Rendiconti

SEMINARIO MATEMATICO

 della
Università di Padova

Ulrich F. Albrecht

H. Pat Goeters

Charles Megibben
Zero-one matrices with an application to abelian groups
Rendiconti del Seminario Matematico della Università di Padova, tome 90 (1993), p. 17-24
http://www.numdam.org/item?id=RSMUP_1993__90__17_0
© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

Zero-One Matrices with an Application to Abelian Groups.

Ulrich F. Albrecht - H. Pat Goeters - Charles Megibben (*)

Summary - An $n \times n$ matrix E is called a 0,1 -matrix if each entry of E is either a
0 or a 1 . In this case we can view E as either an integer valued matrix, or a matrix over Z_{2}, the integers mod 2. Matrices of this type, enjoying other properties as well, have recently cropped up in the study of torsion-free abelian group theory. Our aim is to study properties of these matrices in a setting unencumbered by this group theory. As a consequence we are able to answer a question posed in [FM].

1. A 0,1 -matrix E is called admissible in [FM] provided $\left|E_{k}\right|=$ $=\operatorname{det} E_{k} \neq 0$ for each k, where E_{k} is E with its $k^{\text {th }}$ colums replaced by the vector $\overline{1}$ containing only 1 's. We will say that F is equivalent to E if one can complement (by interchanging 1's and 0's) certain columns of E to get F. It is easy to check that admisibility is preserved under this equivalence. This is because if E^{\prime} is equivalent to E after the $i^{\text {th }}$ column only of E was complemented, then $\left|E_{j}^{\prime}\right|=-\left|E_{j}\right|$ when $j \neq i$, and $\left|E_{i}^{\prime}\right|=\left|E_{i}\right|$. The admissible matrices play a significant role in abelian group theory, a role which will be summarized in the second section.

We will consider two conditions imposed on a matrix E over Z_{2} :
(α) Each row sum of E, computed in Z_{2}, is the same, and
(β) E is equivalent to an invertible matrix over Z_{2}.
Clearly, both conditions are preserved under our equivalence relation. We will compare these conditions to the property of being admis-
(*) Indirizzo degli AA.: U. F. Albrecht and H. P. Goeters: Mathematics Department, 228 Parker Hall, Auburn University, Alabama 36849; C. Megibben: Mathematics Department, Venderbilt University, Nashville, Tennessee 37240.
sible. We will call a matrix E over Z_{2}, admissible $\bmod 2$, if for all k the Z_{2}-determinant of $E_{k},\left|E_{k}\right|_{2}$, is not zero where E_{k} is as defined above. Of course, if E is admissible $\bmod 2$ then E is admissible when viewed as a matrix with integer entries.

Proposition 1. Let E be an $n \times n$ matrix over Z_{2} and E^{*} the classical adjoint of E (over Z_{2}). Then E is admissible mod 2 if and only if $E^{*} \overline{1}=\overline{1}$.

Proof. The $k^{\text {th }}$ entry of $E * \overline{1}$ is $M_{1 k}+M_{2 k}+\ldots+M_{n k}$ where $M_{i k}=$ $=i, k^{\text {th }}$ cofactor ($=$ minor) of E. But this sum is just the cofactor expansion of $\left|E_{k}\right|_{2}$ along its $k^{\text {th }}$ column. Hence, $\left|E_{k}\right|_{2}=1$, (i.e. $\left|E_{k}\right|_{2} \neq 0$) for all k if and only if $E^{*} \overline{1}=\overline{1}$.

We will show that E satisfies both (α) and (β) if and only if E is admissible $\bmod 2$. In case E satisfies (α) we often refer to E as having row parity. Clearly E has row parity if and only if $\overline{1}$ is an eigenvector for E over Z_{2}. In case $E \overline{1}=\overline{0}, E$ has even row parity, and if $E \overline{1}=\overline{1}$, then E has odd row parity. We will use \bar{n} to denote $\{1,2, \ldots, n\}$ when no confusion is possible.

Theorem 2. E is admissible mod 2 if and only if (α) and (β) hold for E.

