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On the Algebraic and Arithmetical Structure
of Generalized Polynomial Algebras.

FRANZ HALTER-KOCH (*)

ABSTRACT - We introduce a new kind of polynomial rings in infinitely many inde-
terminates (called large polynomial rings). The large polynomial ring over a
factorial or a Krull domain is itself factorial or a Krull domain. The algebra of
polynomial functions on an abelian group turns out to be essentially a large
polynomial ring.

Introduction.

The classical notion of a polynomial function permits far-reaching
generalizations, see [3], Ch. IV, [7], [13] and only recently [12]. In this
paper we deal with polynomial functions defined on a module over a
commutative ring R with values in an R-algebra. These polynomial
functions form a commutative ring, whose algebraic structure is deter-
mined by means of a new kind of formal polynomial rings (called large
polynomial rings). These large polynomial rings have nice arithmetical
properties: They are factorial resp. Krull domains if the base ring is a
factorial resp. a Krull domain.

1. Large polynomials and power series.

Throughout this paper, let 1 # 0 be a set, denote by the set of all
finite subsets of I, and let ~ be a total order on I. For n E No, we
set

(*) Indirizzo dell’A.: Institut fur Mathematik, Karl-Franzens-Universitat,
Heinrichstrasse 36/IV, A-8010 Graz, 6sterreich.
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in particular, Io is the singleton consisting of the empty sequence.
Let R be a commutative ring (always with 1 ~ 0) and X = a

family of (algebraic independent) indeterminates over R. For a subset
J c I, we set XJ = (Xi)ieJ. Let

be the total algebra of the free abelian monoid with basis X;
see [3], ch. III, § 2, no. 11, 12. We call the large power series ring
in X over R; it coincides with the ring Al investigated in [2] and with
the ring investigated in [9].

PROPOSITION 1. Let R be a domain.

i) is a domain.

ii) Suppose that all power series rings RQXI, ...Xmi in finitely
many indetermincctes over R are factorial; then is also factorial.
In particilar, if R is a regular factorial ring, then if factorial.

ill) If R is a Krull domain, then is a Krull domain.

In [15] a more general class of rings is dealt with.

Every f e has a unique representation in the form

with addition and multiplication in 
are defined in the usual way. For f as above and J c I, we set

and we define we define
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Try and 7T: J, J’ are ring epimorphisms satisfying and

~ J ~ , j,, whenever J" c J’ c J c I. With the mappings 
the system becomes a projective system of R-algebras,
and

is an isomorphism of R-algebras; then
If 3 c is cofinal, we identify

and we shall in the sequel simply write lim to denote the inverse limit
over g(I) or some cofinal subset. 

~

The constructions performed so far suggest to endow RIX] with a
topology as follows; for the topological concepts used in the sequel we
refer to [4].

For every J e ~(I ), we give R[XJD the discrete topology. We endow
lim with the topology of the projective limit and shift this topolo-
gy to by means of n. This topology on (which makes rc into a
homeomorphism) will be called the limit topodogy; it is obviously differ-
ent from the usual topology on power series rings, and it is discrete if I
is finite.

The limit topology makes into a separated complete topologi-
cal R-algebra. For f e and J E 8 (1 ), we set

then fundamental system of neighbourhoods of f,
and the family converges to f in the limit topology.

As an R-module, is of the form

where

in particular, and the elements of are of the
form

they are called large forms of degree d; if f E and g E then
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The ring contains the usual polynomial ring R[X], consisting
of all elements

where only finitely many of the coefficients hp are differ-
ent from zero.

The main purpose of this paper is to investigate the subring

consisting of all of the form

for some N E No ; we call the Large polynomial ring and its ele-
ments Large polynomials (in X over R). has a unique
representation in the form

where fd E are large forms of degree d, and fd = 0 for all but
finitely many d ~ 0. As in the classical case, we call

the degree of f.
Clearly, an element f e belongs to if and only if fj e

for all and  oo ; in this case,
deg ( f ) = 
We introduce a more general class of polynomial rings, containing

R [X ] and R [(X )] as special cases, as follows. Let N be an infinite car-
dinal, and let be the set of all large polynomials

for which

large polynomials with this property will be calle large K-polynomials.
Clearly, R[(X)]x is a subring of R [(X )], = R[X ], 
~ max f No, card (I )~ implies R[~X )]x = R[(X)].
We say that an indeterminate Xj in a large polynomial
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and we set

PROPOSITION 2. Let R be a domain.

