RENDICONTI del Seminario Matematico della Università di Padova

FRANZ HALTER-KOCH

On the algebraic and arithmetical structure of generalized polynomial algebras

Rendiconti del Seminario Matematico della Università di Padova, tome 90 (1993), p. 121-140

http://www.numdam.org/item?id=RSMUP_1993__90__121_0

© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 90 (1993)

On the Algebraic and Arithmetical Structure of Generalized Polynomial Algebras.

FRANZ HALTER-KOCH(*)

ABSTRACT - We introduce a new kind of polynomial rings in infinitely many indeterminates (called large polynomial rings). The large polynomial ring over a factorial or a Krull domain is itself factorial or a Krull domain. The algebra of polynomial functions on an abelian group turns out to be essentially a large polynomial ring.

Introduction.

The classical notion of a polynomial function permits far-reaching generalizations, see[3], Ch. IV, [7], [13] and only recently [12]. In this paper we deal with polynomial functions defined on a module over a commutative ring R with values in an R-algebra. These polynomial functions form a commutative ring, whose algebraic structure is determined by means of a new kind of formal polynomial rings (called *large polynomial rings*). These large polynomial rings have nice arithmetical properties: They are factorial resp. Krull domains if the base ring is a factorial resp. a Krull domain.

1. Large polynomials and power series.

Throughout this paper, let $I \neq \emptyset$ be a set, denote by $\mathcal{E}(I)$ the set of all finite subsets of I, and let \leq be a total order on I. For $n \in \mathbb{N}_0$, we set

$$I_{\leq}^{n} = \{(i_{1}, ..., i_{n}) \in I^{n} \mid i_{1} \leq i_{2} \leq ... \leq i_{n}\};$$

(*) Indirizzo dell'A.: Institut für Mathematik, Karl-Franzens-Universität, Heinrichstrasse 36/IV, A-8010 Graz, Österreich.

in particular, I_{\leq}^{0} is the singleton consisting of the empty sequence.

Let R be a commutative ring (always with $1 \neq 0$) and $X = (X_i)_{i \in I}$ a family of (algebraic independent) indeterminates over R. For a subset $J \subset I$, we set $X_J = (X_i)_{i \in J}$. Let

$$R\llbracket X \rrbracket = R\llbracket (X_i)_{i \in I} \rrbracket = R\llbracket \mathcal{F}(X) \rrbracket$$

be the total algebra of the free abelian monoid $\mathcal{F}(X)$ with basis X; see [3], ch. III, § 2, no. 11, 12. We call $\mathbb{R}[X]$ the large power series ring in X over R; it coincides with the ring A_1 investigated in [2] and with the ring $\mathbb{R}[(X_i)_{i \in I}]_3$ investigated in [9].

PROPOSITION 1. Let R be a domain.

i) R[X] is a domain.

ii) Suppose that all power series rings $R[X_1, ..., X_m]$ in finitely many indeterminates over R are factorial; then R[X] is also factorial. In particular, if R is a regular factorial ring, then R[X] if factorial.

iii) If R is a Krull domain, then R[X] is a Krull domain.

PROOF. i) [3], ch. IV, § 4, no. 8 or [6] or [15].

- ii) [2], [6] or [15].
- iii) [9].

In [15] a more general class of rings is dealt with.

Every $f \in R[X]$ has a unique representation in the form

$$f = \sum_{P \in \mathcal{F}(X)} \lambda_P P = \sum_{n \ge 0} \sum_{(i_1, \dots, i_n) \in I_{\leq}^n} \lambda_{i_1, \dots, i_n} X_{i_1} \cdot \dots \cdot X_{i_n}$$

with coefficients λ_P , $\lambda_{i_1, \dots, i_n} \in R$; addition and multiplication in R[X] are defined in the usual way. For f as above and $J \subset I$, we set

$$f_J = \sum_{n \ge 0} \sum_{(i_1, \ldots, i_n) \in J^n_{\le}} \lambda_{i_1, \ldots, i_n} X_{i_1} \cdot \ldots \cdot X_{i_n} \in R[[X_J]],$$