Proof. The $j^{\text {th }}$ column of E is the characteristic function on some index set $I \subseteq \bar{n}$. As such we will call the support of the $j^{\text {th }}$ column of E, I.

If E is admissible mod 2 and I is the support of the $1^{\text {st }}$ column of E, let E^{\prime} be the matrix resulting from complementing the $1^{\text {st }}$ column of E. Then, the support of the $1^{\text {st }}$ column of E^{\prime} is $I^{\prime}=\bar{n} \backslash I$. By performing cofactor expansion of $\left|E_{1}\right|_{2},|E|_{2}$ and $\left|E^{\prime}\right|_{2}$ along their first columns, we see that $\left|E_{1}\right|_{2}=1=|E|_{2}+\left|E^{\prime}\right|_{2}$. If $|E|_{2}=0$ then $\left|E^{\prime}\right|_{2}=1$ so that E is equivalent to an invertible matrix. Also, by Proposition 1, $E E^{*} \overline{1}=E \overline{1}=(\operatorname{det} E) \overline{1}$, so that E has row parity.

Conversely, it is enough to assume that \underline{E} is invertible. From this and because of $(\alpha), E \overline{1}=\overline{1}$. Then $E^{*} E \overline{1}=E^{*} \overline{1}=(\operatorname{det} E) \overline{1}=\overline{1}$, and E is admissible mod 2 by Proposition 1.

Example 3. It can be checked that $E=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$ is admissible, but E does not have row parity so it is not admissible $\bmod 2$.

Row parity is easily checked. Any $n \times n 0,1$-matrix E is equivalent
to a matrix $E^{\prime}=\left[\begin{array}{cc}1 & 0 \\ I & F\end{array}\right]$ where F is an $(n-1) \times(n-1) 0$, 1-matrix and $I \in Z_{2}^{n-1}$. Hence to check that (β) holds for E we need only compute $|F|_{2}$, which is clearly preferable to the computation of n determinants for admissiblity $\bmod 2$.

LEMMA 4. There are $\prod_{j=0}^{m-1}\left(2^{m}-2^{j}\right)$ invertible $m \times m$ matrices over

Proof. To form an invertible $m \times m$ matrix, we must select $X_{1} \in Z_{2}^{m} \backslash\{0\}$ for the first column, $X_{2} \in Z_{2}^{m} \backslash \operatorname{span}\left\{X_{1}\right\}$ for the second, $X_{3} \in Z_{2}^{m} \backslash \operatorname{span}\left\{X_{1}, X_{2}\right\}$ for the third, and so on. There are $\left(2^{m}-1\right) \cdot$ $\cdot\left(2^{m}-2\right) \ldots\left(2^{m}-2^{m-1}\right)$ ways for this selection to occur.

It is desiderable to know just how many admissible mod 2 matrices there are. Let $\mathcal{E}=\{E \mid E$ is $n \times n$, admissible $\bmod 2$ and invertible $\}$. Since $\mathcal{\delta}$ is finite and is closed under multiplication, \mathcal{E} is a group. Let \mathscr{F} be the subgroup of \mathcal{E} consisting of those $E \in \mathcal{E}$ with $E=\left[\begin{array}{ll}1 & 0 \\ I & F\end{array}\right]$, as
above.

THEOREM 5. (i) $|\mathscr{F}|=\prod_{j=0}^{n-2}\left(2^{n-1}-2^{j}\right)$.
(ii) $|\delta|=2^{n-1} \prod_{j=0}^{n-2}\left(2^{n-1}-2^{j}\right)$.
(iii) There are $2^{n} \prod_{j=0}^{n-2}\left(2^{n-1}-2^{j}\right)$ admissible $\bmod 2$ matrices.

