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Isometric Immersions of Kähler Manifolds.

MARIA JOÁO FERREIRA - MARCO RIGOLI - RENATO TRIBUZY (*)

1. Introduction.

The present article is concerned with obstruction to the existence of
(I, I)-geodesic isometric immersions from a ICAhler manifold M.

The concept of a (1,1)-geodesic map is a natural extension of the no-
tion of a minimal immersion from a Riemann surface; (1,1)-geodesic
maps appear sometimes in the literature with the name of circular or

pluriharmonic maps.
It is well known ([D-R]) that the (I, I)-geodesic isometric immer-

sions from M into R n are exactly the minimal isometric immersions. A
naive remark allows us to infer that, more generally, the minimal iso-
metric immersions from a ICAhler manifold into a locally symmetric
Riemannian manifold of non-compact type are (1,1)-geodesic.

M. Dacjzer and L. Rodrigues have proved in [D-R] that if Qc is a
space form of sectional curvature c &#x3E; 0 (resp. c  0) and p: 
(m = complex dimension of M) is a (1,1)-geodesic (resp. minimal) iso-
metric immersion, then m = 1. We will show that the only ( 1,1 )-geode-
sic isometric immersions from M into a 1/4-pinched Riemannian mani-
fold are the minimal isometric immersions from a Riemannian surface.
A dual result is obtained for maps into a Riemannian manifold with

negative sectional curvature, namely, if N is a Riemannian manifold
whose sectional curvatures satisfy - 1 :-5  -1 /4, the only
minimal isometric immersions from a Kahler manifold into N are the
minimal immersions from a Riemann surface.

In a different context, space forms can be considered as conformally
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degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; R. TRIBUZY:
Departamento de Matematica - ICE, Universidade do Amazonas, 69000 Manaus,
AM, Brazil.
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flat Einstein manifolds. In that direction we generalize Theorem 1.2

of [D-R] to isometric immersions into conformally flat Riemannian ma-
nifolds with certain bounds on their Ricci curvature.

To a certain extent holomorphic maps between Kahler manifolds are
the simplest examples of (1,1)-geodesic maps. In [D-T], M. Dacjzer and
Thorbergson have shown that for m &#x3E; 1 the only (1,1)-geodesic isome-
tric immersions from M into a complex space-form with holomorphic
sectional curvature c ~ 0 are the holomorphic immersions. Regarding

as the complex Grassmannian of one dimensional complex subspa-
ces of C’ it is natural to try to extend their results to isometric immer-
sions into a complex Grassmannian. We show that if N is the complex
Grassmannian of p-dimensional complex subspaces of C’ and m &#x3E; (p -
- 1 ) (n - p - 1) + 1, the only (1,1)-geodesic isometric immersions from
Mm into N are the holomorphic immersions. Furthermore, if N is the
corresponding dual symmetric space of non-compact type, for m &#x3E;

&#x3E; ( ~ - 1 ) (n - ~ - 1 ) + 1, there are no non-holomorphic minimal isome-
tric immersions from M m into N.

2. (1,1)-geodesic maps into pinched Riemannian manifolds.

Let Mm be a Kahler manifold with complex dimension m and N be
an arbitrary Riemannian manifold.

The complex structure of M m gives rise to the splitting

where is the complexified tangent bundle and the holomor-

phic tangent bundle, is the eigenbundle of J corresponding to the ei-
genvalue + i.

The second fundamental form of a smooth map p: M -&#x3E; N is the cova-
riant tensor field a = E C( 02 T * M ).

p is said to be (1,1)-geodesic if the (1,1)-part of the complex bilinear
extension of « vanishes identically, or equivalently, if for any X, Y E
E C( TM )

where J denotes the complex structure of M.
p is said to be minimal if trace a = 0. Clearly (1,1)-geodesic immer-

sions are minimal immersions.

PROPOSITION 1. If N is a non-compact locally symmetric Rieman-
nian manifold and p: is an isometric immersion the following
assertions are equivalent:
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is ( 1,1 )-geodesic,
(ii) p is minimal.

