RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

MARIA JOÁO FERREIRA MARCO RIGOLI RENATO TRIBUZY Isometric immersions of Kähler manifolds

Rendiconti del Seminario Matematico della Università di Padova, tome 90 (1993), p. 25-38

http://www.numdam.org/item?id=RSMUP_1993_90_25_0

© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 90 (1993)

Isometric Immersions of Kähler Manifolds.

MARIA JOÁO FERREIRA - MARCO RIGOLI - RENATO TRIBUZY (*)

1. Introduction.

The present article is concerned with obstruction to the existence of (1, 1)-geodesic isometric immersions from a Kähler manifold M.

The concept of a (1, 1)-geodesic map is a natural extension of the notion of a minimal immersion from a Riemann surface; (1, 1)-geodesic maps appear sometimes in the literature with the name of circular or pluriharmonic maps.

It is well known ([D-R]) that the (1,1)-geodesic isometric immersions from M into \mathbb{R}^n are exactly the minimal isometric immersions. A naive remark allows us to infer that, more generally, the minimal isometric immersions from a Kähler manifold into a locally symmetric Riemannian manifold of non-compact type are (1,1)-geodesic.

M. Dacjzer and L. Rodrigues have proved in [D-R] that if Q_c is a space form of sectional curvature c > 0 (resp. c < 0) and $\varphi: M^m \to Q_c$ (m = complex dimension of M) is a (1,1)-geodesic (resp. minimal) isometric immersion, then m = 1. We will show that the only (1,1)-geodesic isometric immersions from M into a 1/4-pinched Riemannian manifold are the minimal isometric immersions from a Riemannian surface. A dual result is obtained for maps into a Riemannian manifold with negative sectional curvature, namely, if N is a Riemannian manifold whose sectional curvatures $K(\sigma)$ satisfy $-1 \leq K/(\sigma) < -1/4$, the only minimal isometric immersions from a Riemannian manifold whose sectional curvatures from a Kähler manifold into N are the minimal immersions from a Riemann surface.

In a different context, space forms can be considered as conformally

(*) Indirizzo degli AA.: M. J. FERREIRA: Departamento de Matemática, Faculdade de Ciencias, Universidade de Lisboa, Rua Ernesto de Vasconcelos, Ed C2, 1700 Lisboa, Portugal; M. RIGOLI: Dipartimento di Matematica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy; R. TRIBUZY: Departamento de Matemática - ICE, Universidade do Amazonas, 69000 Manaus, AM, Brazil. flat Einstein manifolds. In that direction we generalize Theorem 1.2 of [D-R] to isometric immersions into conformally flat Riemannian manifolds with certain bounds on their Ricci curvature.

To a certain extent holomorphic maps between Kähler manifolds are the simplest examples of (1, 1)-geodesic maps. In [D-T], M. Dacjzer and Thorbergson have shown that for m > 1 the only (1, 1)-geodesic isometric immersions from M into a complex space-form with holomorphic sectional curvature $c \neq 0$ are the holomorphic immersions. Regarding $\mathbb{C}P^n$ as the complex Grassmannian of one dimensional complex subspaces of \mathbb{C}^n it is natural to try to extend their results to isometric immersions into a complex Grassmannian. We show that if N is the complex Grassmannian of p-dimensional complex subspaces of \mathbb{C}^n and m > (p - -1)(n - p - 1) + 1, the only (1, 1)-geodesic isometric immersions from M^m into N are the holomorphic immersions. Furthermore, if N is the corresponding dual symmetric space of non-compact type, for m >> (p - 1)(n - p - 1) + 1, there are no non-holomorphic minimal isometric immersions from M^m into N.

2. (1,1)-geodesic maps into pinched Riemannian manifolds.

Let M^m be a Kähler manifold with complex dimension m and N be an arbitrary Riemannian manifold.

The complex structure of M^m gives rise to the splitting

$$T^{\mathbb{C}}M=T^{1,0}M\oplus T^{0,1}M,$$

where T^{C} is the complexified tangent bundle and $T^{1, 0}M$, the holomorphic tangent bundle, is the eigenbundle of J corresponding to the eigenvalue +i.

The second fundamental form of a smooth map $\varphi: M \to N$ is the covariant tensor field $\alpha = \nabla d\varphi \in C(\odot^2 T^* M)$.

