RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITA DI PADOVA

CARLO GRECO

Infinitely many spacelike periodic trajectories
on a class of Lorentz manifolds

Rendiconti del Seminario Matematico della Universita di Padova,
tome 91 (1994), p. 251-263

<http://www.numdam.org/item?id=RSMUP_1994 91__ 251 _0>

© Rendiconti del Seminario Matematico della Universita di Padova, 1994, tous
droits réservés.

L’acceés aux archives de la revue « Rendiconti del Seminario Matematico
della Universita di Padova » (http://rendiconti.math.unipd.it/) implique 1’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RSMUP_1994__91__251_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

REND. SEM. MAT. UNIv. PADOVA, Vol. 91 (1994)

Infinitely Many Spacelike Periodic Trajectories
on a Class of Lorentz Manifolds.

CARLO GRECO (*)

ABSTRACT - Let us consider R* equipped with a Lorentzian tensor g with signa-
ture (+, +, +, —). In this paper we prove, under suitable assumptions on g,
the existence of infinitely many spacelike geodesics z(s) = (x(s), #(s)) with
the periodicity conditions x(s + 1) = x(s), t(s + 1) = t(s) + T (T > 0) on the
Lorentz manifold (R, g).

1. Introduction.

Let us consider the manifold (R?, g), where g(z) = g(x,t) is a
Lorentz tensor on R*, with signature (+,+,+,—). Let 2(s) =
= (x(s), t(s)) be a geodesic on (R*, g), and suppose that #(0) = 0, and
there exist o, T > 0 such that x(s + o) = 2(38), t(s + o) =t(s) + T for
every s e R. Then we shall say that z is a o-periodic 7-trajectory on
(R*, g). Moreover, if z is a geodesic, there exists E,e R such that
9(2(s))[2(s), 2(s)] = E,, and z called spacelike, null or timelike if E, > 0
or, respectively, £, =0, E, <0 (see[14], p. 69).

Suitable Lorentz manifolds are used in Relativity theory in order to
describe the physical space-time. Then, timelike (or, respectively, null)
periodic trajectories corresponds to periodics orbits of a particle of po-
sitive mass (or, respectively, of a light ray). Spacelike geodesics are not
trajectories of particles, but they are important in order to study geo-
metrical properties of a semiriemannian manifold.

Some multiplicity results for timelike periodic trajectories on
(R*, g) are given, for instance, in [5] and [9] under the assumption that
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matica, Campus Universitario, Via G. Fortunato, 70125 Bari, Italy.
Work supported by MURST and by GNAFA of CNR.
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the gravitational field vanish at infinity, so that g tends to the
Minkowski metric at infinity (see Remark 1.3 below for further
informations).

In this paper we consider a completely different behavior at infinity
for g, and we are able to prove that, for any T > 0, there are infinitely
many spacelike 1-periodic T-trajectories on the semiriemannian mani-
fold (RY, g).

Let {g;}i j-1, .., 4 be the components of g. We suppose that g not de-
pend to the time, g; = g;; € C'(R?, R), and g, = 0 for i=1,2,3. We
set, for simplicity, « = {ay}i j-1,2,3 = {95}ij=1,23, and = —gu, so

that we have, for every x € R® and every (i) e R*:

g(x)[(i), (i)] = a(2)[¢, £] — B(x) 72 .

Moreover we assume that there exist «y, 2y, R>0, p>2 and
g €10,p — 2[ such that for every z, ¢ e R3:

1.1) @& E12 a |€]?,

(1.2) (ga(er) — o' (@)(@))E, £1 = ay |£]2,
(1.3) pB(x) < (B’ (w)|x) if || =R,
(14) 0. <8y =4(0) = ming,
(15) Jim ﬁ(xl)xlzﬂ" =0,

(1.6) ax) =a(—-2x), Bx)=p(-2).

Then we have the following theorem.

THEOREM 1.1. If (1.1)-(1.6) are satisfied, then, for every T >0,
there exist infinitely many spacelike 1-periodic T-trajectories on

(R*, 9).