PROOF. Since it is a domain by Proposition 1; i)
and iii) are proved as in the classical case, see [3], Ch. IV, § 9, no. 5.
Since R is a domain, we have Ifg = I f U I9 for all f, g E R QX DB~0}, which
implies ii).

We endow R [(X ~] with the subspace topology induced from the limit
topology on If I is infinite, R [(X )] is not closed in and

hence it is not complete. Its closure of all f E such

R[Xj] for all J The ring R[(X ~] coincides with the ring
A2 investigated in [2]; it was proved there, that this ring does not even
satisfy the ascending chain condition for principal ideals (if I is
infinite).

The ring R [(X ~] has the following universal mapping property.

PROPOSITION 3. Let ~: R - S be a homomorphism of commutative
rings, (Xi)ieI E ,S ~l ~ , and give S the discrete topology. Then there exists a
unique continuous ring homomorphisms ~: 72 [(Y)]2013~5’ satisfying
~ ~ R = p and = xi for all i E I.

PROOF. Clearly there exists exactly one ring homomorphism p*:
R [X ] -~ S satisfying 9 ( R = ~ and ~ * (Xi) = xi for all i e I. For any
fER[X], we have (~*)-1(~*f)~‘U,J(f), where 
hence ~* is continuous and has a unique extension to a continuous ho-
momorphism ~ as asserted.

2. Arithmetical properties of the large polynomial ring.

In this section we shall prove that the large polynomial ring is
a factorial domain resp. a Krull domain if R is so (Theorems 1 and 2).
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First we recall from [1] the notation of a finite factorization domain
(FFD). An integral domain R is called an FFD, if every a e U
U { 0}) is a product of irreducible elements of R and possesses (up to asso-
ciates) only finitely many divisors in R. If R is an FFD, then every
polynomial ring R[Xl , ..., Xm] is an FFD by [1], Prop. 5.3; every Krull
domain is an FFD by [10], Theorem 5.

PROPOSITION 4. Let R be an FFD Then f is irre-
ducible in R [(X )] if and only if there exists some Jo such that fj
is irreducible in R[Xj ] for all satisfying J D Ja .

PROOF. If f is reducible in R[(X)], then f= gh, where g, h e
e This implies fj = and if J is sufficiently large; then
gj, R " . Therefore fj is irreducible in R[Xjl for all sufficiently large
j 8 (1).

For the converse, suppose that, for any Jo e ~ (I ), there exists some
such that JJJO and fj is reducible in R[Xjl. We set

n = deg ( f ) e N, and we shall prove that f is reducible in R[(X)]. By
assumption, the set

is cofinal in 8 (1), and for J E s the set
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If and then

gJ = ~p ~J ~ E R[Xil for all J E s and deg (gj) =  n, which im-

plies and deg (g)  n. If g E R, then for all
J e 3, and consequently g E Rx.

For any we have for some polynomial y(J) E
E R[XJ]; this implies yi = lim R[XJ] and (as above) h =

- ~ -1 ( yi) E R[(X )]. Since fJ = gJ hJ = (gh)j for all J E s, we obtain f = g h.
and deg (g)  n, f is reducible in R[(X). .

PROPOSITION 5. Let R be a domain, and suppose that
there exists some Jo E 8(1) such that, for any J E ~ (I ) satisfying J D Jo ,
fJ is a prime element of R[XJ]. Then f is a prime element of
R 

PROOF. Suppose that for some For any
J E 8 (1), this implies fJ I gJ and if J D Jo , then either fJ gJ hJ .
We set

and we obtain

which implies that either Z5’ or 3" is cofinal Without re-

striction, let ~’ be cofinal For J E Z5, there exists some poly-
nomial such that If and 
then im-

plies &#x3E; and hence If q =

- ~ -1 ( ~p), then qJ E and deg (qJ) = 
~ deg ( g ) for all J E 3’; this implies q E R [~X ~]. Since gJ = fJ qJ = ( fq )J for
all J E ~’, we obtain g = f q, whence in R 

Next we adopt Gauss’ Lemma for large polynomials. An element
is called primitive., if f = V where ~ E R and f* E R [~X )]

implies ~ E (i.e., 1 is a g.c.d. of all coefficients of f in R). Hence an
element of R is primitive if and only if it lies in R ’ .
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PROPOSITION 6. Let R be an FFD and f e R [(X )] B R. Then the

following assertions are equivalent:

a) f is primitive.
b) fj is primitive for some J e 8 (I ).
c) There exists some Jo e such that fj is primitive for all

J ) J0.

