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A Remark on Global Smooth Solutions

for Quasilinear Wave Equations.

RENATO MANFRIN (*)

ABSTRACT - In this paper, following a result of S. Klainerman, we prove the exis-
tence of global smooth solutions in Rt x Rx for quasilinear wave equations
with small initial data wich are periodic in at most n - 2 variables. The proof
is based on suitable decay estimates for partially periodic solutions of the ho-
mogeneous wave equation.

1. Introduction.

The aim of this paper is to present a result concerning the existence
of a global solutions in Coo to quasilinear wave equations for initial data
and nonlinear perturbations which are 27r-periodic with respect to some
of the space variables.

Let us consider the initial value problem on Rt x Rx:

where f: R’ x R’n + 1--* R is a C°° function which satisfies a condition
such as:

(*) Indirizzo dell’A.: Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa,
Italy. -
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where r is an integer -&#x3E; 1, and for every multi-indices a, f3

when p is sufficiently small.
It was proved, under suitable condition on n and r (see in particu-

lar [K], [K, P], [T, Y]) that for given initial data uo (x), vo (x) E Co (R n)
Pb. (1.1), (1.2) admits a unique global solution in Coo provided c is suffi-
ciently small. In [K, P] the proof was based on the L p - L q for esti-
mates the solution of the unperturbed equation with Co initial data,
due to W. von Wahl [W]. Later, in [K], [T,Y] and other papers a more
general result was obtained using the so called I’ and 0-norms.

Now we assume the periodicity in the first j space variables, with
2 ~ n - j , and defining a suitable 0-typo norm for smooth functions in
Rt x Rx , we give a decay estimate for solutions of the homogeneous
wave equation wich are periodic in xl , ... , x~:

where the a-norms will be define in § 2.
Using this estimate we obtain, following essentially [K, P], the

global existence for smooth solution when - is sufficiently small.
We can state our main result:

THEOREM 1. Assume that (1.3), (1.4) holds and that f (x, z) is 2x-
periodic in xl, ... , xj. Then, for any smooth initial data uo (x), vo (x),
2x-periodic in xl , ... , Xj and compactly supposed with respect to

Xj + 1, ... , xn with j satisfying

there exists go &#x3E; 0 such that problem (1.1), (1.2) has a unique global
smooth solution for 0 ~ ~ ~ ~ o .

If n - j = 3 and r = 1, we have the following estimate of the life-
span T, of the solution

for some positive constants A, B and for e sufficiently small.
If n - j = 2 and r = 2, we can say more, namely that:
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REMARK. We recall here that Pb. (1.1), (1.2), without any other as-
sumption on the nonlinear term, does not admit, in general, global sol-
utions periodic in all the space variables. Consider for example the
equation 

.

then, it easy to see that every solution of (1.9) with constant and positi-
ve initial data, blow-up in finite time.

As a special case of Th. 1, taking initial data which are constacnt in
the variables x1, ... , x~ we re-obtain the results of [K], thus the condi-
tion (1.6) is in some sense sharp.

We give here a direct proof of Theorem 1 when the nonlinear term
f (x, Du) does not depends explicitely on x, observing that when f de-
pends on x E Rx it is sufficient to use a suitable form of Lemma 2.7 to
estimate the 0-norm of the nonlinear term.

REMARK. By the same methods, we can prove global existence in
C°° for small initial data to the more general equations of the form

where f(x, z) satisfies the same assumptions as before; (x, Du) sat-
isfies a condition of type (1.4) and a condition of the form

REMARK. A weaker version of Th. 1, which avoids the use of r-
norms, can be found in [Ma]. More precisely, using merely the Sobolev
norms and an appropriate Von Wahl’s type estimate for the periodic
solutions of the homogeneous wave equation, we are able to prove the
conclusion of Th. 1 assuming instead of (1.6)

This is the plane of the paper: in § 2 we give the notations and the fun-
damental decay estimates for partially periodic solutions to the linear
wave equations, in § 3 we recall a classical local existence result for the
nonlinear wave equation, finally in § 4, 5 we complete the proof of
Th. 1.
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2. Preliminaries.

Following S. Klainerman [K], we introduce a set of partial differen-
tial operators:

The first order operators Q a, b and Lo satisfy the following commutation
properties with the wave operator D in Rt x Rx :

Moreover we have

Thanks to the commutation properties (2.2a), if D = 0, then also Lo u
and Q a, b U are solutions of the homogeneous wave equation. Thus, the
energy identities hold

In the following, these relations will be used to obtain the basic decay
estimates for the L°°-norm of u(t, x) (see Lemma 2.6 below).

For semplicity of notations, in the following sections we shall con-
sider our problems in Rt x Rx x R7J, where we assume periodicity in
R§/, and compactness in Let be a
smooth function, then we define:
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besides we introduce the following sets of first order operators

Taking u(t, x, y) a smooth function compactly supported with respect
to the variables x = (xl , ... , xn ) and 2n-periodic with respect to y =
= (yi, ..., y.), in corrispondence of one of the sets of operators
S~, D, S~ *, S, say A = (A1, ... , A~ ), we define the norm:

and observe that a different orderings of the operators A1, ... , A , will
produce equivalent norms. In the following, we also use the norm

We quote now the fundamental decay estimates, due to S. Klainer-
man, with respect to the (which hold for any smooth function
with compact support) referring to [K] for the proof.