 φ is said to be (1,1)-geodesic if the (1,1)-part of the complex bilinear extension of α vanishes identically, or equivalently, if for any $X, Y \in C(TM)$

$$\alpha(X; Y) + \alpha(JX; JY) = 0,$$

where J denotes the complex structure of M.

 φ is said to be minimal if trace $\alpha = 0$. Clearly (1, 1)-geodesic immersions are minimal immersions.

PROPOSITION 1. If N is a non-compact locally symmetric Riemannian manifold and $\varphi: M^m \to N$ is an isometric immersion the following assertions are equivalent:

- (i) φ is (1,1)-geodesic,
- (ii) φ is minimal.

PROOF. For each $x \in M$ we consider a local orthonormal frame field $\{e_1, \ldots, e_m, Je_1, \ldots, Je_m\}$ in a neighbourhood of x. We shall use the following notation:

$$\sqrt{2}E_i = e_j + iJe_j \in C(T^{0,1}M)$$

and

$$\sqrt{2}E_{-j} = \sqrt{2}\bar{E}_j \in C(T^{1,0}M), \quad \text{for each } j \in \{1, ..., m\}.$$

If \mathbb{R}^M and \mathbb{R}^N denote respectively the Riemannian curvature tensors of M and N, using the complex multilinear extension of the Gauss equation we can write

(1)
$$\langle R^M(E_i, E_j) E_{-i}, E_{-j} \rangle = \langle \alpha(E_i, E_{-i}), \alpha(E_j, E_{-j}) \rangle - \langle \alpha(E_i, E_{-j}), \alpha(E_j, E_{-i}) \rangle + \langle R^N(E_i, E_j) E_{-i}, E_{-j} \rangle.$$

Since M^m is Kähler the left-hand side member of (1) vanishes identically. If φ is minimal, summing in *i* we get

(2)
$$\sum_{i=1}^{m} \langle \alpha(E_i, E_{-j}), \alpha(E_j, E_{-i}) \rangle = \sum_{i=1}^{m} \langle R^M(E_i, E_j) E_{-1}, E_{-j} \rangle.$$

On the other hand, the universal covering of N is a Riemannian symmetric space \tilde{N} of the non-compact type. Let $\pi: \tilde{N} \to N$ represent the covering map and G the connected component of the identity in the group of isometries of \tilde{N} . At some point $y \in \tilde{N}$ such that $\pi(y) = \varphi(x)$ we let K denote the isotropy subgroup of G at y. If S represents the Lie algebra of G and \mathfrak{X} the subalgebra corresponding to K, we can identify $T_y N$ with the orthogonal complement \mathscr{P} of \mathfrak{X} in S with respect the Killing-Cartan form of G. Under this identification, for each $l \leq j \leq m$, the lifting of E_j (resp. E_{-j}) corresponds to some vector \hat{E}_j (resp. \hat{E}_{-j}) of $\mathscr{P}^{\mathbb{C}}$ where $\mathscr{P}^{\mathbb{C}}$ denotes the complexification of \mathscr{P} . Then if \tilde{R} denotes the Riemannian curvature tensor of \tilde{N} we know that

(3)
$$\langle R^N(E_iE_j)E_{-1}E_{-j}\rangle_{\varphi(x)} - \langle \tilde{R}(\hat{E}_i\hat{E}_j)\hat{E}_{-1}\hat{E}_{-j}\rangle_y =$$

= $\langle [\hat{E}^i, \hat{E}_j], [\hat{E}_{-i}, \hat{E}_{-j}]\rangle \leq 0.$

.

From (2) we conclude that $\alpha(E_i, E_{-j}) = 0$ for $1 \leq i, j \leq m$, hence φ is (1, 1)-geodesic.

Maria Joáo Ferreira - Marco Rigoli - Renato Tribuzy

REMARK. If N is a real symmetric space of rank 1 either of the compact or non-compact type and φ is a (1, 1)-geodesic isometric immersion, eq. (3) holds, and we recover Theorem 1.2 of [D-R]. Indeed $[\hat{E}_i, \hat{E}_j] = 0$ for all $1 \leq i, j \leq m$, and it is easily seen that this can happen only when m = 1. We now generalize this result to pinched-Riemannian manifolds.

Let S be a positive real number. A Riemannian manifold N is said to be positively (negatively) S-pinched at a point $y \in N$ if there exists a positive real number L such that $LS < K_y(\sigma) \leq L(-L \leq K_y(\sigma) < -LS)$ for any 2-dimensional subspace σ of T_yN . N is said to be positively (negatively) S-pinched if it is positively (negatively) S-pinched at each point $y \in N$.

