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Infinitely Many Spacelike Periodic Trajectories
on a Class of Lorentz Manifolds.

CARLO GRECO (*)

ABSTRACT - Let us consider R4 equipped with a Lorentzian tensor g with signa-
ture ( + , + , + , - ). In this paper we prove, under suitable assumptions on g,
the existence of infinitely many spacelike geodesics z(s) _ (x(s), t(s)) with
the periodicity conditions x( s + 1) = x( s ), t( s + 1) = t( s ) + T ( T &#x3E; 0) on the
Lorentz manifold (R4 , g).

1. Introduction.

Let us consider the manifold (R4 , g), where g(z) = g(x, t) is a

Lorentz tensor on R4 , with signature (+, +, +, -). Let z(s) =
= (x(s), t(s)) be a geodesic on (R4 , g), and suppose that t(0) = 0, and
there exist a, T &#x3E; 0 such that x(s + a) = x(s), t(s + a) = t(s) + T for
every s E R. Then we shall say that z is a o-periodic T-trajectory on
(R4 , g ). Moreover, if z is a geodesic, there exists Ez E R such that

I(s)] = Ez , and z called spacelike, null or timelike if Ez &#x3E; 0

or, respectively, Ez = 0, Ez  0 (see [14], p. 69).
Suitable Lorentz manifolds are used in Relativity theory in order to

describe the physical space-time. Then, timelike (or, respectively, null)
periodic trajectories corresponds to periodics orbits of a particle of po-
sitive mass (or, respectively, of a light ray). Spacelike geodesics are not
trajectories of particles, but they are important in order to study geo-
metrical properties of a semiriemannian manifold.

Some multiplicity results for timelike periodic trajectories on

(R4 , g) are given, for instance, in [5] and [9] under the assumption that

(*) Indirizzo dell’A.: Universita degli Studi di Bari, Dipartimento di Mate-
matica, Campus Universitario, Via G. Fortunato, 70125 Bari, Italy.

Work supported by MURST and by GNAFA of CNR.



252

the gravitational field vanish at infinity, so that g tends to the
Minkowski metric at infinity (see Remark 1.3 below for further
informations).

In this paper we consider a completely different behavior at infinity
for g, and we are able to prove that, for any T &#x3E; 0, there are infinitely
many spacelike 1-periodic T-trajectories on the semiriemannian mani-
fold (R4 , g ).

Let {gij li, j =1, ..., 4 be the components of g. We suppose that g not de-
pend to the time, gij = gji E C 1 (R3 , R ), and gi4=0 for i = 1,2,3. We
set, for = so

that we have, for every x and every E R4 :

Moreover we assume that there exist &#x3E; 0, p &#x3E; 2 and

q E ]0, p - 2[ such that for every x, ~ E R3 :

Then we have the following theorem.

THEOREM 1.1. If (1.1)-(1.6) are satisfied, then, for every T &#x3E; 0,
there exist infinitely many spacelike 1-pe?iodic T-trajectories on

(R4 , g).

REMARK 1.1. If and = 0, it is easy to check that
z(s) = (xo , Ts) is a trivial periodic trajectory. We shall see later that
the trajectories given by Theorem 1.1 are not trivial, and are geometri-
cally distinct.
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REMARK 1.2. Condition (1.3) is a sort of superquadraticity condi-
tion at infinity. It has been introduced by P. H. Rabinowitz in the the-
ory of Hamiltonian systems. (1.4) implies that there exists ci &#x3E; 0 such

that, for every x E R3 , with I x I ; R:

Condition (1.3) means that

satisfied, for instance, if Moreover, because of

(1.3), there exists c2 &#x3E; 0 such that

for 1. Infact, let with 1. Since

we have

REMARK 1.3. The problem of geodesics for a Lorentz manifold

(M, g) has been recently studied by many authors (see [2]-[5], [7]-[12]).
If particular, in the papers [5], [9], are given multiplicity results for
timelike periodic trajectories on (I~4 , g ) under the assumption f3(x)
bounded.

The main difficult in the variational approach of this kind of prob-
lems is that the action functional

is strongly indefinite, i.e. it is not of the form identity + compact, even
«modulo compact perturbations». In ordert to avoid this difficult, we
use the convexity of the functional with respecto to i and search for the
critical points of a functional f depending only on x.

If is bounded as in [9] (or it is subquadratic), the functional f is
bounded from below, and satisfies easily the Palais-Smale compactness
condition. In our case f is unbounded, so we need some linking argu-
ment ; moreover more care is required in order to prove compactness
conditions.