PROOF. Obviolusly, c) P b) ~ a). Now set

and suppose that f is primitive, i.e., 1 is a g.c.d. 
Since R is an FFD, there exists a finite subset 0 c ~(X) such that 1 is a
g.c.d. e 1P ). If Jo E ~ (I ) is such that 1P c t1(XJo)’ then 1P c 
for all J E ~ (I ) satisfying J J Jo ; therefore 1 is a g.c.d. E 

for any such J, which means that

is primitive.

PROPOSITION 7 (Gauss’ lemma). Let R be a factorial domain and K a
quotient field of R.

i) are primitive, then fg is also primitive.
ii) primitive, g E K[(X)] and fg E R [(X )], then

already g E R [(X )].

PROOF. For classical polynomials f e K[X], we use the notation of
the content c( f ) as in [8], § 8. Then we have c( fg) = c( f ) c(g) for all

f, g e K[X]; f e R [X ] if and only if c( f ) is integral; is primitive
if and only if c( f ) = 1.

i) If f, g e R [(X )] are primitive, then fj, gj e R[Xj] are primitive
for some J e ~(1) by Proposition 6. Then = fj gj is also primitive,
and again Proposition 6 implies that fg is primitive.

ii) By Proposition 6, there exists some Jo E 8(1) such that fJ is
primitive for all J e 8 (1) satisfying Jo. For such J, = c(gj) is
integral, since fjgj = e R[Xjl; this implies gJ E R[Xj], and conse-
quently 

PROPOSITION 8 Let R be a factorial domain, K a quotient field of R
and f e R[(X)]x BR. Then the following assertions are equivalent:
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a) f is a prime element of R[(X)]x .
b) f is irreducible in R[(X)]x .
c) f is primitive and irreducible in K[(X)].

PROOF. For fmite 1, this is classical; see [14], Ch. V, § 6.

a) P b) is obvious.

b) =&#x3E; c) If f is irreducible in R[(X)]K, then f is irreducible in
R[(X)] by Proposition 2, ii). By Proposition 4, there exists some Jo e
E ~(I) such that fj is irreducible in R[Xjl and hence in K[Xjl for all
J e ~ (1 ) satisfying Jo . Again by Proposition 4 it follows that f is irre-
ducible in K[(X)]. Being irreducible in R[(X)], f is primitive by
definition.

c) ~ a) By Propositions 4 and 6, there exists some Jo E ~(I ) such
that fi is primitive and irreducible in K[XJ] for all J e ~(I) satisfying

Jo . Hence fj is a prime element in R[Xjl for all such J, and Pro-
position 5 implies that f is a prime element of R (X)]. By Proposi-
tion 2, ii),

and hence f is also a prime element of 0

THEOREM 1. Let R be a factorial domain and K a quotient field of
R. Then is a factorial domain; the prime elements of R[(X )]X
are the primes of R and the primitive polynomials f e R[(X)]x B R
which are irreducible in K[(X)].

PROOF. If f E is primitive and irreducible in K[(X)],
then f is a prime element of R[(X )]x by Proposition 8. If p e R is a prime
element of R, then /pR[(X )]H is a domain, and thus p is a prime
element of 

We must prove that every f e R[X&#x3E;]xB (R ’ U ( 0)) has a factoriza-
where pi e R are prime elements and f e

e R[(X)]x BR are irreducible. For f e R, this is obvious. Thus we may
suppose that f e BR and that the assertation is proved for all
large polynomials of smaller degree. Clearly, f = pl ~ ... ~ Pr f * , where
pi e R are primes of R and f * e BR is primitive. If f * is irre-

ducible, we are done; otherwise f * = fl* f2 where fi* e R[(X)]x BR and
hence  deg ( f * ) = deg ( f ) (i = 1, 2). Applying the induction
hypothesis for fi*, the assertion follows.