THEOREM 1. Let N be a positively 1/4-pinched Riemannian manifold. If $\varphi: M^m \to N$ is a (1,1)-geodesic isometric immersion, then m = 1.

THEOREM 2. Let N be a negatively 1/4-pinched Riemannian manifold. If $\varphi: M^m \to N$ is a minimal isometric immersion, then m = 1.

To prove Theorems 1 and 2 we need the following lemma:

LEMMA 1. Let N be a Riemannian manifold whose sectional curvatures satisfy one of the following inequalities:

i)
$$-1 \leq K(\sigma), -1/4,$$

ii)
$$(1/4) < K(\sigma) \leq 1$$
.

Then if X, Y, Z, W is a local orthonormal frame field the following inequality holds:

$$|\langle R(X, Y)Z, W\rangle| \leq \frac{1}{2}.$$

PROOF OF LEMMA 1. Assume (i) holds. By polarization we get

(4)
$$-16 \leq \langle R(X+Z, Y+W)(X+Z), Y+W \rangle + + \langle R(X-Z, Y-W)(X-Z), Y-W \rangle + + \langle R(-X+Y, W+Z)(-X+Y), W+Z \rangle +$$

Isometric immersions of Kähler manifolds

$$\begin{aligned} + \langle R(X+Y, W-Z)(X+Y), W-Z \rangle &= \\ &= 4 \langle R(X, W)X, W \rangle + 4 \langle R(Y, Z)Y, Z \rangle + 2 \langle R(X, Y)X, Y \rangle + \\ &+ 2 \langle R(Z, W)Z, W \rangle + 2 \langle R(X, Z)X, Z \rangle + 2 \langle R(Y, W)Y, W \rangle + \\ &+ 12 \langle R(X, W)Z, Y \rangle < -4 \end{aligned}$$

Therefore from the left-hand side inequality we have

(5)
$$8 + 2\langle R(X, W)X, W \rangle + 2\langle R(Y, Z)Y, Z \rangle + \langle R(X, Y)X, Y \rangle + \langle R(Z, W)Z, W \rangle + \langle R(X, Z)X, Z \rangle + \langle R(Y, W)Y, W \rangle + 6\langle R(X, W)Z, Y \rangle \ge 0.$$

Replacing X by -X in the right-hand side of inequality (4) we get

(6)
$$-2 - 2\langle R(X, W)X, W \rangle - 2\langle R(Y, Z)Y, Z \rangle - \langle R(X, Y)X, Y \rangle - \langle R(Z, W)Z, W \rangle - \langle R(X, Z)X, Z \rangle - \langle R(Y, W)Y, W \rangle + 6\langle R(X, W)Z, Y \rangle > 0.$$

(5) and (6) lead to

$$6 + 12\langle R(X, W)Z, Y \rangle > 0$$
, or $\langle R(X, W)Z, Y \rangle > -\frac{1}{2}$

Now a similar procedure with Z replaced by -Z in all inequalities gives

$$6-12\langle R(X,W)Z,Y\rangle > 0$$
, or $\langle R(X,W)Z,Y\rangle > -\frac{1}{2}$.

PROOF OF THEOREMS 1 AND 2. If necessary normalizing the metric we can assume, without loss of generality, that L = 1.

If φ is (1,1)-geodesic in the case of Theorem 1, or if φ is minimal in the case of Theorem 2, we know from (2) that, for $1 \leq i, j \leq m$

$$\begin{split} 0 &= \sum_{i=1}^{m} \left\langle R^{N}(E_{i}, E_{j}) E_{-i}, E_{-j} \right\rangle = \\ &= \sum_{i=1}^{m} \left\{ \left\langle R(e_{i}, e_{j}) e_{i}, e_{j} \right\rangle + \left\langle R(Je_{i}, Je_{j}) (Je_{i}), Je_{j} \right\rangle + \left\langle R(Je_{i}, e_{j}) (Je_{i}), e_{j} \right\rangle + \\ &+ \left\langle R(e_{i}, Je_{j}) e_{i}, Je_{j} \right\rangle - 2 \left\langle R(Je_{i}, Je_{j}) e_{i}, e_{j} \right\rangle + 2 \left\langle R(Je_{i}, e_{j}) e_{i}, Je_{j} \right\rangle \} = \end{split}$$

Maria Joáo Ferreira - Marco Rigoli - Renato Tribuzy

$$=\sum_{i=1}^{m}\left\{\left\langle R(e_i, e_j)e_i, e_j\right\rangle + \left\langle R(Je_i, Je_j)(Je_i)Je_j\right\rangle + \left\langle R(Je_i, e_j)(Je_i), e_j\right\rangle + \left\langle R(e_i, Je_j)e_i, Je_j\right\rangle + 2\left\langle R(Je_i, e_i)e_j, Je_j\right\rangle\right\},$$

where we have used the Bianchi identity.