and we define $\pi_J \colon R[\![X]\!] \to R[\![X_J]\!]$ by $\pi_J(f) = f_J$. For $J' \subset J \subset I$ we define $\pi_{J,J'} \colon R[\![X_J]\!] \to R[\![X_{J'}]\!]$ by

$$\pi_{J,J'}\left(\sum_{n\geq 0}\sum_{(i_1,\ldots,i_n)\in J^n_{\leqslant}}\lambda_{i_1,\ldots,i_n}X_{i_1}\cdot\ldots\cdot X_{i_n}\right) = \sum_{n\geq 0}\sum_{(i_1,\ldots,i_n)\in J^n_{\leqslant}}\lambda_{i_1,\ldots,i_n}X_{i_1}\cdot\ldots\cdot X_{i_n}.$$

 π_J and $\pi_{J,J'}$ are ring epimorphisms satisfying $\pi_{J,J'} \circ \pi_J = \pi_{J'}$ and $\pi_{J',J'} \circ \pi_{J,J'} = \pi_{J,J''}$ whenever $J'' \in J \subset J \subset I$. With the mappings $\pi_{J,J'}$, the system $(R[X_J])_{J \in \delta(I)}$ becomes a projective system of *R*-algebras, and

$$\pi = \lim_{J \in \delta(I)} \pi_J \colon R[\![X]\!] \to \lim_{J \in \delta(I)} R[\![X_J]\!]$$

is an isomorphism of *R*-algebras; if $f \in R[X]$, then $\pi(f) = (f_J)_{J \in \mathcal{E}(I)}$. If $\Im \subset \mathcal{E}(I)$ is cofinal, we identify

$$\lim_{\stackrel{\leftarrow}{J \in \delta(I)}} R\llbracket X_J \rrbracket = \lim_{\stackrel{\leftarrow}{J \in \Im}} R\llbracket X_J \rrbracket,$$

and we shall in the sequel simply write \lim_{\leftarrow} to denote the inverse limit over $\mathcal{E}(I)$ or some cofinal subset.

The constructions performed so far suggest to endow R[X] with a topology as follows; for the topological concepts used in the sequel we refer to [4].

For every $J \in \mathcal{E}(I)$, we give $R[\![X_J]\!]$ the discrete topology. We endow lim $R[\![X_J]\!]$ with the topology of the projective limit and shift this topology to $R[\![X]\!]$ by means of π . This topology on $R[\![X]\!]$ (which makes π into a homeomorphism) will be called the *limit topology*; it is obviously different from the usual topology on power series rings, and it is discrete if Iis finite.

The limit topology makes R[X] into a separated complete topological *R*-algebra. For $f \in R[X]$ and $J \in \mathcal{E}(I)$, we set

$$\mathcal{U}_{J}(f) = \{ g \in R[[X]] | g_{J} = f_{J} \};$$

then $\{\mathcal{U}_J(f) | J \in \mathcal{E}(I)\}$ is a fundamental system of neighbourhoods of f, and the family $(f_J)_{J \in \mathcal{E}(I)}$ converges to f in the limit topology.

As an *R*-module, R[X] is of the form

$$R\llbracket X \rrbracket = \prod_{d \ge 0} R\llbracket X \rrbracket_d, \quad \text{where} \quad R\llbracket X \rrbracket_d = \prod_{(i_1, \dots, i_d) \in I_{\le}^d} RX_{i_1} \cdot \ldots \cdot X_{i_d};$$

in particular, $R[X]_0 = R$, and the elements of $R[X]_d$ are of the form

$$\sum_{(i_1, \ldots, i_d) \in I_{\leq}^d} \lambda_{i_1, \ldots, i_d} X_{i_1} \cdot \ldots \cdot X_{i_d} \quad \text{where} \quad \lambda_{i_1, \ldots, i_d} \in R ;$$

they are called *large forms of degree* d; if $f \in R[X]_d$ and $g \in R[X]_e$, then $fg \in R[X]_{d+e}$.