For the next result, we need a Lemma.
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LEMMA 1. Let (Ra)aeA be a family of Krull domains contained in a
field 1~ and set

Suppose that for every 0 ~ x E R the set f a E is finite. Then
R is Krull domain.

PROOF. [9], Lemma 1.2.

THEOREM 2. If R is a Krull domain, then is also a Krull
domain.

PROOF. Let K be a quotient field of R and (Vx),,,EA a family of dis-
crete valuation rings of K such that R = n Va and, for each 0 ~ x E R,

OC E!1

the set ~ a E is finite. For a E ~l, set

By Proposition 7, N« is a multiplicatively closed subset of Va [~X ~]. By
Theorem 1, the domains K [~X ~]x and Va [~X ~] are factorial and hence
the localisations Va are also factorial. If 0 ~ [~X ~] then the

is finite; this implies f E (Va for all but

finitely many « E A. By Lemma 1 it is sufficient to prove that

Obviously is contained in and in each Va [(X)]N . If
a E A and f E K[(X)] n Va [(X ~]Na , then there exists some ga E Na such
that fga E Va [(X)]. Since ga E Va [(X)] is primitive, Proposition 7, ii) im-
plies f E Va [(X ~]. Thus we obtain

3. Polynomial functions on modules.

Throughout this section, let F be a commutative ring, R a commuta-
tive F-algebra and V an F-module. A mapping p:V -~ R is called a ho-
mogeneous F-polynomial function of degree d E IvT, if there exists an F-
multilinear mapping p*: Vd --~ R such that p(x) _ ~ro * (x, ... , x) for all
x E V. We denote by R)d the set of all homogeneous F-polynomial
functions p: V - R of degree R)o denotes the set of all con-
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stant functions which we call homogeneous *F-polynomial
functions of degree 0. For any d E OF (V, R)d is an R-module under
pointwise addition and scalar multiplication. 
and t E F, then = 

It is usual to define polynomial functions with values in F-modules,
see e.g. [3; Ch. IV, § 5, no. 9]. In this paper however, we are mainly in-
terested in the polynomial algebra (with a pointwise multiplication),
and therefore we restrict ourselves to polynomial functions taking
values in an F-algebra.

PROPOSITION 9. Let d, e E No, p E 9F (V, R)d and q E R )e be
given. If pq: V --~ R is defined pointwise, i.e. (pq) (x) = p(x) q(x), then
pq E OF (V, R)d+e ·

PROOF. Let p * : V d ~ R and q * : V e ~ R be F-multilinear map-
pings such that p(x) = p * (x, ... , x) and q(x) = q * (x, ... , x) for all
x E V. If r: defined by r(xl , ..., xd , Y1, ...Ye) =
= p(xl , ... , Xd) q( yl , ... , Ye), then r is F-multilinear, and (pq) (x) =
= r(x, ... , x) for all x E V. s

A mapping p: V ~ R is called an F-polynomial function, if there
exists some d E No and homogeneous F-polynomial functions

po , . - . , Pd: V - R such that p(x) = po (r) + ... + for all x E V; p is
called a local F-polynomial function, if p 1M: M ~ R is an F-polynomi-
al function for every finitely generated R-submodule M of V. We de-
note by R ) the set of all F-polynomial functions and R)
the set of all local F-polynomial functions ~: V ~ R. Obviously,

are R-subalgebras if R v is viewed as the R-algebra of all functions
under pointwise addition, multiplication and scalar multiplica-

tion.
On the algebra R v we introduce a topology as follows. Denote by

~ (V) the set of all finitely generated F-submodules of V. For M 
define 7rm: 7cm (f ) = f I M, and for M, M’ E ~ (V), M J M’,
define by With the mappings
7C M, M, , the system becomes a projective system of R-alge-
bras, and

is an R-algebra isomorphism. If f e RV , then It(f) = (f For
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every we give R M the discrete topology, and we shift the
topology of the projective limit to R v be means of the isomorphism 7r.

This topology on R v (obviously different from the product topology)
will be called the limits topology.

With the limit topology, R Y is a separated complete topological R-
algebra. and M E ~ (V), we set

is a fundamental system of neighbourhoods
of f, and therefore the limit topology on coincides with the topology
of 0152(V)-convergence; see [4), Ch. X, § 1.