REMARK 1.1. If xpe R® and B’ (x) =0, it is easy to check that
2(8) = (xy, Ts) is a trivial periodic trajectory. We shall see later that
the trajectories given by Theorem 1.1 are not trivial, and are geometri-
cally distinct.
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REMARK 1.2. Condition (1.3) is a sort of superquadraticity condi-
tion at infinity. It has been introduced by P. H. Rabinowitz in the the-
ory of Hamiltonian systems. (1.4) implies that there exists ¢; > 0 such
that, for every x € R3, with |x| = R:

1.7 Blx) = ¢y |x]? .

3
Condition (1.3) means that > [qu () — (af(x)|@)] &8 = ay |£]%; it is
ij=1

satisfied, for instance, if a(x) = {¢;}; ;-1 2 3. Moreover, because of
(1.3), there exists c, > 0 such that

(1.8) @)l < ez ||
for |x| = 1. Infact, let x € R® with |x| = 1. Since

d(t Ya(te/|x])E, ED/dt <0,
we have

|z| “Ta(@)E, 1< alm/|2|)E, E]1 < ¢ || where ¢ = Ir;}agcllla(y)ll.

REMARK 1.3. The problem of geodesics for a Lorentz manifold
(M, g) has been recently studied by many authors (see [2]-[5], [T]-[12]).
If particular, in the papers[5],[9], are given multiplicity results for
timelike periodic trajectories on (R?, g) under the assumption A(x)
bounded.

The main difficult in the variational approach of this kind of prob-
lems is that the action functional

[9a)z, 21 = [at@)iz, 61 [ )i

is strongly indefinite, i.e. it is not of the form identity + compact, even
«modulo compact perturbations». In ordert to avoid this difficult, we
use the convexity of the functional with respecto to ¢t and search for the
critical points of a functional f depending only on .

If B(x) is bounded as in [9] (or it is subquadratic), the functional f is
bounded from below, and satisfies easily the Palais-Smale compactness
condition. In our case f is unbounded, so we need some linking argu-
ment; moreover more care is required in order to prove compactness
conditions.

In Section 2 we expose the functional framework and we prove the
compactness condition using assumptions (1.1)-(1.5). Then we prove
Theorem 1.1 with a mountain pass argument by using (1.6).
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2. Proof of the results.

In the following we assume that (1.1)-(1.5) hold. Let as consider a
geodesic 2(s) = (x(s), t(s)) on (R*, g); then z satisfies the geodesic
equations:

%[a(xm = 2 @, 4] - 8' @),

d o
a[ﬁ(ﬂv)t]—O-

If z is a o-periodic T-trajectory, we shall call the minimal period of ,
the minimal period of z. Notice that, if z; = (x, ¢;) and 2, = (x5, t,) are
g-periodic T-trajectories on (R*, g), with 2, # z,, then 2, and z, are geo-
metrically distinct. '

In fact, if 2,(s) =2,(p(s)) for some reparametrization ¢(s), from
geodesic equations we have ¢(s) = as + b for some a,b € R (see[14], p.
69), so that ¢, (s) = t; (as + b). Since £, (s) # 0 for any s € R, from ¢, (0) =
=0=1,(0) =t,(b), we have b =0, and from ¢, (as-+ ac) = tz,(s + o) =
=t(s) +T'=t,(as)+ T =t,(as+ o), we have ac = ¢ and a = 1, which is im-
possible.

In particular, if 2, and z, have not the same minimal period, then its
are geometrically distinct.

REMARK 2.1. We observe now that, if z(s) = ((s), t(s)) is a k-
periodic Tk ~!-trajectory, « and { are also 1l-periodic and #(s + 1) =
=#(s) + T. Infact, it is easy to chek that ¢(s + 1) = t(s + (k — k)/h) +
+ Th/k for every h =1,..,k; then z is a 1-periodic T-trajectory on
(R*, g), with minimal period less or equal to 1/k. So, in order to prove
Theorem 1.1, we can show that there exists ky e N such that, for every
ke N with k = k,, there exists a k ~!-periodic Tk ~l-trajectory 2(s) =
= (x(s), #(s)), with & = 0.

Let k € N be free for the moment, and let us consider the functional

17k 1/k
Iz, ) = j ()&, #]ds — j B)T/k + n)2ds,

0 0

defined on H“2(SY*, R®) x Ly(S**, R), where H“2(SY* R®) is
the Sobolev space of k l-periodic functions x: R—R® with
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x, £ € L2([0, 1/k]), and

1/k
Lo(SY%, R) = {y e L3(SV*, R)| jnds=0 :
0

It is easy to check that, if (x,n) is a critical point of I, then

S
2(s) = (x(s), t(s)), where t(s) = Ts/k + J'r;ds is a critical point of the ac-
tion functional 0

1/k 1/k

j ()%, &]ds — j B(x)i2ds;
0 0

80, it is a 1-periodic T-trajectory on (R*, g), with minimal period less or
equal to 1/k (see Remark 2.1).
Notice that, because of (1.4), for every x e H= H"2(S'* R?), the