Franz Halter-Koch

The ring R[X] contains the usual polynomial ring R[X], consisting of all elements

$$\sum_{P \in \mathcal{F}(X)} \lambda_P P = \sum_{n \ge 0} \sum_{(i_1, \dots, i_n) \in I_{\leq}^n} \lambda_{i_1, \dots, i_n} X_{i_1} \cdot \dots \cdot X_{i_n} \in R[\![X]\!]$$

where only finitely many of the coefficients λ_P resp. $\lambda_{i_1, \dots, i_n}$ are different from zero.

The main purpose of this paper is to investigate the subring

$$R[\langle X \rangle] = R[\langle (X_i)_{i \in I} \rangle] = \coprod_{d \ge 0} R[\![X]\!]_d \subset R[\![X]\!]$$

consisting of all $f \in R[X]$ of the form

$$f = \sum_{n=0}^{N} \sum_{(i_1, \dots, i_n) \in I_{\leq}^n} \lambda_{i_1, \dots, i_n} X_{i_1} \cdot \dots \cdot X_{i_n}$$

for some $N \in \mathbb{N}_0$; we call $R[\langle X \rangle]$ the large polynomial ring and its elements large polynomials (in X over R). Any $f \in R[\langle X \rangle]$ has a unique representation in the form

$$f=\sum_{d\ge 0}f_d$$
 ,

where $f_d \in R[X]_d$ are large forms of degree d, and $f_d = 0$ for all but finitely many $d \ge 0$. As in the classical case, we call

$$\deg(f) = \sup \left\{ d \ge 0 \, \middle| \, f_d \neq 0 \right\} \in \mathbb{N}_0 \cup \left\{ -\infty \right\}$$

the degree of f.

Clearly, an element $f \in R[X]$ belongs to $R[\langle X \rangle]$ if and only if $f_J \in R[X_J]$ for all $J \in \mathcal{E}(I)$ and $\sup \{ \deg(f_J) | J \in \mathcal{E}(I) \} < \infty$; in this case, $\deg(f) = \max \{ \deg(f_J) | J \in \mathcal{E}(I) \}.$

We introduce a more general class of polynomial rings, containing R[X] and $R[\langle X \rangle]$ as special cases, as follows. Let \aleph be an infinite cardinal, and let $R[\langle X \rangle]_{\aleph}$ be the set of all large polynomials

$$f = \sum_{(i_1, \dots, i_n) \in I_{\leq}^n} \lambda_{i_1, \dots, i_n} X_{i_1} \cdot \dots \cdot X_{i_n}$$

for which

card {
$$(i_1, ..., i_n) \in I^n_{\leq} | \lambda_{i_1, ..., i_n} \neq 0$$
} < \aleph ;

large polynomials with this property will be calle large \aleph -polynomials. Clearly, $R[\langle X \rangle]_{\aleph}$ is a subring of $R[\langle X \rangle]$, $R[\langle X \rangle]_{\aleph_0} = R[X]$, and $\aleph \ge \max{\{\aleph_0, \operatorname{card}(I)\}}$ implies $R[\langle X \rangle]_{\aleph} = R[\langle X \rangle]$.

We say that an indeterminate X_j occurs in a large polynomial

 $f \in R[\langle X \rangle]$, if $f \notin R[\langle (X_i)_{i \in I \setminus \{j\}} \rangle]$ and we set

$$I_f = \{ j \in I | X_j \text{ occours in } f \}.$$

For any $f \in R[\langle X \rangle]$, we have $f \in R[\langle X \rangle]_{\aleph}$ if and only if card $(I_f) < < \aleph$.

PROPOSITION 2. Let R be a domain.

i) $R[\langle X \rangle]_{\aleph}$ is a domain, and $R[\langle X \rangle]_{\aleph}^{\times} = R^{\times}$.

ii) If $f, g \in R[\langle X \rangle]$ and $0 \neq fg \in R[\langle X \rangle]_{\aleph}$, then $f \in R[\langle X \rangle]_{\aleph}$ and $g \in R[\langle X \rangle]_{\aleph}$.

iii) If $f, g \in R[\langle X \rangle]$, then deg (fg) = deg(f) + deg(g).