Now the hypothesis of Theorem 1 (2) implies that

$$\sum_{i=1}^{m} \langle R^{N}(E_{i}, E_{j}) E_{-i} E_{-j} \rangle > 0 \quad (<0)$$

which cannot happen. Then m must be 1.

3. Minimal isometric immersions into conformally flat Riemannian manifolds.

Riemannian manifolds with constant sectional curvature are very special examples of conformally flat Riemannian manifolds.

A Riemannian manifold (N, h) is said to be conformally flat if there exists a smooth function $f: N \to \mathbb{R}$ such that $(N, e^{2f}h)$ is flat.

The main invariant under conformal changes of the metric is the Weyl curvature tensor W. The vanishing of W completely characterizes the conformally flat Riemannian manifolds.

For each $x \in N$ we denote by $\mathcal{C}_x(n)$ the subspace of $(\Lambda^2 T^x N)$ consisting of «curvature like» tensors: that means those tensors satisfying the Bianchi identity. The action of O(n) $(n = \dim N)$ on $\mathcal{C}_x(N)$ gives rise to the following decomposition into irreducible subspaces

$$\mathcal{C}_x(N) = \mathcal{U}_x(N) \oplus \mathcal{R}_x(N) \oplus \mathcal{W}_x(N),$$

where $\mathcal{U}_x(N) = \mathbb{R}Id_{A^2T^*N}$ and $R_x(N)$ is formed by the "Ricci traceless" tensors, that is, those tensors θ whose Ricci contraction $c(\theta)$ $(c(\theta)(x, y) = \operatorname{trace} \theta(x, \cdot, y, \cdot))$ vanishes. The orthogonal complement $\mathfrak{W}_x(N)$ of $\mathcal{U}_x(N) \oplus R_x(N)$ is called the space of Weyl tensors. The Weyl tensor of a Riemannian manifold is the Weyl part of its curvature tensor.

It is an easy matter to verify that the Riemannian curvature tensor of a conformally flat Riemannian manifold N with Ricci curvature Ricci^N and normalized scalar curvature S(N) = 1/n trace Ricci^N is given by

(7)
$$\langle R^N(X, Y)Z, W \rangle = \frac{1}{n-2} \{ \langle X, Z \rangle \operatorname{Ricci}^N(Y, W) +$$

 $\langle Y, W \rangle \operatorname{Ricci}^{N}(X, Z) - \langle X, W \rangle \operatorname{Ricci}^{N}(Y, Z) - \langle Y, Z \rangle \operatorname{Ricci}^{N}(N, W) \} -$

$$-\frac{nS(N)}{(n-1)(n-2)}\left\{\langle X,Z\rangle\langle Y,W\rangle-\langle X,W\rangle\langle Y,Z\rangle\right\}.$$

30

In this section we analyse the existence of minimal isometric immersions into certain conformally flat Riemannian manifolds.

As above M^m will represent a Kähler manifold with complex dimension m. We shall use the following notation

$$\begin{split} r &= \inf_{\substack{x \in M \\ \|v\|_x = 1}} \operatorname{Ricci}_x^N(v, v), \qquad R = \sup_{\substack{x \in M \\ \|v\|_x = 1}} \operatorname{Ricci}_x^N(v, v), \\ s &= \inf_{x \in M} S(N)_x \quad \text{and} \quad S = \sup_{x \in M} S(N)_x \,. \end{split}$$

THEOREM 3. Let N be a conformally flat Riemannian manifold with positive scalar curvature such that r/S > n/2(n-1).

If $\varphi: M^m \to N$ is a (1,1)-geodesic isometric immersion, then m = 1.

THEOREM 4. Let N be a conformally flat Riemannian manifold with negative scalar curvature such that R/s > n/2(n-1).

If $\varphi: M^m \to N$ is a minimal isometric immersion, then m = 1.