For the next result, let 0152 + (V) be the set of all finitely generated F-
submodules of V which are F-direct summands.

PROPOSITION 10. i) 9F(V, R) is closed in and

ii) Let M E ~ (V ) be given and suppose that either M E 0152+ (V) or
R is an injective F-module. Then the restriction map

is surjeetive.
iii) Suppose that either C~+ (V) is cofinal in ~(V) or R is an injec-

tive F-module. Then

PROOF. i) A function lies R ) if and only if f I M E
E R) for all M E ~ (V ), i.e.,

This implies

and consequently f E R). Hence R ) is closed in R v .
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ii) It is sufficient to prove that every homogeneous F-polynomial
function q:M - R of degree d &#x3E; 1 can be extended to an F-polynomial
function q : V- R. Let q * : Md -~ R be F-multilinear such that q (x) _
= q 

* ( x, ... , x ) for all x E M. If either M ( V ) or R is F-injective, then
there exists an F-multilinear mapping 4~ *: Vd -~ R such that 4’*IMd =
= q * , and q: V -+ R, defined by q (x) = q * (x, ..., x), is an F-polynomial
function extending q.

iii) If M F- 8’ (V) or R is F-injective, ii) implies

whence equality holds. This implies

and consequently

Next we investigate the connection between F-polynomial func-
tions and large polynomials; we start with the case of polynomials in a
finite number of indeterminates.
We say that F has no zero divisors on R if

notice that this condition implies that F itself is a domain.
A polynomial f E R[X1, ... , Xn] (in n E N indeterminates) is called q-

reduced (for some q if degxj ( f )  q for all j r= 11, ... , n 1.

LEMMA 2. Suppose that F has no zero divisors on R, and let f E
E R[X1, ... , Xn] be a polynomials

i) If F is infinite and f ( x1, ... , xn ) = 0 for all ( x1, ... , xn ) E F n , 9
then f = 0.

ii) If # F = q E I~, then there exists a unique q-reduced polyno-

PROOF. Exactly as in the classical case; cf. [14], Ch. V, § 4.

Now let again X = be a family of indeterminates, and adopt
all notations of section 1.
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THEOREM 3. For

ii) The mapping

is a homomorphism of R-algebras satisfying

iii) Suppose that F has no zero divisors on R; then

If moreover F is infinite, is a topological isomorphism.

PROOF. We set V = F~I ~ , and we denote by (ei)ieI the cannonical ba-
sis of V, i.e.,

for all

If J E 8 (1), then VJ (V), and the E ~ (I )~ is cofinal in
~ (V). Identifying Vj with F(J) we obtain, for any f E R[(X)],

i) We show first that implies and it
suffices to do this for large forms f e RIXL, where n E N. Suppose
that
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and let p * : be the unique F-multilinear mapping satisfying

is defined by then

whence 1P~n (V, R ).
If f E Rj(X )], then fJ E R[XJ] for all J e &#x26;(1) and consequently ( fJ)F =

R ), which implies R ) ·

ii) Clearly, o F is a homomorphism of R-algebras. In order to
prove the equality ~(R[(.Y}]) = R), it is sufficient to show that
every homogeneous F-polynomial function : V- R of degree n ~ 1 is
of the form p = f F for some f E 

Let p: V- R be a homogeneous F-polynomial function, and let

p * : be F-multilinear such that ... , x ) for all x e V.
For (iI, we set

and we define f E by

Then we obtain

whence p = F-
iii) For a large polynomial f e R[(X)], we have f F = 0 if an only if

0 for all J e ~(1). If F is infinite, this implies fj = 0 for
all J e (by Lemma 2) and hence f = 0; therefore
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is an isomorphism and

is a family of isomorphisms, compatible with the mappings J- of the

projective systems on either side. Taking projective limits and observ-
ing the commutative diagram

it follows from Proposition 9, iii) that p F is an isomorphism if F is
infinite.

Now consider the case #F = q E ~T. If and 
then and by ii), there exists a 
such that = g I VJ. By Lemma 2, there exists a unique q-reduced
polynomial f0(J) E R[XJ] such that 
and then is q-reduced, and 

whence This implies 

whence f-" = g.

4. Polynomial functions on groups.

In this section we study (Z-) polynomial functions and local (Z-)
polynomial functions q: G 2013&#x3E;72, where G is an abelian group and R is a
commutative ring containing a prime field F.