PROOF. Since $R[\langle X \rangle]_{\aleph} \subset R[\![X]\!]$, it is a domain by Proposition 1; i) and iii) are proved as in the classical case, see[3], Ch. IV, §9, no. 5. Since R is a domain, we have $I_{fg} = I_f \cup I_g$ for all $f, g \in R[\![X]\!] \setminus \{0\}$, which implies ii).

We endow $R[\langle X \rangle]$ with the subspace topology induced from the limit topology on R[X]. If I is infinite, $R[\langle X \rangle]$ is not closed in R[X] and hence it is not complete. Its closure $\overline{R[\langle X \rangle]}$ consists of all $f \in R[X]$ such that $f_J \in R[X_J]$ for all $J \in \mathcal{E}(I)$. The ring $R[\langle X \rangle]$ coincides with the ring A_2 investigated in [2]; it was proved there, that this ring does not even satisfy the ascending chain condition for principal ideals (if I is infinite).

The ring $R[\langle X \rangle]$ has the following universal mapping property.

PROPOSITION 3. Let $\varphi: R \to S$ be a homomorphism of commutative rings, $(x_i)_{i \in I} \in S^{(I)}$, and give S the discrete topology. Then there exists a unique continuous ring homomorphism $\phi: R[\langle X \rangle] \to S$ satisfying $\phi | R = \varphi$ and $\phi(X_i) = x_i$ for all $i \in I$.

PROOF. Clearly there exists exactly one ring homomorphism φ^* : $R[X] \to S$ satisfying $\varphi^* | R = \varphi$ and $\varphi^*(X_i) = x_i$ for all $i \in I$. For any $f \in R[X]$, we have $(\varphi^*)^{-1}(\varphi^*f) \supset \mathcal{U}_J(f)$, where $J = \{i \in I | x_i \neq 0\}$; hence φ^* is continuous and has a unique extension to a continuous homomorphism φ as asserted.

2. Arithmetical properties of the large polynomial ring.

In this section we shall prove that the large polynomial ring $R[\langle X \rangle]_{\aleph}$ is a factorial domain resp. a Krull domain if R is so (Theorems 1 and 2).

First we recall from [1] the notation of a *finite factorization domain* (FFD). An integral domain R is called an FFD, if every $a \in R \setminus (R^{\times} \cup \cup \{0\})$ is a product of irreducible elements of R and possesses (up to associates) only finitely many divisors in R. If R is an FFD, then every polynomial ring $R[X_1, \ldots, X_m]$ is an FFD by [1], Prop. 5.3; every Krull domain is an FFD by [10], Theorem 5.

PROPOSITION 4. Let R be an FFD and $f \in R[\langle X \rangle] \setminus R$. Then f is irreducible in $R[\langle X \rangle]$ if and only if there exists some $J_0 \in \mathcal{E}(I)$ such that f_J is irreducible in $R[X_J]$ for all $J \in \mathcal{E}(I)$ satisfying $J \supset J_0$.

PROOF. If f is reducible in $R[\langle X \rangle]$, then f = gh, where g, $h \in R\langle X \rangle] \setminus R^{\times}$. This implies $f_J = g_J h_J$, and if J is sufficiently large; then g_J , $h_J \notin R^{\times}$. Therefore f_J is irreducible in $R[X_J]$ for all sufficiently large $J \in \mathcal{E}(I)$.

For the converse, suppose that, for any $J_0 \in \mathcal{E}(I)$, there exists some $J \in \mathcal{E}(I)$ such that $J \supset J_0$ and f_J is reducible in $R[X_J]$. We set $n = \deg(f) \in \mathbb{N}$, and we shall prove that f is reducible in $R[\langle X \rangle]$. By assumption, the set

$$\mathfrak{I} = \{J \in \mathfrak{E}(I) \mid \deg(f_J) = n, f_J \text{ is reducible in } R[X_J] \}$$

is cofinal in $\mathcal{E}(I)$, and for $J \in \mathfrak{I}$ the set

$$E_J = \{ \varphi \in R[X_J] \setminus R^{\times} \mid \deg(\varphi) < n, \varphi \mid f_J \}$$

