RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

LUCIA SERENA SPIEZIA

A property of the variety of 2-Engel groups

Rendiconti del Seminario Matematico della Università di Padova, tome 91 (1994), p. 225-228

http://www.numdam.org/item?id=RSMUP 1994 91 225 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1994, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Property of the Variety of 2-Engel Groups.

LUCIA SERENA SPIEZIA(*)

Introduction.

Suppose that ∇ is a variety of groups defined by the law $w(x_1, \ldots, x_n) = 1$, and assume that n is the least number of variables required to determine ∇ . Following [KRS] we denote by ∇^* the class of groups G satisfying the following property:

«For every n infinite subsets X_1, \ldots, X_n of G, there exist elements x_i in X_i , $i=1,\ldots,n$, such that the subgroup generated by $\{x_1,\ldots,x_n\}$ is a \mathcal{V} -group».

Clearly all finite groups satisfy the property for any ∇ . The question we are interested in is:

«For which varieties ∇ is very infinite ∇^* -group a ∇ -group?»

For example, if ∇ is the variety \mathcal{C} of the abelian groups, then the law defining \mathcal{C} is w(x,y)=[x,y]=1, and, by definition of \mathcal{C}^* , for every pairs X, Y of infinite subsets of $G\in\mathcal{C}^*$, there exist $x\in X,\ y\in Y$ such that xy=yx. It follows, from a theorem proved by B. H. Neumann in [N], that G is centre-by-finite, so that G is infinite. For any G is infinite. For any G is consider the infinite subsets G is infinite. For any G is can find G is consider that G is considerable th

Problems of similar nature are discussed in [KRS], where the variety ∇ considered is the class \mathcal{C}^2 of metabelian groups, and in [RS], where the authors studied the classes of locally nilpotent, locally soluble and locally finite groups. Furthermore in [LMR], the authors answer the question affirmatively, using a considerably weaker hypothe-

^(*) Indirizzo dell'A.: Dipartimento di Matematica ed Applicazioni «R. Caccioppoli», Università di Napoli, Complesso universitario Monte S. Angelo - Edificio T, Via Cintia, I-80126 Napoli.

sis, when \heartsuit is the variety of nilpotent groups of nilpotency class n-1. In fact they assume only that $[x_1, \ldots, x_n] = 1$ instead of supposing that $\langle x_1, \ldots, x_n \rangle$ is nilpotent of class n-1. In the present paper we establish a positive result for the class \mathcal{E}_2 of 2-Engel groups, by proving the following:

THEOREM. Let G be an infinite group. If for every pair X, Y of infinite subsets of G there exist some x in X and y in Y such that [x, y, y] = 1, then G is a 2-Engel group.

Our notation and terminology are standard (see for instance [Ro]). We shall write \mathcal{E}_k^* to denote the class of groups G for which, whatever X, Y are infinite subsets of G, there exist x in X and y in Y such that $[x, \underline{y}, \dots, \underline{y}] = 1$. Thus our Theorem states that $\mathcal{E}_2^* = \mathcal{E}_2 \cup \mathcal{F}$, where \mathcal{F} is the class of all finite groups. The proof we give relies upon a lemma proved in [S] which we restate here below for the reader's convenience:

LEMMA. Let G be an infinite group in \mathcal{E}_k^* . Then $C_G(x)$ is infinite for every x in G.

Proofs.

We will need some preliminary results before proving our statement. The first of these is actually a straightforward consequence of the above Lemma.

LEMMA 1. If G is an infinite group in the class \mathcal{E}_k^* , then for any $x \in G$ there exists an infinite abelian subgroup A of G containing x.

Furthermore we point out that:

REMARK. If G is in \mathcal{E}_k^* and its centre Z(G) is infinite, then for any $x, y \in G$ the subsets xZ(G), yZ(G) are infinite, hence there are $z_1, z_2 \in Z(G)$ such that:

$$1 = [xz_1, \underline{y}z_2, \dots, \underline{y}z_2] = [x, \underline{y}, \dots, \underline{y}] \quad \forall x, y \in G.$$

Therefore G is a k-Engel group.

LEMMA 2. Let $G = \langle y, A \rangle$ be an infinite group in \mathcal{E}_2^* , where A is an infinite abelian subgroup of G. Then there exists an infinite subset T of the set $B = \{a \in A | [a, y, y] = 1\}$ such that $t_1 t_2^{-1} \in B$ for any t_1, t_2 in T.

PROOF. Consider the set $Y = \{y^a | a \in A\}$. If Y is finite, then the index $|A: C_A(y)|$ is finite too, hence $C_A(y)$ is infinite and contained in the centre of G, Z(G). This means that Z(G) is infinite, and, by the previous remark, G is a 2-Engel group. In this case we choose T = B = A.