COROLLARY 1. Let N be a conformally flat Riemannian manifold such that $nA/2(n-1) < \text{Ricci}^N \leq A$ for some positive real number A. If $\varphi: M^m \to N$ is a (1,1)-geodesic isometric immersion, then m = 1.

COROLLARY 2. Let N be a conformally flat Riemannian manifold such that $-A \leq \text{Ricci}^N < -(n/2(n-2))A$ for some positive real number A.

If m > 1 there does not exist minimal isometric immersions from M^m into N.

REMARK. If N has non-zero constant sectional curvature, r/S = R/s = 1.

PROOF OF THEOREM 3. Assuming that $\varphi: M^m \to N$ is (1,1)-geodesic, we obtain from eq. (2)

$$\langle R^N(E_i, E_j) E_{-i}, E_{-j} \rangle = 0.$$

On the other hand, if m > 1, taking $i \neq j$ we conclude from (7) that

$$\begin{split} \langle R^{N}(E_{i}, E_{j}) E_{-i}, E_{-j} \rangle &= \\ &= \frac{1}{n-2} \left\{ \text{Ricci}^{N}(E_{i}, E_{-i}) + \text{Ricci}^{N}(E_{j}, E_{-j}) \right\} - \frac{nS(N)}{(n-1)(n-2)} = \\ &= \frac{1}{2(n-2)} \left\{ \text{Ricci}^{N}(e_{i}, e_{j}) + \text{Ricci}^{N}(Je_{i}, Je_{j}) + \text{Ricci}^{N}(e_{j}, e_{j}) + \right. \\ &\quad + \left. \text{Ricci}^{N}(Je_{j}, Je_{j}) \right\} - \frac{S(N)}{n-2} \ge \frac{1}{n-2} \left\{ 2r - \frac{S(n)}{n-1} \right\} > 0 \,, \end{split}$$

which is a contradiction.

PROOF OF THEOREM 4. If φ is minimal, eq. (2) establishes that

$$\sum_{i=1}^m \langle R^N(E_i, E_j) E_{-i}, E_{-j} \rangle \geq 0.$$

But from (7)

$$\begin{split} \sum_{i=1}^{m} \langle R^{N}(E_{i}, E_{j}) E_{-i}, E_{-j} \rangle &= \\ &= \frac{1}{n-2} \left\{ (m-2) \operatorname{Ricci}^{N}(E_{j}, E_{j}) + \sum_{i=1}^{m} \operatorname{Ricci}^{N}(E_{i}, E_{i}) \right\} - \\ &- \frac{m-1}{n-2} \frac{nS(N)}{(n-1)(n-2)} \leq \frac{m-1}{n-2} \left\{ 2r - \frac{nS}{n-1} \right\}, \end{split}$$

which can only happen if m = 1.

4. Holomorphicity of minimal isometric immersion into a complex Grassmannian.

Dacjzer and Thorbergson have studied in [D-R] minimal isometric immersions into a complex space form $\mathbb{C}Q_c$ with non-zero constant holomorphic sectional curvature c. Their result states that if m > 1, c > 0(< 0) and $\varphi: M^m \to \mathbb{C}Q_c$ is a (1,1)-geodesic (minimal) isometric immersion, then φ is \pm holomorphic.

Regarding $\mathbb{C}P^n$ as the complex Grassmannian manifold of complex 1-planes we extend these results to isometric immersions into a

32

complex Grassmannian (respectively to its dual symmetric manifold of non-compact type).

We let $G_p(\mathbb{C}^n)$ denote the Grassmannian manifold of *p*-dimensional complex subspaces of \mathbb{C}^n . The action of the unitary group U(n) on $G_p(\mathbb{C}^n)$ endows $G_p(\mathbb{C}^n)$ with the structure of a Hermitian symmetric space isometric to $U(n)/U((p) \times (n-p))$. In particular, $G_p(\mathbb{C}^n)$ is a Kähler manifold. We represent by $H_p(\mathbb{C}^n)$ its dual symmetric space of non-compact type $U(p, n-p)/U((p) \times U(n-p))$, where U(p, n-p)is the group of matrices in $Gl(\mathbb{C}^n)$ which leave invariant the Hermitian form $-Z_1, \overline{Z_1} - \ldots - Z_p \overline{Z_p} + Z_{p+1} \overline{Z_{p+1}} + \ldots + Z_n \overline{Z_n}$.

THEOREM 5. Let $\varphi: M^m \to G_p(\mathbb{C}^n)$ be a (1,1)-geodesic isometric immersion. If m > (p-1)(n-p-1)+1, then φ is \pm holomorphic.