is not empty. If $J, J' \in \mathfrak{I}$, $J' \subset J$ and $\varphi \in E_J$, then there exists some $\psi \in \mathbb{E}[X_J] \setminus \mathbb{R}$ such that $f_J = \varphi \psi$, and consequently $f_{J'} = \pi_{J,J'}(f_J) = \pi_{J,J'}(\varphi) = \pi_{J,J'}(\varphi) = \pi_{J,J'}(\varphi) = \pi_{J,J'}(\varphi) + \deg(\pi_{J,J'}(\varphi)) + \deg(\pi_{J,J'}(\varphi)) \leq \deg(\varphi) + \deg(\psi) = \deg(f_J) = n$, whence $\deg(\pi_{J,J'}(\varphi)) = \deg(\varphi) < n$. If $\pi_{J,J'}(\varphi) \in \mathbb{R}$, then $0 = \deg(\pi_{J,J'}(\varphi)) = \deg(\varphi)$, which implies $\varphi \in \mathbb{R}$ and thus $\pi_{J,J'}(\varphi) = \varphi \notin \mathbb{R}^{\times}$. In any case, we obtain $\pi_{J,J'}(\varphi) \notin \mathbb{R}^{\times}$ and therefore $\pi_{J,J'}(\varphi) \in E_{J'}$.

Now we consider the projective system $((E_J)_{J\in\mathfrak{S}}, (\pi_{J,J'}|E_J:E_J \to E_{J'})_{J'\subset J})$, and we assert that $\lim_{t \to T} E_J \neq \emptyset$.

Since $R[X_J]$ is an FFD, the set

$$\overline{E}_J = \{\varphi R^{\times} \, | \, \varphi \in E_J \}$$

of classes of associates in E_J is finite. For $J, J' \in \mathfrak{I}, J' \subset J$, we define $\overline{\pi}_{J,J'}: \overline{E}_J \to \overline{E}_{J'}$, by $\overline{\pi}_{J,J'}(\varphi R^{\times}) = \pi_{J,J'}(\varphi) R^{\times}$; then we have $\lim_{\leftarrow} \overline{E}_J \neq \emptyset$. by [5], (Ch. III, §7, no. 4, Ex. II). Let $(\varphi'_J)_{J\in\mathfrak{I}}$ be a family of polynomials $\varphi'_J \in R[X_J]$ such that $(\varphi'_J R^{\times})_{J\in\mathfrak{I}} \in \lim_{\leftarrow} \overline{E}_J$, and fix some $J_0 \in \mathfrak{I}$. If $J \in \mathfrak{I}, J \supset J_0$, then $\pi_{J,J_0}(\varphi'_J) = u_J \varphi'_{J_0}$ for some $u_J \in R^{\times}$, and we set $\varphi_J =$

 $= u_J^{-1} \varphi'_J \in E_J; \text{ this implies } \pi_{J, J_0}(\varphi_J) = \varphi_{J_0} = \varphi'_{J_0} \text{ for all } J \supset J_0. \text{ If } J, J' \in S_0 \in \mathbb{R}, J \supset J' \supset J_0, \text{ then } \pi_{J, J'}(\varphi_J) = v\varphi'_J \text{ for some } v \in \mathbb{R}^{\times}, \text{ and } \varphi_{J_0} = \pi_{J, J_0}(\varphi_J) = \pi_{J', J_0} \circ \pi_{J, J'}(\varphi_J) = \pi_{J', J_0}(v\varphi'_J) = v\varphi_{J_0} \text{ implies } v = 1; \text{ therefore } (\varphi_J)_{J \in \mathbb{N}, J \supset J_0} \in \lim E_J.$

If $\varphi = (\varphi^{(J)})_{J \in \mathfrak{F}} \in \lim_{T \to \mathfrak{F}} E_J \subset \lim_{T \to \mathfrak{F}} R[\![X_J]\!]$ and $g = \pi^{-1}(\varphi) \in R[\![X]\!]$, then $g_J = \varphi^{(J)} \in R[X_J]$ for all $J \in \mathfrak{F}$ and $\deg(g_J) = \deg(\varphi^{(J)}) < n$, which implies $g \in R[\langle X \rangle]$ and $\deg(g) < n$. If $g \in R$, then $\varphi^{(J)} = g_J = g$ for all $J \in \mathfrak{F}$, and consequently $g \notin R^{\times}$.