Proof. Any $E \in \mathscr{F}$ can be expressed as $E=\left[\begin{array}{ll}1 & 0 \\ I & F\end{array}\right]$ with F an $(n-1) \times(n-1)$ invertible matrix uniquely determined by E. Since E has row parity, $I+F \overline{1}=\overline{1}$, since the first row of E has parity 1 , so that $I=(F \overline{1})^{\prime}$ (the complement of $F \overline{1}$) is determined by F. Conversely, any $(n-1) \times(n-1)$ invertible matrix F determines the matrix $\left[\begin{array}{ll}1 & 0 \\ I & F\end{array}\right] \in \mathscr{F}$ where $I=(F 1)^{\prime}$, so the computation of $|\mathfrak{F}|$ follows from lemma 4.

Any $E \in \mathcal{E}$ is equivalent to a matrix in \mathscr{F}. Now suppose that $E \in \mathscr{F}$, and that E^{\prime} is a matrix equivalent to E as the result of complementing the $j^{\text {th }}$ column (only) of E. An in the proof of Theorem $2,1=|E|_{2}+$ $+\left|E^{\prime}\right|_{2}$ so that $E^{\prime} \notin 8$. If $E^{\prime \prime}$ is matrix resulting from complimenting only one column of E^{\prime}, then as before $\left|E^{\prime \prime}\right|_{2}+\left|E^{\prime}\right|_{2}=1$ and $E^{\prime \prime} \in \mathcal{E}$. It fol-
lows that if $E^{(s)}$ results from E by complimenting some s columns of E, then $E^{(s)} \in \mathcal{E}$ if and only if s is even.

Let $a_{n}=$ number of subsets of $2^{\bar{n}}$ containing an even number of elements. We hage just shown that $|\varepsilon|=a_{n}|\mathscr{F}|$. Set $b_{n}=2^{n}-a_{n}$, and define $\delta: 2^{\bar{n}} \rightarrow Z_{2}$ by letting $\delta(T)=$ remainder of $\operatorname{card}(T) \bmod 2$. Let $S+T$ denote the symmetric difference of S and T so that $2^{\bar{n}}$ is an abelian group under + . Since $\operatorname{card}(S+T)=\operatorname{card}(S)+$ $+\operatorname{card}(T)-2 \operatorname{card}(S \cap T), \delta(S+T)=\delta(S)+\delta(T)$ and δ is a homomorphism. Hence $a_{n}=b_{n}=2^{n} / 2=2^{n-1}$.

If ε^{\prime} is the set of admissible mod 2 matrices with zero determinant, then the map sending $E \in \mathcal{E}$ to the matrix E^{\prime} formed by complimenting the first column of E, is a bijection. Thus, there are $2|\delta|$ admissible $\bmod 2$ matrices.
2. In this section we will attempt to convey the role that the matrices $E \in \mathcal{E}$ play in abelian group theory without involving the group theory.

The use of admissible matrices in classifying a certain class of Butlwe groups (specifically, the $B(1)$-groups) was initiated in [FM], and investigated further in [GM]. Other results concerning the same class of groups were obtained earlier in [AV] and [Ri]. For a deeper involvement of the group theory, see the listed references.

The set of isomorphism classes of subgroups of the rationals form a distributive lattice Δ. Moreover, any finite distributive lattice T is isomorphic to a sublattice of Δ ([R] or [GU]). Let us fix an isomorphism. Then for any collection $\tau_{1}, \ldots, \tau_{n} \in T$, the n-tuple $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ determines a certain abelian group $G=G\left[\tau_{1}, \ldots, \tau_{n}\right]$. The description of G is not relevant here but the interested reader should consult the cited references (in fact, G is only determined up to quasi-isomorphism: see below).

Given an n-tuple $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ with $\tau_{i} \in T$, and a 0,1 -matrix E we can let E operate on τ as follows: Set $\tau_{I}=\bigwedge_{i \in I} \tau_{i}$ for any $\phi \neq I \subseteq \bar{n}$. If I_{i} is the support of the $i^{\text {th }}$ column of E, define $\tau E=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ where $\sigma_{i}=$ $=\tau_{I_{i}} \vee \tau_{I_{i}^{\prime}}$ and $I_{i}^{\prime}=\bar{n} \backslash I_{i}$.