Let G be an (additively written) abelian group, F a prime field (i.e.
F = 0 or F = I~P for some prime number Hp) and R a commutative F-
algebra. We shall be concerned with the R-algebras R) =
= 1Pz (G , R) R) = R); we always write 0 instead of
0z.

F ® G is a vector space over F, and F0 G = ~ ~ F, g E G ~.
Let c~: G ~ F ® G be the group homomorphism defined by

Let 2n(G, R) resp. G, R) be the R-module of all multiadditive
functions G " - R resp. F-multilinear functions (F ® G)n ~ R. For p * E
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Then we obtain the following Lemma.

LEMMA 3. The mapping wn: G, R) -~ 2n(G, R) is an iso-

morphism of R-modules.

PROOF. wn is R-linear by definition. Now we consider the canonical
isomorphism

and

they induce a commutative diagram

where w*(ç)(g1X...Xgn) = (1Xg1X...Xgn). By [11], Lemma 2,
to* is an isomorphism (there R is assumed to be a field, but this is im-
material). Hence c~* is also an isomorphism.

THEOREM 4. The mapping

is an isomorphism of K-algebras satisfying

PROOF. We prove first 
E 1P( G , R ), and it is sufficient to do this in the case where : F ® G - R is
a homogeneous F-polynomial function of degree % a 1. In this case, let
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be such that
Then we obtain, for g E G,

which implies e 1P(G, R). Now we set

and we prove that 6; is an isomorphism of R-algebras.
In order to prove that ~; is surjective it suffices to show that every

homogeneous polynomial function q: G -~ R of degree n a 1 lies in the
image of io-. Let q: G -+ R be a homogeneous polynomial function of de-
gree n &#x3E; 1, and let q* E 2n(G, R) be such that q ( g ) = q * ( g, ... , g ) for
all g E G. By Lemma 3, for If

is defined ... , z ) then

for all g E G, whence c~ * ( p) = q.
In order to prove that i5 is injective, let p E Q9 G, R) be in the

kernel of i5, i.e., p ( 1 ® g) = 0 for all g E G.

CASE 1. char (1~) _ ~ &#x3E; 0, F = Fp . In this case, all elements of F ®
® G are of the form z = m ® g = 1 ® mg for some m E Z, which implies
p=0.

CASE 2. char (R) = 0, F = Q. We write p in the form p = PI + ... +
+ where pi: F ® G -~ 1~ is a homogeneous F-polynomial function of
degree i. For t and g E G, we obtain

and if t E Z, (g) g) _ ~ ( 1 (g) tg) = 0. Hence the polynomial

vanishes on Z which, by Lemma 2, implies ~i ( 1 ® g) = 0 for all i E

E 10, ..., d} and g E G. Therefore we obtain p (t ® g) = 0 for all t E 0 and
g E G, 

Now we consider local polynomial functions. Let ~ (G) be the set of
all finitely generated subgroups of G and ~ (F 0 G) the set of all finitely
generated F-submodules of F 0 G. Obviously, the set
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is cofinal and therefore a function p: F (9 G --* R lies in
G, R) if and only R ) for all C E ~ ( G ). If

p E R), then R) for all
which implies For CE0152(G), we

have established an isomorphism

the family is compatible with the
morphisms of the projective system, and therefore we get a commuta-
tive diagram.

The left vertical arrow is an isomorphism by Proposition 9. Hence the
right vertical arrow is surjective, and since it clearly is injective it is
also an isomorphism. Therefore w * is an isomorphism.

COROLLARY. Let K be a field of characteristic zero. Then ~(G, K)
is a factoriaL domain. 

PROOF. By Theorem 4, K) = G, K ), where F = Q is
the prime field of K. If FQ9G = {0} then K) = K; thus we
suppose that F Q9 G = for some set I ~ ~ . Then we obtain Q9
Q9 G, K) = K ) = K [(X)l by Theorem 3, and the latter ring is a
factorial domain by Theorem 1.

Remark and acknowledgments. Without using to formalism of

large polynomials it was proved in [12] that T(G, K) is a domain if char
(K) = 0. I am indebted to Professor Jens Schwaiger for interesting me
in generalized polynomial functions and for valuable discussions.
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