PROOF. For each x E M we consider a local orthonormal frame field

... , em, Je1, ... , Jem ) in a neighbourhood of x. We shall use the fol-
lowing notation:

and

If R M and R N denote respectively the Riemannian curvature ten-
sors of M and N, using the complex multilinear extension of the Gauss
equation we can write

Since M m is Kahler the left-hand side member of (1) vanishes identi-
cally. If p is minimal, summing in i we get

On the other hand, the universal covering of N is a Riemannian
symmetric space N of the non-compact type. Let 7~: N - N represent
the covering map and G the connected component of the identity in the
group of isometries of N . At some point y E N such that x( y ) = we

let K denote the isotropy subgroup of G at y. If S represents the Lie
algebra of G and x the subalgebra corresponding to K, we can identify
Ty N with the orthogonal complement T of x in 8 with respect the Kil-
ling-Cartan form of G. Under this identification, for each m, the

lifting of 2~ (resp. corresponds to some vector E~(resp. E _~ ) of 1P~
where denotes the complexification of ~P. Then if R denotes the Rie-
mannian curvature tensor of N we know that

From (2) we conclude that E -j) = 0 for 1 ~ i, j  m, hence p is

( 1,1 )-geodesic.
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REMARK. If N is a real symmetric space of rank 1 either of the
compact or non-compact type and p is a (1,1)-geodesic isometric immer-
sion, eq. (3) holds, and we recover Theorem 1.2 of [D-R]. Indeed

[E j, = 0 for all 1  i,j  m and it is easily seen that this can happen
only when m = 1. We now generalize this result to pinched-Rieman-
nian manifolds.

Let S be a positive real number. A Riemannian manifold N is said to
be positively (negatively) S-pinched at a point y E N if there exists a po-
sitive real number L such that LS  L( - L ~  - LS )
for any 2-dimensional subspace of N is said to be positively (ne-
gatively) S-pinched if it is positively (negatively) S-pinched at each
point y E N.

THEOREM 1. Let N be a positively 1/4-pinched Riemannian mani-
fold. is a (1, I)-geodesic isometric immersion, then
m = 1.

THEOREM 2. Let N be a negatively 1/4-pinched Riemannian mani-
fold. If p: Mm --~ N is a minimal isometric immersion, then m = 1.

To prove Theorems 1 and 2 we need the following lemma:

LEMMA 1. Let N be a Riemannian manifold whose sectional cur-
vatures satisfy one of the following inequalities:

Then if X, Y, Z, W is a local orthonormal frame field the following
inequality holds:

PROOF OF LEMMA 1. Assume (i) holds. By polarization we get
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Therefore from the left-hand side inequality we have

Replacing X by - X in the right-hand side of inequality (4) we
get

(5) and (6) lead to

Now a similar procedure with Z replaced by - Z in all inequalities
gives

PROOF OF THEOREMS 1 AND 2. If necessary normalizing the metric
we can assume, without loss of generality, that L = 1.

If p is (1,1)-geodesic in the case of Theorem 1, or if p is minimal in
the case of Theorem 2, we know from (2) that, for m
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where we have used the Bianchi identity.
Now the hypothesis of Theorem 1 (2) implies that

which cannot happen. Then m must be 1.

3. Minimal isometric immersions into conformally flat Rieman-
nian manifolds.

Riemannian manifolds with constant sectional curvature are very
special examples of conformally flat Riemannian manifolds.
A Riemannian manifold (N, h) is said to be conformally flat if there

exists a smooth function f : N -~ R such that (N, e 2f h) is flat.
The main invariant under conformal changes of the metric is the

Weyl curvature tensor W. The vanishing of W completely characterizes
the conformally flat Riemannian manifolds.

For each x E N we denote by ex (n) the subspace of con-

sisting of «curvature like» tensors: that means those tensors satisfying
the Bianchi identity. The action of (n = dim N ) on gives
rise to the following decomposition into irreducible subspaces

where = and Rx ( N ) is formed by the «Ricci traceless»
tensors, that is, those tensors 0 whose Ricci contraction c(6)
(c(0) (x, y) = trace 0( x, ., y, .)) vanishes. The orthogonal complement

of is called the space of Weyl tensors. The We-
yl tensor of a Riemannian manifold is the Weyl part of its curvature
tensor.

It is an easy matter to verify that the Riemannian curvature tensor of
a conformally flat Riemannian manifold N with Ricci curvature RicciN
and normalized scalar curvature S(N ) =1 /n trace RicciN is given by
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In this section we analyse the existence of minimal isometric im-
mersions into certain conformally flat Riemannian manifolds.