LEMMA 2.1. Let u(t, x) be a smooth compactly supported function
in the hyperboloid t &#x3E; 0 ),
then

LEMMA 2.2. Let u(x) be a smooth function in Rn compactly sup-
ported. Then:

LEMMA 2.3. Let u(t,x) be a smooth function in Rt x Rx compactly
supported in Rx or vanishing sufficiently fast at infinity, for any fixed
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Then for any such ] we

have:

where p2=t2-lxI2.
The estimates (2.6) and (2.7) are not convenient fot t and x small,

thus we must resort to the 0*-norms, (which include also the deriva-
tives axl , ... , On the other hand, for our purpose we must avoid the
use of the operator Lo = tat + xl axl + ... + because its commuta-
tor with the wave operator in Rt x Rx x R7J, has the form

so that, if we apply Lo to each term of the equation Du = f(x, y, Du) in
Rt x Rx x Ry we obtain a linear term in the right side:

Thus, we need a result of the following type:

LEMMA 2.4. Let x) be a smooth function in Rt x Rx compactly
supported in Rx , then for any t ~ 0, x E 

where p 2 = t 2 - ~ x ~ 2.

PROOF. We shall first prove inequality (2.8) in the case t &#x3E; 0 and
t ~ 2 ) then we use Lemma 2.2 and the Sobolev embedding theorem
to consider the other cases.

Assume that t &#x3E; 0 and t ~ 2 1 x I , putting (t, x) = pw, where 11 =
= (mo , w) E R x Rn, with Wð - Iw/2 = 1, we have
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Let dSw be the area element of the hyperboloid

is the area element of R x Rn. Thus, integrating (2.9) on

we easily find

Recalling that

then, since s/2 in (2.10) we have 0 £ 1 /2 log 3 in the domain of in-
tegration and we can write:

from which it follows that:

According to the commutation properties of 0 with a, we can easily
verify that for every integer 1~ &#x3E; 0 there exists Mk &#x3E; 0 such that:

Thus using a localized version of Lemma 2.1 we find that for t &#x3E; 0 and

t &#x3E; 2 lxl:
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Moreover, by Lemma 2.2 for x ~ 0 we have

and, from the definition of S2 * it follows:

So combining (2.14) for t ~ 1, t ~ 2 1 x 1, (2.15) for t ~ 1, t ~ 2 x ~ I and
(2.16) for 0 ~ t ~ 1, we obtain (2.8). This completes the proof of Lem-
ma 2.4.

We now apply the previous Lemma to a function u which depends
on the variables y, , ... , ym. Let y) be a smooth function in Rt x
x Rx x R’ , compactly supported in Rx and 2x-periodic in Rfj for any

0. From (2.8), we have:

Thus "integrating this expression with respect to y on [0, 2 ~r]m for any
multi-index /,8/ ~ [m/2] + 1, by Sobolev immersion theorem we

find:
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where the sums are extended to all multi-indices 1f31 ~ [m/2] + 1.
In conclusion, if we use the norm

we have proved the following result:

LEMMA 2.5. Let u(t, x, y) be a smooth function compactly support-
ed in Rx and 2x-periodic in Ry for any 0, then:

Consider now a solution u(t, x, y) to the homogeneous wave equations
on Rt x Rn x R7J :

According to the commutation properties between the wave operator D
and 0 ~ a  b ~ n, we have the energy identity for any t a 0,

where D = ( at , axl , ... , axn , ... , aym ) and, as in (2.13), for any inte-
there exists l &#x3E; 0 such that

Hence, combining (2.20), (2.22) and (2.23), we obtain

LEMMA 2.6. Let u(t, x, y) be a smooth solution of the homogeneous
wave equation, compactly supported in Rx and 2n-periodic in Ry then,
for any t ~ 0 we have the estimate

Hence, setting
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we have also

REMARK. In view of the estimate of the nonlinear terms (see Lem-
ma 2.7 below), it is more convenient to use, instead of the norms

11.11D-,k,l norms. Setting,

from (2.24) and (2.27) it is easy to deduce

We now estimate the composite functions:

LEMMA 2.7. Let be a smooth function of U =
= (ul , ... , uN ) satisfying

where r is an integer ~ 1; and put

Then if all the norms appearing at the right side below are bounded, we
have

where Ck is a positive constant which depends only on k.

PROOF. When 1~ = 0, (2.30) is obvious; if k ~ 1 and 1 ~ Ikl,
we have

Where the second sum is extended to all multi-indices 

... , c~ 1, r 1; ... ; c~ N,1, ... , c~ N, rN such and
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C( y, are positive constants. Putting

we then easily compute:

where the second sum is as above. It is easy to see that one at most of
the multi-indices I is greater than or equal to [I a 1/2] + 1, thus
(2.30) follows from (2.33) taking into account that

for lyl  r+1.