For any $J \in \mathfrak{S}$, we have $f_J = \varphi^{(J)} \psi^{(J)}$ for some polynomial $\psi^{(J)} \in \mathbb{R}[X_J]$; this implies $\psi = (\psi^{(J)})_{J \in \mathfrak{S}} \in \lim_{\to} \mathbb{R}[X_J]$ and (as above) $h = \pi^{-1}(\psi) \in \mathbb{R}[\langle X \rangle]$. Since $f_J = g_J h_J = (gh)_J$ for all $J \in \mathfrak{S}$, we obtain f = gh. Since $g \notin \mathbb{R}^{\times}$ and deg (g) < n, f is reducible in $\mathbb{R}[\langle X \rangle]$.

PROPOSITION 5. Let R be a domain, $f \in R[\langle X \rangle]$ and suppose that there exists some $J_0 \in \mathcal{E}(I)$ such that, for any $J \in \mathcal{E}(I)$ satisfying $J \supset J_0$, f_J is a prime element of $R[X_J]$. Then f is a prime element of $R[\langle X \rangle]$.

PROOF. Suppose that f | gh for some $g, h \in R[\langle X \rangle]$. For any $J \in \mathcal{E}(I)$, this implies $f_J | g_J h_J$, and if $J \supset J_0$, then either $f_J | g_J$ or $f_J | h_J$. We set

$$\mathfrak{I}' = \{J \in \mathfrak{E}(I) \mid f_J \mid g_J\}, \qquad \mathfrak{I}'' = \{J \in \mathfrak{E}(I) \mid f_J \mid h_J\},\$$

and we obtain

$$\{J \in \mathcal{E}(I) | J \supset J_0\} \subset \mathfrak{I}' \cup \mathfrak{I}''$$

which implies that either \mathfrak{I}' or \mathfrak{I}'' is cofinal in $\mathcal{E}(I)$. Without restriction, let \mathfrak{I}' be cofinal in $\mathcal{E}(I)$. For $J \in \mathfrak{I}'$, there exists some polynomial $\varphi^{(J)} \in \mathbb{R}[X_J]$ such that $g_J = f_J \varphi^{(J)}$. If $J, J' \in \mathfrak{I}'$ and $J \supset J'$, then $g_{J'} = \pi_{J,J'}(g_J) = \pi_{J,J'}(f_J)\pi_{J,J'}(\varphi^{(J)}) = f_{J'}\pi_{J,J'}(\varphi^{(J)}) = f_{J'}\varphi^{(J')}$ implies $\pi_{J,J'}(\varphi^{(J)}) = \varphi^{(J')}$ and hence $\varphi = (\varphi^{(J)})_{J \in \mathfrak{I}'} \in \lim_{t \to T} \mathbb{R}[X_J]$. If $q = \pi^{-1}(\varphi)$, then $q_J = \varphi^{(J)} \in \mathbb{R}[X_J]$ and $\deg(q_J) = \deg(\varphi^{(J)}) \leq \deg(g_J) \leq d e g(g_J) \leq d e g(g)$ for all $J \in \mathfrak{I}'$; this implies $q \in \mathbb{R}[\langle X \rangle]$. Since $g_J = f_J q_J = (fq)_J$ for all $J \in \mathfrak{I}'$, we obtain g = fq, whence $f \mid g$ in $\mathbb{R}[\langle X \rangle]$.

Next we adopt Gauss' Lemma for large polynomials. An element $f \in R[\langle X \rangle]$ is called *primitive*, if $f = \lambda f^*$ where $\lambda \in R$ and $f^* \in R[\langle X \rangle]$ implies $\lambda \in R^{\times}$ (i.e., 1 is a g.c.d. of all coefficients of f in R). Hence an element of R is primitive if and only if it lies in R^{\times} .