As above Mm will represent a Kahler manifold with complex dimen-
sion m. We shall use the following notation

THEOREM 3. Let N be a conformally flat Riemannian manifold
with positive scalar curvature such that r/S &#x3E; n/2(n - 1).

If is a (1,1)-geodesic isometric immersion, then
m = 1.

THEOREM 4. Let N be a conformally flat Riemannian manifold
with negative scalar curvature such that R/s &#x3E; n/2(n - 1).

If p: M m ~ N is a minimal isometric immersion, then m = 1.

COROLLARY 1. Let N be a conformally flat Riemannian manifold
such that nA/2(n - 1)  A for some positive real number A.

is a (1, I)-geodesic isometric immersion, then
m = 1.

COROLLARY 2. Let N be a conformally flat Riemannian manifold
such that -A ~ RicciN  - (n/2(n - 2))A for some positive real num-
ber A.

If m &#x3E; 1 there does not exist minimal isometric immersions from
M m into N.

REMARK. If N has non-zero constant sectional curvature, r/S =
= 1.

PROOF OF THEOREM 3. Assuming that p: Mm -~ N is (1,1)-geode-
sic, we obtain from eq. (2)
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On the other hand, if m &#x3E; 1, taking i ~ j we conclude from (7)
that

which is a contradiction.

PROOF OF THEOREM 4. If p is minimal, eq. (2) establishes that

But from (7)

which can only happen if m = 1.

4. Holomorphicity of minimal isometric immersion into a complex
Grassmannian.

Dacjzer and Thorbergson have studied in [D-R] minimal isometric
immersions into a complex space form CQc with non-zero constant holo-
morphic sectional curvature c. Their result states that if m &#x3E; 1, c &#x3E; 0

(  0) and p: is a (1,1)-geodesic (minimal) isometric immer-
sion, then p is ± holomorphic.

Regarding CP’ as the complex Grassmannian manifold of complex
1-planes we extend these results to isometric immersions into a
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complex Grassmannian (respectively to its dual symmetric manifold
of non-compact type).

We let denote the Grassmannian manifold of p-dimensional
complex subspaces of cn. The action of the unitary group U(n) on

endows with the structure of a Hermitian symmetric
space isometric to U(n)/ U((p) x (n - p)). In particular, Gp(cn) is a
Kahler manifold. We represent by its dual symmetric space of
non-compact type U(p, n - x U(n - p)), where U(p, n - p)
is the group of matrices in Gl( Cn) which leave invariant the Hermitian
form - Zl , Z1 - ... - Zp Zp + + ... + 

THEOREM 5. Let be a (1,1)-geodesic isometric
immersion. If m &#x3E; ( ~ - 1 ) (n - p - 1 ) + 1, then p is ± holomor-

phic.

THEOREM 6. Let 9: be a minimal isometric immer-
sion. If m &#x3E; ( ~ - 1 ) (n - p - 1) + 1, then p is ± holomorphic.

REMARKS. 1) When p = 1 we get Theorems A and B of [D-T].

2) As an easy consequence of Theorems 5 and 6 we also get Theo-
rem 1.2 of [D-R] which asserts that for Riemannian manifolds with con-
stant sectional curvature c &#x3E; 0 (  0) the only (1,1)-geodesic (minimal)
isometric immersions are the minimal immersions from a Riemann sur-
face.

In fact, let Qc be a Riemannian manifold with constant sectional cur-
vature c. Assume, for instance, that c &#x3E; 0 and m &#x3E; 1. Without loss of

generality we can assume Qc is simply connected, hence isometric to
S n . Therefore, since there exists a totally geodesic immersion from S"
to a (1,1)-geodesic would originate a
(1,1)-geodesic immersion §: This cannot happen, since y
would be simultaneously holomorphic and totally real. The case c  0 is

analogous.

PROOF OF THEOREM 5 AND 6. Let represent the Lie algebra
of U(k), N = and q = n - p.

At some point y we identify Ty N with the orthogonal com-
plement 1P of x in ’U(n) with respect to the Killing-Cartan
form of U(n). Let 1P~ denote the complexification of 1P.