In Section 2 we expose the functional framework and we prove the

compactness condition using assumptions (1.1)-(1.5). Then we prove
Theorem 1.1 with a mountain pass argument by using (1.6).
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2. Proof of the results.

In the following we assume that (1.1)-(1.5) hold. Let as consider a
geodesic z(s) _ (x(s), t(s)) on (R4 , g); then z satisfies the geodesic
equations:

If z is a a-periodic T-trajectory, we shall call the minimal period of x,
the minimal period of z. Notice that, if zl = (xl , tl ) and z2 = (X2, t2) are
J-periodic T-trajectories on (I~4 , g), with z, ;6 z2 , then zl and z2 are geo-
metrically distinct.

In fact, if z2 (s) = zl (P(S)) for some reparametrization ~(s), from
geodesic equations we have p(s) = as + b for some a, b E R (see [14], p.
69), so that t2 (s) = tl (as + b). Since il (s) - 0 for any s E R, from tl (0) =
= 0 = t2 (0) = we have b = 0, and from aa) = t2 ( s + o~) =
= t2 (s) + + we have and a = 1, which is im-
possible.

In particular, if zl and z2 have not the same minimal period, then its
are geometrically distinct.

REMARK 2.1. We observe now that, if z(s) _ (x(s), t(s)) is a k -1-
periodic Tk -1-trajectory, x and i are also 1-periodic and t( s + 1 ) =
= t(s) + T . Infact, it is easy to chek that t( s + 1) = t(s + ( k - h )/h) +
+ Th/k for every h = 1, ..., k; then z is a 1-periodic T-trajectory on
(R4 , g), with minimal period less or equal to 1 /k. So, in order to prove
Theorem 1.1, we can show that there exists ko E N such that, for every
k E N with k &#x3E; ko , there exists a k-1-periodic Tk-1-trajectory z(s) =
- (x(s), t(s)), 0.

Let k E N be free for the moment, and let us consider the functional

defined on where is
the Sobolev space of k-’-periodic functions x: R -~ R3 with
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x, x E L 2 ([ 0, 1 /1~]), and

It is easy to check that, if (x, r¡) is a critical point of I, then
s

z(s) = (x(s), t(s)), where t(s) = Ts/Ak +f n ds is a critical point of the ac-tion functional 0

so, it is a 1-periodic T-trajectory on (R4 , g), with minimal period less or
equal to 1 /k (see Remark 2.1).

Notice that, because of (1.4), for every x E H --- H 1 ~ 2 (SIlk, R3 ), the
1/k

functional is strictly convex, so it possess a
o

unique minimum point n x E R). Let f : H -~ R be the functional

LEMMA 2.2. The function is continuous from H to

Lo R ); moreover R) acnd

so that, x E H is a critical point of f if and only if ( x, is a critical

point of I.

PROOF. The proof is contained in [9]. We recall it for the reader con-
1/k

venience. First of all we observe that

cause is a critical point of the functional i
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, and then

Now, let x, y E H. Clearly

Moreover, since

using (2.1) we get I(x, as y - r, so f is continuous.
We prove now that is continuous. Infact, arguing by contra-

diction, we suppose that there exist x E H, (xn) c H and s &#x3E; 0 such that
1 I,-

is strictly convex,
we have

Since (,u n) is bounded and rn ~ x, we get I(x, ~u n) - I(xn , -~ 0,
and and then we have a contradiction.

Finally, fix x, y E H, and let 7 &#x3E; 0. From (2.2) we have

so the lemma is

REMARK 2.3. Notice that for every
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In other words, there exists cx E R such that

f3(x(s))(T /k + 77 x (s)) = cx for every s E R. Since 0 implies T/k +

where M = x ~ I ~ p ~, and I I is the Lebesgue measure of I.

PROOF. Let cx be as in Remark 2.3, so that + ’1)x(s) = 
for every s E R. If s E I, we have and then

Integrating on I, we have:

Then cz £ , so that the lemma is proved. 0

LEMMA 2.5. Let 0  r  p acnd (xn) c H be such that

0) ~ p. Then

where M = max
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because of Lemma 2.4. Moreover, since 0) ~ r, we have

p - r  ~ In ~ 1~2 , and the lemma follows.
In

We say that a functional f: H -~ R verifies the Palais-Smale-Cerami
(PSC) condition (see [6]) if every sequence (xn) c H such that -

~ c E R and ( f ’ (xn), ~ 0 possesses a convergent subse-
quence.
We have the following lemma.

LEMMA 2.6. There exists ko E N such that, for every k a ko, the
functionals f satisfies the PSC-condition.