THEOREM 6. Let $\varphi: M^m \to H_p(\mathbb{C}^n)$ be a minimal isometric immersion. If m > (p-1)(n-p-1)+1, then φ is \pm holomorphic.

REMARKS. 1) When p = 1 we get Theorems A and B of [D-T].

2) As an easy consequence of Theorems 5 and 6 we also get Theorem 1.2 of [D-R] which asserts that for Riemannian manifolds with constant sectional curvature c > 0 (< 0) the only (1,1)-geodesic (minimal) isometric immersions are the minimal immersions from a Riemann surface.

In fact, let Q_c be a Riemannian manifold with constant sectional curvature c. Assume, for instance, that c > 0 and m > 1. Without loss of generality we can assume Q_c is simply connected, hence isometric to S^n . Therefore, since there exists a totally geodesic immersion from S^n to $\mathbb{C}P^n$, a (1,1)-geodesic immersion $\varphi: M^m \to Q_c$ would originate a (1,1)-geodesic immersion $\tilde{\varphi}: M^m \to \mathbb{C}P^n$. This cannot happen, since $\tilde{\varphi}$ would be simultaneously holomorphic and totally real. The case c < 0 is analogous.

PROOF OF THEOREM 5 AND 6. Let $\mathcal{U}(k)$ represent the Lie algebra of U(k), $N = G_p(\mathbb{C}^n)$ and q = n - p.

At some point $y = \varphi(x)$ we identify $T_y N$ with the orthogonal complement \mathscr{P} of $\mathcal{U}(p) \times \mathcal{U}(q)$ in $\mathcal{U}(n)$ with respect to the Killing-Cartan form of U(n). Let $\mathscr{P}^{\mathbb{C}}$ denote the complexification of \mathscr{P} .

Under this identification we obtain from (2)

 $\langle R^N(E_i, E_j) E_{-i}, E_{-j} \rangle_y = \langle [E_i, E_j], [E_{-i}, E_{-j}] \rangle = \langle [E_i, E_j], \overline{[E_i, E_j]} \rangle = 0 .$

Therefore, we conclude that $d\varphi(x)(T^{1,0}M) = W$ is an Abelian isotropic subspace of $\mathscr{P}^{\mathbb{C}}$. We remark that

$$\mathcal{P}^{\mathbb{C}} = \begin{cases} \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} : & A \text{ and } B \text{ are respectively } p \times q \\ & \text{and } q \times p \text{ complex matrices} \end{cases}$$

N is a Kähler manifold. It is easily seen that, under the above identification, the type decomposition of $T_y N$ gives rise to the splitting

$$\mathscr{P}^{\mathbb{C}} = \mathscr{P}^+ \oplus \mathscr{P}^- \cong T_u^{\mathbb{C}} N,$$

where

$$\mathcal{P}^{+} = \left\{ \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \in \mathcal{P}^{\mathbb{C}} \colon B = 0 \right\} \cong T_{y}^{1, 0} N$$

and

$$\mathcal{P}^- = \left\{ \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \in \mathcal{P}^{\mathbb{C}} \colon A = 0 \right\} \cong T_y^{0, 1} N \,.$$

Clearly, if φ is holomorphic (respectively -holomorphic) $W \subset \mathscr{P}^+$ (respectively $W \subset \mathscr{P}^-$). It is also a well-known fact that \mathscr{P}^+ and \mathscr{P}^- are Abelian subspaces of $\mathscr{P}^{\mathbb{C}}$.

Theorem 5 is now a direct consequence of the next lemma. By duality we obtain Theorem 6 in the same way.

LEMMA 1. If $\dim_{\mathbb{C}} W > (p-1)(q-1) + 1$, then $W \in \mathcal{P}^+$ or $W \in \mathcal{P}^-$.

PROOF. We assume that $W \notin \mathcal{P}^+$ and $W \notin \mathcal{P}^-$ and prove that $\dim_{\mathbb{C}} W \ge (p-1)(q-1)+1$.

We shall consider two cases:

Case 1. – $W \cap \mathcal{P}^- \neq \emptyset$ or $W \cap \mathcal{P}^+ \neq \emptyset$.

Since the procedure is similar we only consider $W \cap \mathscr{P}^- \neq \emptyset$.

