E ~T ~ ~ 0 ~ and any quadruplet
(h, f, VI) E C(C4~ T l) X Vo, 1-r X W2-r X Wi-r problem (4.1)-(4.3)
admits a unique solution v E satisfying the estimate

m4 being ac continuous and nondecreasing function of its argu-
ments.

Moreover, if v, v * E V¥,2-r acre solutions to problems (4.1)-(4.3) cor-
responding to data (h, f, vo , vi ), (h *, f *, vo , v1 ) E C([ 0, T ]) X
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then v - v * satisfies the estimate

m5 being a continuous and nondecreasing function of its argu-
ments.

PROOF. Assume that (h, f, v° , v1 ) E C([ o, T ]) X T X W2 X W.
Then the solution v to problem (4.1)-(4.3) belongs [2] to VT2, 0. Conse-
quently, accordingly to (2.7), we get E 

A (l-r)/2v’(t) E wr,A (l-r)/2v"(t) E Wr ’and A(2 - r)/2 V(t) E Wrdt E[0, T ].
Multiplying scalarly both members of equation (4.1) by 2A l-r v’ (t), we
easily deduce the following chain of inequalities, R denoting the
norm in 2(Wex; Wa ):

Observe now that the identity w = A Q~2 (A - ~~2 2v), valid for any 
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easily implies the estimate

Whence and from (2.9), (4.2)-(4.3) and (4.12) we derive the inequality

Set now

Then from (4.14) we easily deduce the integral inequality

From Gronwall’s inequality we easily derive estimate (4.10) under the
previous regularity assumption on our data. Since x W~ x W is
dense in V¥’ l-r X w2-r X W~ ~~, a density argument implies that prob-
lem (4.1)-(4.4) admits a unique solution v E V¥,2-r satisfying estimate
(4.10).

Finally, we observe that stability estimate (4.11) can be deduced
likewise using the equations
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5. Proof of Theorem 2.1.

In this section first we prove

THEOREM 5.1. Let operator A satisfy properties (2.1)-(2.3), (2.6).
Let (p, f, E To]; x To]; x W2-r x
x C~([0, To]) be a quadruplet satisfying conditions (2.21), (2.32). Then
there exists T E (0, To ] such that problem (3.2)-(3.5) admits a unique
solution ( v, h ) E ~’ 2 -’’ X C([0, T]) depending continuousl y on the
data with respect to the norms pointed out. Moreover, the map the
( p, f, g ) -~ ( u, h ) is Lipschitz continuous on the bounded sets in

Wl-r) x W1-r) x w2-r x C~([0, To ]~ whose ele-
ments satisfy bounds (2.33)-(2.34) for some (fixed) positive constant m.

PROOF. From our assumptions on ( p, f, UI, g ) we easily deduce
that the triplet ( f, defined by equations (4.5)-(4.7) belongs to

.

Associate then with any T ] the unique solution

to problem (3.2)-(3.4). According to (4.10) and (4.11), we deduce that
M E C(C([0, T]); and satisfies the estimate

As usual, function ms depends continuously and nondecreasingly on its
arguments.

We observe now that identification problem (3.2)-(3.4), (3.12) is

equivalent to the following: determine a function he C([0, T ]) such
that

We prove now that Q admits a unique fixed point in C([0, T ]). To this
purpose we show that for a large enough p &#x3E; 0 operator Q maps the
closed ball S(p) with center at h = 0 and radius p into itself. Moreover,
Q, restricted to S( p), is a contraction. We observe that such properties
are implied by the following estimates, where we make use of the uni-
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form boundedness of M(h), implied by (4.10) and of the embedding
wl-r4 w-r, p, T ) ( j = 3, 6, 7) denoting positive functions which
remain bounded as T -~ 0:

In fact, they imply

Performing standard computations as, e.g., in [2], we prove the exis-
tence and uniqueness of the solution to equation (5.2). The continuous
dependence on the data, as in the statement of the theorem, can be
proved likewise.

PROOF OF THEOREM 2.1. It is an immediate consequence of theo-
rems 3.1, 5.1 and representation (3.7).

6. Proof of Theorem 1.1.

Observe that in our concrete case = a(0) and conditions (2.21)
and (2.32) coincide with (1.17) and (1.18) respectively (owing to

(0.16)). Hence, according to abstract theorem 2.1 and section 1,
we deduce that there exists T E ( o, To ] such that our identification
problem (0.32)-(0.36) admits a unique solution (H, a) E X
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X C 0, T ]) continuously depending on data (F, f, H, g) with respect
to the norms related to the spaces in (1.11)-(1.13).

Using representation formula (0.27), it is easy to check that the
electric field jE’=C~([0,7’];W~’’) continuously depends on data

(F, f, H, g) with respect to the norms related to the spaces in

(1.11)-(1.13).
Finally, we conclude that the map data - solutions is uniformly con-

tinuous on bounded sets in C ([ 0, T ]; W2-r) x W3-r X
x x C1([0 , T ]) consisting of vector functions (F, f, Eo fl, g) satis-
fying conditions ( 1.17)-( 1.18).
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