1/k
functional »+— J Bx)(T/k + n)?ds is strictly convex, so it possess a
unique minimum point », € Ly (S*/*, R). Let f: H — R be the functional

1/k 1/k

2
f(x) = J a(x)[@, £]1ds — Jﬁ(w)(T/k +n,)%ds + ﬁ(;cf
0 0

LEMMA 2.2. The function xw—r, is continuous from H to
Lo (SY*, R); moreover fe C*(H, R) and

(7' @, 1) = (5@ 00 w),

so that, x € H is a critical point of f if and only if (x, n,) is a critical
point of I

ProoF. The proof is contained in [9]. We recall it for the reader con-

venience. First of all we observe that I,B(w)(T/k + n.)n.ds =0, be-

cause of 7, is a critical point of the functlonal n-> J Bx)(T/k + n)*ds.
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1/k 1/k

So J,B(x)ryids = —(T/k) J,B(x)nxds, and then
0 0

T80
2.1 o —.
@1 Inall < —%2,

Now, let x,y € H. Clearly
22) =, n,) - Iy, 0y < fl@) = f(y) < (=, n,) — (Y, 12),
and I(x, n,) — I(y, n,) —> 0 as y — x. Moreover, since

I(x, ny) - I(?/, ny) =

1/k 1/k

= j ()&, 3] — aly)g, §1ds — j (B(x) — B(y))(T/k + n,)Rds,
0 0

using (2.1) we get I(x, n,)—I(y, n,)—0 as y —wx, so f is continuous.
We prove now that x> », is continuous. Infact, arguing by contra-

diction, we suppose that there exist x € H, (x,) c H and ¢ > 0 such that
1/k

x, > and ||n, — n,, || = ¢. Since J' B(x)(T/k + n)*ds is strictly convex,
we have 0

sup {I(x, n)|n e Ly(S*, R), ||n = n,| = ¢/2} < I(x, n,) — ¢

for some &> 0. Let u,edB(y,, ¢/2) N {n, + A(n,, — 1,)|2 [0, 11};
since I(x,, ) is concave, we have I(x,, u,) = I(x,, n,), so that

Iz, n,) — ¢ 2 I(x, ‘U~n) = I(z, ;"*n) -
_I(xny p’n) + I(xn, F’*n) = I(xy Mn) - I(xny AU-n) + I(xrw 7]9:)-

Since (u,) is bounded and x, — x, we get I(x, u,) — I(2,, #,) =0,
and I(x,, n,)— I(x, n,), and then we have a contradiction.
Finally, fix x,y € H, and let = > 0. From (2.2) we have

T

< fle+y) - fx) < I + 7Y, Mg+ q) = 1@, 51 )
T T :

For 1—0 we get (f'(x),y)=(3l(x, n,)/0%,y), so the lemma is

[ ]
proved. ik

REMARK 2.3. Notice that j B@)T/k + ny)nds =0 for every
0
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neLy(S'*,R). In other words, there exists c,eR such that
Bx(s))T/k + n,(s)) = c, for every seR. Since ¢, <0 implies T/k +
1/k

+1.(8) <0, so T/k?= I(T/k + n,)ds <0, we have ¢, > 0, and then
0
T/k + n,(s) > 0 for every s. Moreover B(x)XT/k + n,)? = ¢, (T/k + n,),
1/k
so0 ¢, = (k2 /T) [ Be)(T/k + )2 ds.
0

LEMMA 24. Fix ¢>0 and xeH, and set I={se[0,1/k]|
|x(s)| <¢}. Then, if |I| >0,
1/k

j Be)T/k + n,)2ds <
0

M
k1]

’

where M = max {B(x)| |x| < p}, and |I| is the Lebesgue measure of I.

ProoF. Let c, be as in Remark 2.3, so that T'/k + 7, (s) = ¢, /B(x(s))
for every seR. If sel, we have c,/M < T/k + n,(s), and then
c2 /M < Bx(s))(T/k + n,(s))2.

Integrating on I, we have:

cz r Tc
% < 2ds = —2
2 of BXT/k +n.)'ds = —5

Then ¢, < TM/k?|I|, so that the lemma is proved. ™

LEMMA 25. Let O0<r<p and (x,)cH be such that
dist (Im (x,,), 0) < r and ||, ||l = ¢. Then
1/k

[ BT/ + 7., ds < *M
0

- |2
M
el

where M = max {B(x)||x| <p}.