Under this identification we obtain from (2)
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Therefore, we conclude that = W is an Abelian iso-

tropic subspace of O’c. We remark that

N is a Kahler manifold. It is easily seen that, under the above identifi-
cation, the type decomposition of Ty N gives rise to the splitting

where

and

Clearly, if p is holomorphic (respectively -holomorphic) W c 1P+ (re-
spectively W c 1P~ ). It is also a well-known fact that 1P+ and T- are Abe-
lian subspaces of 

Theorem 5 is now a direct consequence of the next lemma. By duali-
ty we obtain Theorem 6 in the same way.

LEMMA 1. If ( ~ - 1 ) ( q - 1 ) + 1, then W cT+ or W c
c 0-.

PROOF. We assume that and and prove that

dimC W &#x3E; (p-1)(q-1).
We shall consider two cases:

Since the procedure is similar we only consider W n 1P~ # 0.

There exists, at least, one matrix 0 # X = 0] e W where Bx is0 A, x 0
a q x p complex matrix and Y = 

By 0 where Ay is a non-zero p x qcomplex matrix. ~~Y 0
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Now [X, Y] = 0 implies that

We can assume without loss of generality that p ~ q. From BxAy = 0
we see that the rank of Bx is strictly smaller than p, otherwise Ay would
be identically zero.

Let

and take

Since the metric is invariant by the action of U(p) x U(q), wi-

thout loss of generality we can asume that BX0 = f 0 where I is a

diagonal non-singular matrix. 
0 0

We consider the subspaces

and

As we can see from the equations AxBxo = BXoAx = 0, for each

X E we must have Ax = [0 ~ ], when Ãx is a 1 x 1 matrix with
~p=/c. 0 A x

Now let
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and choose

If necessary changing WI and W2 we can assume, without loss of ge-
nerality, that this particular AX1 is a diagonal nonsingular matrix.
Again the equations = = 0 allow us to conclude that, for

LSv Ol -

each X = W2 we must have 0 0 where a (p - r) x (q - r)
matrix. Thus 0 0

since 1 ~ r ~ ~ - 1. The equality
- 1) + 1 is attained when r = 1.

- 

Case 2. - Assume now that W n 1P+ = § and W n P- = O. For each
1 x s complex matrix C = we let Cl , ... , C, denote the lines of C and
C1, ..., CS its columns.

First notice that if there exist two linearly independent ele-
ments

with (Ax)l = ... = = 0 and (Ay), = ... = (Ay)p-2 = 0 we shall
have B(= By = 0. Indeed, from [X, Y] = 0 we get that for i,
j E f 1, ..., ql,

so that if Bx’ - 0, there exists 1 s i s q such that X = 
Y E 1P~ which cannot happen.

Using an inductive argument we conclude that we can only have
two alternative situations:

A) There exists one and only one element
such that (Ax), = ... = (Ax)p-l = 0.

B) There exists p - 1 such that in W there is no element
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Suppose A holds. Then there exist at most (q - 1) linearly indepen-

dent elements Y 0 Ay 
in W with (Ay)i = ... 0. InY= 

By 0 
In W 

fact, for such Y1, is a solution of the equation (Bl)T) = 0
( I :5 k :5 P). Moreover any other Z = 

0 0 Az 
E W is such that for any(1  k  p). Moreover any other Z = 

z 0 E W is such that for anyBz 0
1 S k S p - 1 (Az)k,(Bl)T) = 0. Therefore there exist at most

linearly independent elements in W.
If B holds with a similar reasoning we easily obtain that W i

~(p-1)(q-1)+1 as well.

REMARKS. In the same way other bounds on the dimension of Mm ,
can be obtained preventing the existence of non-holomorphic (1, l)-geo-
desic (respectively minimal for the non-compact case) isometric immer-
sion into other classical irreducible Hermitian symmetric manifolds.
For instance if N is the complex quadric isometric to

SO(n + 2)/(,SO(2) x SO(n)) (respectively SO(2, n)/(SO(2) x SO(n)))
we can prove analogously that if m &#x3E; 2 and p: N is a (1,1)-geo-
desic (respectively minimal) isometric immersion, the p is ± holomor-
phic.

The authors were informed that Ohnita and Udagawa [0-U] have
obtained this result using different methods.

In a forthcoming paper we analyse the minimal isometric immer-
sions from a Kahler manifold into a real Grassmannian manifold.
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