So we may assume, without loss of generality, that Y is infinite. Suppose now that the set $A \setminus B$ is infinite and consider the two infinite sets Y and $A \setminus B$. By hypothesis there are elements $a \in A \setminus B$ and $b \in A$ such that $1 = [a, y^b, y^b] = [a, y, y]$. But this is a contradiction since a is not in B. Thus $A \setminus B$ has to be finite and B is an infinite subset of A.

If A has a torsion-free element a, then it is possible to construct an infinite strictly decreasing chain of infinite subgroups of A

$$A \ge \langle a \rangle > \langle a^2 \rangle > \dots > \langle a^{2^n} \rangle > \dots$$

Since $A \setminus B$ is finite, there exists $n \in N$ such that $\langle a^{2^n} \rangle$ is completely contained in B. Then we set $T = \langle a^{2^n} \rangle$. We have now to examine what happens when A is a torsion group. In this case the subgroup H generated by $A \setminus B$ is finite, and A/H is infinite. Choose any transversal T for H in A containing 1. This is an infinite subset of A contained in B and, for any pair of distinct elements of T, t_1 , t_2 , we have $t_1 t_2^{-1} \notin H$. Since $1 \in T$, we have $t_1 t_2^{-1} \in B$, for every t_1 , t_2 in T. This proves our claim.

We are now in a position to prove the theorem stated in the introduction.

THEOREM. If G is an infinite group in the class \mathcal{E}_2^* , then G is a 2-Engel group.

PROOF. Our purpose is to show that [x, y, y] = 1, for every x, y in G. By Lemma 1 we may assume, without loss of generality, that G is the group generated by y and A, where A is an infinite abelian subgroup of G containing x, i.e. $G = \langle y, A \rangle$.

If we consider the subset $B = \{a \in A \mid [a, y, y] = 1\}$ of A, Lemma 2 guarantees the existence of an infinite subset T of B such that for any $t_1, t_2 \in T$, $t_1 t_2^{-1} \in B$. Set $\overline{T} = \{y^t \mid t \in T\}$ and consider the following two cases:

Case 1. \overline{T} finite. Since T is contained in the union of finitely many cosets of $C_A(y)$, it follows that $C_A(y)$ is infinite. Thus the centre of G, containing $C_A(y)$, is infinite too and the claim follows from the Remark.

Case 2. \bar{T} infinite. We will show that [a, y, y] = 1 for every a in A. The subsets $a\bar{T}$, \bar{T} of G are infinite for every $a \in A$ and, therefore, we can find $t_1, t_2 \in T$ such that $1 = [ay^{t_1}, y^{t_2}, y^{t_2}]$. But

$$[ay^{t_1}, y^{t_2}, y^{t_2}] = [(ay)^{t_1}, y^{t_2}, y^{t_2}] = [(ay)^{t_1t_2^{-1}}, y, y]^{t_2} =$$

=
$$[ay^{t_1t_2^{-1}}, y, y]$$
 = $[[a, y]^{y^{t_1t_2^{-1}}}, y][y^{t_1t_2^{-1}}, y, y]$.

Now we notice that, since $t_1t_2^{-1}$ is in B, $y^{t_1t_2^{-1}} \in C_G(y)$ for every t_1 , t_2 in T. Hence $[y^{t_1t_2^{-1}}, y, y] = 1$, and $y^{y^{(t_1t_2^{-1})^{-1}}}$, so that we have

$$1 = [[a, y]^{y^{t_1 t_2^{-1}}}, y] = [a, y, y] \quad \forall a \in A,$$

and the theorem is proved.

REFERENCES

- [KRS] P. S. KIM A. H. RHEMTULLA H. SMITH, A characterization of infinite metabelian groups, Houston J. Math., 17 (1991), pp. 429-437.
- [LMR] P. Longobardi M. Maj A. H. Rhemtulla, Infinite groups in a given variety and Ramsey's theorem, Commun. Algebra, 20 (1982), pp. 127-139.
- [N] B. H. NEUMANN, A problem of Paul Erdös on groups, J. Austral. Math. Soc., 21 (1976), pp. 467-472.
- [RS] A. H. RHEMTULLA H. SMITH, On infinite locally finite groups and Ramsey's theorem, Atti Accad. Naz. Lincei Rend. Cl. Fis. Mat. Natur., (9) 3 (1992), pp. 177-183.
- [Ro] D. J. S. ROBINSON, Finiteness Conditions and Generalized Soluble Groups, Part I and Part II, Springer-Verlag, Berlin, Heidelberg, New York (1972).
- [S] L. S. SPIEZIA, Infinite locally soluble k-Engel groups, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., to appear.

Manoscritto pervenuto in redazione il 21 settembre 1992 e, in forma revisionata, il 3 novembre 1992.