ProoF. Let I,={sel[0,1/k]||x,(s)] <p}; since |x,].=p,
|I,] >0, so that

1/k

j B T/k + 1, 2ds < TEM/k* |1, |
0
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because of Lemma 2.4. Moreover, since dist(Im(x,), 0) < r, we have

p—TSs j |4, | ds < ||#, 2 | I.]*%, and the lemma follows. ®
I

n

We say that a functional f: H — R verifies the Palais-Smale-Cerami
(PSC) condition (see[6]) if every sequence (x,) c H such that f(x,) —
—ceR and (f'(x,), x,) > 0 as = — ®, possesses a convergent subse-
quence.

We have the following lemma.

LEMMA 2.6. There exists koe N such that, for every k =k, the
Sfunctional f satisfies the PSC-condition.

ProOF. Let M =max{A(x)||x| SR+ 1} (R is defined in (1.3)),
and let k, € N be such that ag — T2M /k§ > 0. Fix k e N with k = k,, and
let us consider a sequence (x,)c H such that f(x,) >ceR and
(f' (@), 2,) — 0 as n — . First of all, we prove that (||, ||;) is bounded
modulo subsequences. Infact, we distinguish two cases:

1) case: for every m e N, dist(Im(x,), 0) > R (modulo subse-
quences). Then pg(x, (s)) < (8’ (x,(s)) |2, (s)) for every s (see (1.3)), so,
from f(x,) —c we get (setting 7, =, ):

1/k 1/k
P j (@), , B, ]ds < pe + f (B’ () |2 )(T/k + 7,)ds + o(1).
0 0

Since (f ' (x,), x,) — 0, we have

1/k 1/k
I o' (@, )@, )y, 2,1ds + 2 J a(x,)d,, €,]ds —
0 0

/
- jk(ﬂ' (xn)lxn)(% + nn)zds =o(1),
0

so that
1/k

j (ga(@y) — &' (@) @) , Eo]ds < pe + 0(1),
0

then (||#,];) is bounded because of (1.2).
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2) case: for every nmeN, dist(Im(x,),0) <R (modulo subse-
quences). Then, if (||z, ||..) is bounded, we have 8(x, (s)) < M, for n e N,
1/k

seR,so j B, )T /k + n,)2ds < M, T?/k®, and the claim follows from
0

the fact that f(x,) — ¢ as n — ®. So, we can assume ||z, ||, — ®. Let
I, ={se[0, 1/k]||x,(s)| <R+ 1}; from Lemma 2.5 (with » = R and
e =R +1), we have

1/k

j B )Tk + ntds < LM
0

k4 "djn ”g .

Then, since f(x,) — c,

1/k ,

[ a@dn, dds < 7;6—4M lin B + ¢ + o(1),

0
so that (see (L.1)): (ag— T2M/k*)||%,|2 < ¢ + o(1). Since k =k, the
claim follows. 1k
We set now x, =&, + y,, where £, e R®, and Jyn(s)ds =0; we

0

shall prove that (¢,) is bounded. In fact, we can assume that y, —y
weakly in HY2 and strongly in L ®; then

[&] = (lylle + 1) < |zu ()] < [&a] + (lylle + 1)
for » large enough, so that, since

(@, (8))[ 2, (8), B (8)] < o | @, (8)]7 ], (5)|2
1/k
(see (1.8)), we have J a(@,) &, , &,]ds < c3 |£,|? + ¢4 for some cz, ¢4 > 0.
0 1/k
On the other hand, (x, (s)) = ¢; |, (s)|?, then J' B, )(T/k + n,)%ds =
= c5|&,|P + cq. Since f(x,) — ¢, we have o
1/k
s [&l” + e < [ B@(T/k + n,)%ds =
0

1/k
= f (@), B ]ds — ¢ + 0(1) < €5 |£n |9+ C4 + ¢ + 0(1),
0
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so (£,) is bounded. Let us suppose &, —  weakly in H" 2 and strongly
L~ . Then
1/k
(f @,z =)= [ &' @)@ = @, 3,]ds +
0
1/k 1/k
+2 J a(x ), , & — &,1ds — J (B8 (@) | — 2, )T /k + n,)°ds
0 0

because of (2.1) we have that (»,) is bounded, so, the fact that
1/k

(f' (%), ® — %,) = 0(1) implies j o@,)d, & — &,]1ds = o(1). Then

1/k 1/k 0

J |& — %, |2ds < ag J a(e )& — &,, € — £,]1ds = o(1), so that x, >

strongly in H, and the lemma is proved. ®

Let H = H"2(S'*, R®) = R® X Y, where

1/k
Y={xeH| jx(s)ds=o
0

As well-known (see e.g.[13], p. 9), for every y € Y we have |y|; = aUle,
and ||yl < b]|9]l,, where a = 2kn(1 + 4k%=%)~1/2, and b = (1/12k)"/*
We have now the following lemma.