3. Local existence for periodic solutions.

Before proving Theorem 1, we recall here a result of local existence
for solutions which are periodic with respect to m space variables. We
refer to [Gl], [G2] and [M] for a detailed discussion and proof.

DEFINITION. We denote by for x R’) the space of the func-
tions g(x, y), 2x-periodic in yl , ... , such that

In the same way we define x and x 

Let f(x, y, z) be a Coo function on Rx x Ry x 7:~~"~~ such that

Then, the following result of local solvability for the nonlinear wave
equation holds:

PROPOSITION 3.1. Assume that the function f(x, y, u, Du), satisfies
(3.1), (3.2); then for any initial data uo (x, y), vo (x, y) E H:m x Ry )
there exists T &#x3E; 0 (depending on uo and vo ) such that the quasilinear
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wave equaction

has a unique (local) solution u(t, x, y) E Coo ([0, T); H:m (Rx X Ry )).
Such solution has the finite speed of propagation property with re-

spect to x E R’ . Moreover, if f does not depend explicitely on u and sat-
isfies a condition such as

for I bu I sufficiently small and r integer ~ 1, the life span of the sol-
ution can be estimate on below as

REMARK. (3.5) easily follows from the energy estimates for the

quasilinear wave equations, using the inequalities of Gagliardo and
Nirenberg in order to estimate the nonlinear terms (see [N]).

4. Estimates for the solutions of the nonlinear wave equations

We now use the result of § 2 in order to estimate the solution u(t, x)
of the quasilinear Cauchy problem in Rt x Rx x R7J :

is a smooth function such that:

r is an integer -&#x3E; 1, and uo (x, y), vo (x, y) are smooth functions compact-
ly supported in Rx and 2n-periodic in Let u(t, x, y) be a local sol-
ution of (4.1), (4.2), belonging to C°’ ([0, T ]; H~~ (Rx x R~ )), then by
the Duhamel’s principle we have 

’~
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where w(t, x, y) is the solution of the homogeneous problem:

while for any fixed s E [ o, T ), G( s, t, x, y ) is the solution to the linear
problem:

By (2.28) we can easily see that, for every k % 0, we have

where n = [(m + n)/2] + 3.
Now applying Lemma 2.7 and observing that we

find, for every integer ~0,

where is given by (2.29), and using energy estimates we can esti-
mate l. Putting:

by the commutation properties of 5 and D we find:

from (4.10) and (4.12) it follows:

Since as in (2.13) there exists M, &#x3E; 0 such that
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applying Gronwall’s lemma we have

From, (4.9), (4.10) and (4.15) it follows:

Setting now:

and observing that [(1) + k )/2 ] ~ k as soon as

we find:

if k satisfies (4.17). Finally from (4.16), (4.18) it follows that:

In conclusion, we have proved the following:



15

LEMMA 4.1. Let y) be a local solution of Problem (4.1),
(4.2), belonging to Coo ([ 0, T ]; x R§/ )) (which exists by Proposi-
tion 3.1), then for 0 ~ t ~ T and 1~ &#x3E; 2[(m + n)/2] + 6, the following
estimate holds

where w(t, x, y) is the solution of the homogeneous problem (4.5), (4.6);
Anlk is a nondecreasing continuous function which depends only on
f(x, y, z) (see (2.29)), and 1~ while

5. Proof of Theorem 1.

Applying (4.20), we now prove that the (local) solution of Problem
( 1.1 ), (1.2) is uniformly bounded with respect to t, as t ~ 00, provide g
is sufficiently small. We use the following

REMARK 5.1. Given h( y ) ~ 0 a continuous non decreasing function,
let us consider the function

where r is an integer ; 0. Then for every a &#x3E; C and so &#x3E; 0, there exists
A = A(a, go) &#x3E; 0, such that if y £ and 0  ~ ~ ~ o , then H(y) vanish
at some point of (0, as).

PROOF. Observing that H(0) = Ce &#x3E; 0, we have, for y ~ A/gT

and hence putting
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it follows that

Thus if A is sufficiently small (with respect to « we have
H(ag)  0 for some E, 0  g ~ Eo.

We can now prove Theorem 1.
If (n - 1)/2 &#x3E; 1 /r, there exists y ~ 0 such that

for every E &#x3E; 0.
Now, since for the solution of (1.1), (1.2) one has +

provided E &#x3E; 0 is sufficiently small, by Re-
mark 5.1 and estimate (4.20) we see that Yk ( t ) is uniformly bounded
(independently of t) provided E is sufficiently small. From the local ex-
istence theorem 3.1 it follows that problem (1.1), (1.2) has a global
solution.

If n = 3 and r = 1, the integrals in (5.4), (5.5) can be estimate by the
function

so, by Lemma 4.1 and Remark 5.1 the solution is uniformly bounded
provided that

Thus the life-span T, of the solution satisfies

for g &#x3E; 0 sufficiently small and A and B positive constants.
Finally if n = 2 and r = 2 we obtain for the integrals in (5.4) and (55)
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the same bound as in the case n = 3, r = 1, and the life-span now
satisfies
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