We will now summarize some of the results concerning the groups $G\left[\tau_{1}, \ldots, \tau_{n}\right]$ in terms of τ and our operation τE. Two abelian groups G and H are called quasi-isomorphic if each is isomorphic to a subgroup of finite index in the other, in which case we write $G \sim H$.

THEOREM 6. Let $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with τ_{i}, σ_{j}, $\in T$ for all i, j. Furthermore, assume that $\tau \nless \tau_{I} \vee \tau_{I^{\prime}}$ for any proper $I \subset \bar{n}$ except $I=\{i\}$ or $\{i\}^{\prime}$, and $\sigma_{j} \nLeftarrow \sigma_{J} \vee \sigma_{J^{\prime}}$, for any proper $J \subset \bar{n}$ except, $J=\{j\}$ or $\{j\}^{\prime}$. Let $G=G\left[\tau_{1}, \ldots, \tau_{n}\right]$ and $H=G\left[\sigma_{1}, \ldots, \sigma_{n}\right]$.
(1) [FM] $G \sim H$ if and only if $\tau E \geqslant \sigma$, and $\sigma F \geqslant \tau$ for some admissible matrices E and F
(2) [GM] $G \sim H$ if and only if $\tau E \geqslant \sigma$ and $\sigma F \geqslant \tau$ for some matrices E and F which are admissible mod 2. In this case, if we choose $E \in \&$, then $F=E^{-1}$ works.

Given $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ and $G=G\left[\tau_{1}, \ldots, \tau_{n}\right]$, we will say that τ is strongly indecomposable if $\tau_{i} \ngtr \tau_{I} \vee \tau_{I^{\prime}}$ for all $0 \neq I \subseteq \bar{n}$ except $I=\{i\}$ or $\{i\}^{\prime}$ for each i. Following [FM], τ will be called regular if $\tau_{i}=\tau_{i} \bigvee$ $\vee \bigwedge_{j \neq i} \tau_{j}$ for each i, so that $\tau_{i}=\tau_{I} \vee \tau_{I^{\prime}}$ when $I=\{i\}$ or $\{i\}^{\prime}$. Assuming that τ is regular and strongly indecomposable, they say that $\sigma=$ $=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is a representation type of G if σ is regular, strongly indecomposable, they say that $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is a representation type of G if σ is regular, strongly indecomposable, and $G\left[\tau_{1}, \ldots, \tau_{n}\right] \sim$ $\sim G\left[\sigma_{1}, \ldots, \sigma_{n}\right]$. By Theorem 6(2), and a mild computation, we may replace this last condition with the condition that $\tau E=\sigma$ and $\sigma F=\tau$ for two admissible mod 2 matrices E and F.

Two representation types $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ are called equivalent if $\sigma=\left(\gamma_{f(1)}, \ldots, \gamma_{f(n)}\right)$ for some f in the permutation group S_{n}. Fuchs and Metelli ask for an upper bound on the number of nonequivalent representation types of $G\left[\tau_{1}, \ldots, \tau_{n}\right]$ given $\tau=$ $=\left(\tau_{1}, \ldots, \tau_{n}\right)$, in terms on n (problem 3 in [FM]).

THEOREM 7. Let $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ be strongly indecomposable and regular and let $G=G\left[\tau_{1}, \ldots, \tau_{n}\right]$. There are at most $\prod_{i=0}^{n-2}\left(2^{n-1}-2^{i}\right) / n$! nonequivalent representation types of G.

Proof. Let \mathscr{R}_{τ} denote the collection of representation types of G. If $\sigma \in \mathscr{R}_{\tau}$ then $\sigma=\tau E$ for some admissible $\bmod 2$ matrix E. If I is the support of the $i^{\text {th }}$ column of E and E^{\prime} is formed by complementing the $i^{\text {th }}$ column of E, then the support of the $i^{\text {th }}$ column of E^{\prime} is I^{\prime}, and for $\delta=\tau E^{\prime}$, and for $\delta=\tau E^{\prime}, \delta_{i}=\tau_{I^{\prime}} \bigvee \tau_{\left(I^{\prime}\right)^{\prime}}=\tau_{I} \vee \tau_{I^{\prime}}=\sigma_{i}$. Therefore we may assume that $E \in \mathcal{F}$, and theorem $5(\mathrm{i})$ implies that \mathscr{R}_{τ} has at most $\prod_{i=0}^{n-2}\left(2^{n-1}-2^{i}\right)$ members.