There exists, at least, one matrix $0 \neq X = \begin{bmatrix} 0 & 0 \\ B_X & o \end{bmatrix} \in W$ where B_X is a $q \times p$ complex matrix and $Y = \begin{bmatrix} 0 & A_Y \\ B_Y & o \end{bmatrix}$ where A_Y is a non-zero $p \times q$ complex matrix.

Now [X, Y] = 0 implies that

$$\begin{cases} A_Y B_X = 0 , \\ B_X A_Y = 0 . \end{cases}$$

We can assume without loss of generality that $p \leq q$. From $B_X A_Y = 0$ we see that the rank of B_X is strictly smaller than p, otherwise A_y would be identically zero.

Let

$$k = \max \left\{ \operatorname{rank} B_X \colon X = \begin{bmatrix} 0 & 0 \\ B_X & 0 \end{bmatrix} \in W \right\}$$

and take

$$X_0 = egin{bmatrix} 0 & 0 \ B_{X_0} & 0 \end{bmatrix} \in W \quad ext{ with rank } B_{X_0} = k \ .$$

Since the metric of \mathscr{P} is invariant by the action of $U(p) \times U(q)$, without loss of generality we can asume that $B_{X_0} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$, where I is a diagonal non-singular matrix.

We consider the subspaces

$$W_1 \left\{ X = \begin{bmatrix} 0 & A_X \\ B_X & 0 \end{bmatrix} \in W: A_X = 0 \right\}$$

and

$$W_2 = \left\{ X = \begin{bmatrix} 0 & A_X \\ B_X & 0 \end{bmatrix} \in W \colon A_X \neq 0 \right\}$$

As we can see from the equations $A_X B_{X_0} = B_{X_0} A_X = 0$, for each $X \in W_2$, we must have $A_X = \begin{bmatrix} 0 & 0 \\ 0 & \tilde{A}_X \end{bmatrix}$, when \tilde{A}_X is a $l \times l$ matrix with $l \leq p = k$. Now let

 $r = \max \left\{ \operatorname{rank} \tilde{A_X} \colon X = \begin{bmatrix} 0 & A \\ B_X & 0 \end{bmatrix} \in W_2 \right\}$

and choose

$$X_1 = \begin{bmatrix} 0 & A_{X_1} \\ B_{X_1} & 0 \end{bmatrix} \in W_2 \qquad \text{such that rank } \tilde{A}_{X_1} = r$$

If necessary changing W_1 and W_2 we can assume, without loss of generality, that this particular \tilde{A}_{X_1} is a diagonal nonsingular matrix. Again the equations $A_{X_1}B_X = B_XA_{X_1} = 0$ allow us to conclude that, for each $X = W_2$ we must have $B_X = \begin{bmatrix} \tilde{B}_X & 0 \\ 0 & 0 \end{bmatrix}$ where \tilde{B}_X is a $(p-r) \times (q-r)$ matrix. Thus

 $\dim_{\mathbb{C}} W = \dim_{\mathbb{C}} W_1 + \dim_{\mathbb{C}} W_2 \leq$

$$\leq (p-r) \times (q-r) + r^2 \leq (p-1)(q-1) + 1$$
,

since $1 \le r \le p-1$. The equality $(p-r)(q-r) + r^2 = (p-1)(q-1) + 1$ is attained when r = 1.

Case 2. – Assume now that $W \cap \mathcal{P}^+ = \phi$ and $W \cap \mathcal{P}^- = \phi$. For each $l \times s$ complex matrix $C = (c_{ij})$ we let C_1, \ldots, C_l denote the lines of C and C^1, \ldots, C^s its columns.

First notice that if there exist two linearly independent elements

$$X = \begin{bmatrix} 0 & A_X \\ B_X & 0 \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} 0 & A_Y \\ B_Y & 0 \end{bmatrix} \quad \text{in } W$$

with $(A_X)_1 = ... = (A_X)_{p-1} = 0$ and $(A_Y)_1 = ... = (A_Y)_{p-2} = 0$ we shall have $B_X^p = B_Y^p = 0$. Indeed, from [X, Y] = 0 we get that for *i*, $j \in \{1, ..., q\}$,

$$b(X)_{ip} a(Y)_{pj} = b(Y)_{ip} a(X)_{pj}$$
,

so that if $B_X^p \neq 0$, there exists $1 \leq i \leq q$ such that $X = (b(Y)_{ip}/b(X)_{ip})$ $Y \in \mathcal{P}^-$ which cannot happen.