LEMMA 2.7. There exist 6,0 > 0 such that f(y) = ¢ for every yeY
with ||y| = e. Moreover ¢ is independent of k.

PrROOF. Fix ¢> 0 such that ag— ¢7%/V/12 > 0. (1.5) implies that
there exists p;, > 0 such that 8(x) < 8y + ¢|x|? for |x| <p;.Setp=p,/b
and

- 477.'2 ETZ 2
S Tt 4 (“"_ E)P‘m'

For y e Y with [ly|| = g we have lyll < Bllglle < bllyll = bo = o1, so that
B(y(s)) < Bo + €| y(s)|2 < Bo + b*|4l&. Then
1/k

[ BuXT/k + 0,0 ds < (8o + b*(GIB T* /K,

0
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so
F@ = aolglB— (Bo+ b? IR T /k°+ B T* /= (o= eT* 0% [k%) |5 >
2 (ag — eT?b% [k a®[ly[P = a®(xg — eT?b% /k?) 0 /b .

Since a?(ay— eT?b%/k%)p3/b%> ¢ for every keN, the lemma is
proved. W

REMARK 2.8. Lemma 2.5 implies that the functional

1/k
x> [ B@NT/k +n.)ds,
0

under assumption (1.3) is not superquadratic at infinity on finite-dimen-
sional subspaces of H. This fact make not possible to apply the standard
linking theorem of f. In order to avoid this difficult, we consider the sub-
space E = {x € H|x(s + 1/2k) = —x(s)}. Clearly E cY; moreover we
have the following lemma.

LEMMA 2.9. Let us suppose that (1.6) holds. Then, every critical
point x € E of the functional fg is a critical point of f.

PRrROOF. Let x € E be a critical point of f|z, and z € H; we shall prove
that (f'(x), z) = 0. In fact, set z,(s) = 2(s) — 2(s + 1/2k), and zx(s)=
= 2(s) —2(s), so that z,eE, and 2=z, +2,. Since (f'(x),2;)=0, we have
(f' (@), z) = (f' (), 23). From Remark 2.3, there exists ¢, > 0 such that
Bx(s)(T/k + n,(s)) = c,. Since 8 is even and x € E, we have that », (s +
+ 1/2k) = n,(s), and then it is easy to check, by using (1.6), that
(f' (), 25) = —=(f' (=), 2), and the lemma is proved. =

ProoF oF THEOREM 1.1. Let us suppose that (1.1)-(1.6) hold, let
ko € N be as in Lemma 2.6, § > 0 as in Lemma 2.7, and fix k¥ € N such that
k = ko and ké — BoT? /k? > 0. From Lemma 2.6, the functional f|z satis-
fies the PSC condition on E. Let w(s) = r(cos (2kns), sin(2kxs), 0);
cleary w € E, and since B(w(s)) = ar? + b, we have

1/k
j Bw)T/k + ny)2ds = (ar? + b) T2 /k®
0

so that (see Remark 12) f(w) < 4kr?cor?*%— (ar? + b)T?/k® +
+ BoT? /k3,and f(w) < 0 for rlarge enough (we recall that ¢ + 2 < p). Set
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r={yeC(o0, 1], E)|y(0) = 0, ¥(1) = w}, and let
c=inf sup f(y(?).

yel te[0,1]

Let ¢ be as in Lemma 2.7; since £(0) = 0 and we can assume |w|| > o, we
have ¢ < ¢ < + . From the mountain pass lemma (see[1]), we have
that ¢ is a critical value for the functional fig- From Lemma 2.9 we get a
critical point x € H of f with f(x) = c. Since ¢ > 0, we have & # 0. Because

S
of Remark 2.1, 2(s) = (x(s), t(s)), where t(s) = Ts/k + Im(r) dr,is a 1-
periodic T-trajectory on (R*, g). 0

Finally, in order to prove that z is spacelike, we observe that

1 1
E, = j ()%, $]ds — j B(x)i2ds =
0 0
1/k 1/k

=k j ()&, ¢]1ds — [ B)(T/k + 1,)%ds
0

0

BoT?

= ks — >0,
k2

2
—4ﬂ)—mT)

so that £, > 0, and Theorem 1.1 is proved. ®
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