Let $\mathscr{P} \subseteq \mathcal{E}$ be the collection of all $n \times n$ permutation matrices. The assignment of $f \in S_{n}$ to $P_{f} \in \mathcal{P}$ whose $i, j^{\text {th }}$ entry is 1 if and only $f(j)=i$, is a group isomorphism. We will show that \mathscr{P} acts on \mathcal{R}_{τ}.

If $\sigma \in \mathscr{R}_{\tau}$, then $\sigma=\tau E$ for some $E \in \delta$. Set $\delta=\tau(E P)$ and $\mu=\sigma P$ for $P=P_{f} \in \mathscr{P}$. For each j, since σ is regular, $\mu_{j}=\sigma_{f(j)} \vee \sigma_{\{f(j)\}^{\prime}}=\sigma_{i} \vee$ $\vee \bigwedge_{k \neq i} \sigma_{k}=\sigma_{i}$ where $f(j)=i$. But if the $i^{\text {th }}$ column of E is I_{i}, then
$\delta_{j}=\tau_{I_{i}} \vee \tau_{I_{i}^{\prime}}=\sigma_{i}$, so $\delta=\sigma P=\left(\sigma_{f(1)}, \ldots, \sigma_{f(n)}\right)$. Note that δ is strongly indecomposable and regular, and that $\delta P^{-1}=\sigma$.

Now suppose that $\tau=\sigma F$ for some $F \in \mathcal{E}$. We must show that $\delta\left(P^{-1} F\right)=\tau=\left(\delta P^{-1}\right) F$. Let $\rho=\delta\left(P^{-1} F\right)$ and suppose that the support of the $k^{\text {th }}$ column if F is J_{k}. Now P^{-1} has a 1 in the $i, j^{\text {th }}$ entry if and only if $f^{-1}(j)=i$, so the support of the $k^{\text {th }}$ column of $P^{-1} F$ is $\left\{i \mid i=f^{-1}(j)\right.$ for some $\left.j \in J_{k}\right\}=f^{-1}\left(J_{k}\right)$. Hence $\rho_{k}=\delta_{f^{-1}\left(J_{k}\right)} \vee \delta_{f^{-1}\left(J_{k}\right)^{\prime} .}$ Also, $\tau=\left(\delta P^{-1}\right) F=\left(\delta_{f^{-1}(1)}, \ldots, \delta_{f^{-1}(n)}\right) F$ has $\tau_{k}=\bigwedge_{i \in J_{k}} \delta_{f^{-1}(i)} \vee \bigwedge_{i \in J_{k}} \delta_{f}^{-1}(i)=$ $=\delta_{f^{-1}\left(J_{k}\right)} \vee \delta_{f^{-1}\left(J_{k}\right)^{\prime}}=\rho_{k}$. Thus, if $\sigma P=\delta$, then $\delta\left(P^{-1} F^{\prime}\right)=\tau$ and $\tau(E P)=\delta$ so that $\delta \in \mathscr{R}_{\tau}$. If $P=P_{f}$ and $Q=P_{g}$ then mimicking the computation given above, we can show that $(\sigma P) Q=\sigma(P Q)=\left(\sigma_{g f(1)}, \ldots, \sigma_{g f(n)}\right)$ so that \mathscr{P} acts on \mathscr{R}_{τ}.

If $\sigma \in \mathscr{R}_{\tau}$ with $\sigma_{i} \leqslant \sigma_{j}$, and $i \neq j$, then $\sigma_{i} \leqslant \sigma_{j} \vee \bigwedge_{k \neq j} \sigma_{k}=\sigma_{\{j\}} \vee \sigma_{\{j\}^{\prime}}$, which contradicts the strong indecomposability of σ. Therefore, $\sigma P=\sigma$ for $P \in \mathscr{P}$ if and only if P is the identity matrix. Since \mathscr{P} acts on \mathscr{R}_{τ} and the orbit of σ is the equivalent class of σ which contains n ! representation types, there are $\left|\mathscr{R}_{\tau}\right| / n$! inequivalent representation types.