Using an inductive argument we conclude that we can only have two alternative situations:

A) There exists one and only one element $X = \begin{bmatrix} 0 & A_X \\ B_X & 0 \end{bmatrix} \in W$ such that $(A_X)_1 = \ldots = (A_X)_{p-1} = 0$.

B) There exists $1 \le j \le p-1$ such that in W there is no element $X = \begin{bmatrix} 0 & A_X \\ B_X & 0 \end{bmatrix}$ with $(A_X)_2 = \dots = (A_X)_j = 0$ and $(A_X)_{j+1} \ne 0$.

Suppose A holds. Then there exist at most (q-1) linearly independent elements $Y = \begin{bmatrix} 0 & A_Y \\ B_Y & 0 \end{bmatrix}$ in W with $(A_Y)_1 = \dots = (A_Y)_{p-2} = 0$. In fact, for such Y_1 , $(A_Y)_{p-1}$ is a solution of the equation $\langle (A_Y)_{p-1}, (B_X^j)^T \rangle = 0$ $(1 \le k \le p)$. Moreover any other $Z = \begin{bmatrix} 0 & A_Z \\ B_Z & 0 \end{bmatrix} \in W$ is such that for any $1 \le k \le p-1$ $\langle (A_Z)_k, (B_X^j)^T \rangle = 0$. Therefore there exist at most (q-1)(p-1)+1 linearly independent elements in W. If B holds with a similar reasoning we easily obtain that $W \le p \le 1$.

If B holds with a similar reasoning we easily obtain that $W \cong (p-1)(q-1) + 1$ as well.

REMARKS. In the same way other bounds on the dimension of M^m , can be obtained preventing the existence of non-holomorphic (1, 1)-geodesic (respectively minimal for the non-compact case) isometric immersion into other classical irreducible Hermitian symmetric manifolds. For instance if N is the complex quadric $Q_c \subset \mathbb{C}P^{n+1}$ isometric to $SO(n + 2)/(SO(2) \times SO(n))$ (respectively $SO(2, n)/(SO(2) \times SO(n))$) we can prove analogously that if m > 2 and $\varphi: M^m \to N$ is a (1, 1)-geodesic (respectively minimal) isometric immersion, the φ is \pm holomorphic.

The authors were informed that Ohnita and Udagawa[O-U] have obtained this result using different methods.

In a forthcoming paper we analyse the minimal isometric immersions from a Kähler manifold into a real Grassmannian manifold.

Acknowledgments. – The authors would like to thank for hospitality at ther International Centre for Theoretical Physics, Trieste.

REFERENCES

- [B] BERGER M., Les variétés Riemanniennes 1/4-pince'es, Ann. Scuole Normal Sup. Pisa, 14 (1960), pp. 161-170.
- [D-R] DACJZER M. RODRIGUEZ L., Rigidity of real Kähler submanifolds, Duke Math. J., 53 (1986), pp. 211-220.
- [D-T] DACJZER M. THORBERGSON G., Holomorphicity of minimal submanifolds in complex space forms, Math. Ann., 277 (1987), pp. 353-360.
- [E-L] EELLS J. LEMAIRE L., Another report on harmonic maps, Bull. London Math. Soc., No. 86, 20 (1988), pp. 324- 385.
- [F-T] FERREIRA M. TRIBUZY T., Kählerian submanifolds of \mathbb{R}^n , preprint, ICTP, Trieste, No. IC/89/373.

- [H] HELGASON, Differential Geometry and Symmetric Spaces, Academic Press (1962).
- [K] KLINGENBERG W., Über Riemannsche Mannigfaltigreiten mit nach oben beschrannter krummung, Ann. Math. Pure Appl., 60 (1962), pp. 49-59.
- [L] LAWSON H. B., Lectures in Minimal Submanifolds, Publish or Perish (1980).
- [O] OHNITA Y., On pluriharmonicity of stable harmonic maps, to appear in London Math. Soc.
- [O-U] OHNITA Y. UDAGAWA S., Complex-Analyticity of Pluriharmonic Maps and their Constructions, Springer Lecture Notes in Mathematics, 1968 (1991).
- [R-T] RIGOLI M. TRIBURZY R., The Gauss map for Kählerian submanifolds of \mathbb{R}^n , to appear in T.A.M.S.
- [T] TAKAHASHI, Minimal immersions of Riemannian manifolds, J. M. Soc. Japan, 18 (1986), pp. 380-385.

Manoscritto pervenuto in redazione il 13 gennaio 1992.