PROOF. Let (R is defined in (1.3)),
and let l~o E N be such that a o - T2 M/k6 &#x3E; 0. Fix k E N ivith k a ko , and
let us consider a sequence (xn) c H such that c E R and

( f ’ (xn), xn~ -~ 0 as n ~ ~ . First of all, we prove that ~~2) is bounded
modulo subsequences. Infact, we distinguish two cases:

1) case: for every n E N, (modulo subse-

quences). Then (Xn (s)) ~ xn (s)) for every s (see (1.3)), so,
from - c we get (setting 77n * 

Since ( f ’ (xn), xn) --~ 0, we have

so that

then (~~xn~~2) is bounded because of (1.2).
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2) case: for every n E N, dist (Im (xn), 0)  R (modulo subse-
quences). Then, if is bounded, we have f3(xn (s)) ~ MI for n E N,

1/k

s E R, so M1 T2 fk3, and the claim follows from
o

the fact as n - oo. So, we can assume IIxnIIoo - 00. Let
In = {s E [ o, + 1 ~; from Lemma 2.5 (with r = R and
p = R + 1 ), we have

Then, since - c,

so that (see (1.1)):
claim follows.

We set now

shall prove that is bounded. In fact, we can assume that yin - y
weakly in HI,2 and strongly in L °° ; then

for n large enough, so that, since
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so is bounded. Let us suppose xn - x weakly in H1~ 2 and strongly
L °° . Then

because of (2.1) we have that is bounded, so, the fact that

strongly in H, and the lemma is proved.

Let H = R3) = R3 X Y, where

As well-known (see e.g. [13], p. 9), for every y e Y we have 11?i112 a 
and where a = 2kn( 1 + 4k2 n2)-1/2, and b = (1~12k)1 2.
We have now the following lemma.

LEMMA 2.7. There exist a, p &#x3E; 0 such that f(y) &#x3E; a for every y e Y
with IIyll = P. Moreover a is independent of k.

PROOF. Fix c &#x3E; 0 such that ao - ET2/V12 &#x3E; 0. (1.5) implies that
there exists p 1 &#x3E; 0 such that + for lxl I ~ p 1. Set p = p 1 /b
and
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so

Since a 2 ( a o - ~T2 b 2 /1~ 3 ) p i /b 2 &#x3E; ~ for every the lemma is

proved.

REMARK 2.8. Lemma 2.5 implies that the functional

under assumption (1.3) is not superquadratic at infinity on finite-dimen-
sional subspaces of H. This fact make not possible to apply the standard
linking theorem of f. In order to avoid this difficult, we consider the sub-
space E = ~ x E H I x(s + 1 /2k) _ - x(s)~. Clearly E c Y; moreover we
have the following lemma.

LEMMA 2.9. Let us suppose that (1.6) holds. Then, every critical
point x E E of the functional is a critical point of f.

PROOF. Let x E E be a critical point and z E H; we shall prove
that ~ f ’ (x), z) = 0. In fact, set z1 (s) = z(s) - z(s + 1/2k), and Z2(S) =
= z(s) - z1(s), so that ZIEE, and Z=ZI+Z2. Since (f’(x),zl)=O, we have
( f ’ ( x ), z) = ( f ’ ( x ), z2 ~. From Remark 2.3, there exists cx &#x3E; 0 such that

+ 77 x (s)) = cx . Since f3 is even and x E E, we have that Y)x (s +
+ 1/2k) = 77 x (s), and then it is easy to check, by using (1.6), that
~ f ’ ( x ), Z2) = -(f’ ( x ), z), and the lemma is proved. 0

PROOF OF THEOREM 1.1. Let us suppose that (1.1)-(1.6) hold, let
ko E N be as in Lemma 2.6, ~ &#x3E; 0 as in Lemma 2.7, and such that
k a ko &#x3E; 0. From Lemma 2.6, the functional satis-
fies the PSC condition on E. Let sin (2kns), 0);
cleary w E E, and since arP + b, we have

so that (see Remark 1.2) 
+PoT 2Ik’, and f (w)  0 for r large enough (we recall that q + 2  p). Set
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Let p be as in Lemma 2.7; since f (0) = 0 and we can assume llwll &#x3E; P, we

have ~ ~ c  + oo . From the mountain pass lemma (see [1]), we have
that c is a critical value for the functionalfiE. From Lemma 2.9 we get a
critical point X e H of f with f(x) = c. Since c &#x3E; 0, we have 0. Because

of Remark 2.1, z(s) = (x(s), t(s)), where t(s)
periodic T-trajectory on (R4 , g).

Finally, in order to prove that z is spacelike, we observe that

so that Ez &#x3E; 0, and Theorem 1.1 is proved.0
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