One could show that $\prod_{i=0}^{n-2}\left(2^{n-1}-2^{i}\right) / n!$ is an integer by looking at the representation \mathscr{P}_{0} of \mathscr{P} in \mathscr{F}. Then show that \mathscr{P}_{0} acts on \mathscr{F}. Clearly this bound is achieved if and only if τE is a representation type of τ for any $E \in \mathcal{E}$, which is an intrinsic property of T and does not depend, in general, solely on n. Of course when $n=3, \prod_{i=0}^{1}\left(2^{2}-2^{i}\right) / 6=1$ so the bound is tight in this case, regardless of T.

Example 8. Let $\tau_{1}=\{1,2,3\}, \tau_{2}=\{2,3,4\}, \tau_{3}=\{1,5,6\}$ and $\tau_{4}=\{4,5,6\}$ in $T=2^{\overline{6}}$ the power set of $\overline{6}$. It is easy to see that $\tau=$ $=\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)$ is regular and strongly indecomposable. However

$$
\left.\tau_{\{2,3\}} \vee \tau_{\{1,4\}}=(\{2,3,4\}) \cap\{1,5,6\}\right) \cup(\{1,2,3\} \cap\{4,5,6\})=\emptyset
$$

while $\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$ is the column of an admissible $\bmod 2$ matrix $E \in \mathscr{F}$. For
example, $E_{1}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$. But $\tau E_{1}=\sigma$ cannot be a representation
type of τ since $\sigma_{2} \leqslant \sigma_{i}$ for all i so σ cannot be strongly indecomposable. In this case, there are less than $\prod_{i=0}^{2}\left(2^{3}-2^{i}\right) / 24=7$ representation types of σ.

Three are 7 pertinent matrices from $\mathfrak{F}: E_{0}=$ identity,

$$
\begin{gathered}
E_{1}, E_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad E_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], \\
E_{5}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right], \quad E_{6}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] .
\end{gathered}
$$

These are the matrices of concern because no complementing and/or interchanging of columns will transform one into the other. Set $\tau_{5}=$ $=\{1,4\}$ and $\tau_{6}=\{2,3,5,6\}$. Of the vectors $\tau E_{i}, i=0, \ldots, 6$, only $\tau E_{0}=$ $=\tau, \sigma=\tau E_{2}=\left(\tau_{6}, \tau_{5}, \tau_{1}, \tau_{4}\right)$ and $\gamma=\tau E_{4}=\left(\tau_{5}, \tau_{6}, \tau_{2}, \tau_{3}\right)$ are representation types of τ. One easily checks that σ and γ are strongly indecomposable and regular, and that

$$
\sigma\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\tau=\gamma\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right],
$$

so that there are 3 representation types of τ.
Acknowledgement. The authors would like to thanks Prof. D. Hoffman for his helpful comments concerning the material in Section 1.

REFERENCES

[AV] D. Arnold - C. Vinsonhaler, Quasi-isomorphism invariants for a class of torsion-free abelian groups, Houston J. Math., 15 (1989), pp. 327-340.
[FM] L. Fuchs - C. Metelli, On a class of Butler groups, preprint.
[GM] H. P. Goeters - C. Megibben, Quasi-isomorphism and Z_{2}-representations of Butler groups, preprint.
[GU] H. P. Goeters - W. Ullery, Butler groups and lattices of types, Comment. Math. Univ. Carolinae, 31 (4) (1990), pp. 613-619.
[R] F. Richman, Butler groups, valuated vector spaces, and duality, Rend. Sem. Mat. Univ. Padova, 72 (1984), pp. 13- 19.
[Ri] F. Richman, An extension of the theory of completely decomposable tor-sion-free abelian groups, Trans. Amer. Math. Soc., 279 (1983), pp. 175-185.

Manoscritto pervenuto in redazione il 21 ottobre 1991.