PROPOSITION 6. Let R be an FFD and $f \in R[\langle X \rangle] \setminus R$. Then the following assertions are equivalent:

a) f is primitive.

b) f_J is primitive for some $J \in \mathcal{E}(I)$.

c) There exists some $J_0 \in \mathcal{E}(I)$ such that f_J is primitive for all $J \supset J_0$.

PROOF. Obviolusly, $c \rightarrow b \rightarrow a$. Now set

$$f = \sum_{P \in \mathcal{F}(\boldsymbol{X})} \lambda_P P \in R[\langle \boldsymbol{X} \rangle]$$

and suppose that f is primitive, i.e., 1 is a g.c.d. of $\{\lambda_P | P \in \mathcal{F}(X)\}$. Since R is an FFD, there exists a finite subset $\mathcal{P} \subset \mathcal{F}(X)$ such that 1 is a g.c.d. of $\{\lambda_P | P \in \mathcal{P}\}$. If $J_0 \in \mathcal{E}(I)$ is such that $\mathcal{P} \subset \mathcal{F}(X_{J_0})$, then $\mathcal{P} \subset \mathcal{F}(X_J)$ for all $J \in \mathcal{E}(I)$ satisfying $J \supset J_0$; therefore 1 is a g.c.d. of $\{\lambda_P | P \in \mathcal{F}(X_J)\}$ for any such J, which means that

$$f_J = \sum_{P \, \epsilon \, \mathcal{J}(X)} \, \lambda_P P \, \epsilon \, R[X_J]$$

is primitive.

PROPOSITION 7 (Gauss' lemma). Let R be a factorial domain and K a quotient field of R.

i) If $f, g \in R[\langle X \rangle]$ are primitive, then fg is also primitive.

ii) If $f \in R[\langle X \rangle]$ is primitive, $g \in K[\langle X \rangle]$ and $fg \in R[\langle X \rangle]$, then already $g \in R[\langle X \rangle]$.

PROOF. For classical polynomials $f \in K[X]$, we use the notation of the content c(f) as in [8], § 8. Then we have c(fg) = c(f)c(g) for all $f, g \in K[X]$; $f \in R[X]$ if and only if c(f) is integral; $f \in R[X]$ is primitive if and only if c(f) = 1.

i) If $f, g \in R[\langle X \rangle]$ are primitive, then $f_J, g_J \in R[X_J]$ are primitive for some $J \in \mathcal{E}(I)$ by Proposition 6. Then $(fg)_J = f_J g_J$ is also primitive, and again Proposition 6 implies that fg is primitive.

ii) By Proposition 6, there exists some $J_0 \in \mathcal{E}(I)$ such that f_J is primitive for all $J \in \mathcal{E}(I)$ satisfying $J \supset J_0$. For such J, $c(f_J g_J) = c(g_J)$ is integral, since $f_J g_J = (fg)_J \in R[X_J]$; this implies $g_J \in R[X_J]$, and consequently $g \in R[\langle X \rangle]$.

PROPOSITION 8 Let R be a factorial domain, K a quotient field of R and $f \in R[\langle X \rangle]_{\aleph} \setminus R$. Then the following assertions are equivalent:

On the algebraic and arithmetical structure etc.

a) f is a prime element of $R[\langle X \rangle]_{\aleph}$.

b) f is irreducible in $R[\langle X \rangle]_{\aleph}$.

c) f is primitive and irreducible in $K[\langle X \rangle]$.

PROOF. For finite I, this is classical; see [14], Ch. V, \S 6.

 $a) \Rightarrow b)$ is obvious.

b) \Rightarrow c) If f is irreducible in $R[\langle X \rangle]_{\mathbb{R}}$, then f is irreducible in $R[\langle X \rangle]$ by Proposition 2, ii). By Proposition 4, there exists some $J_0 \in \in \mathcal{E}(I)$ such that f_J is irreducible in $R[X_J]$ and hence in $K[X_J]$ for all $J \in \mathcal{E}(I)$ satisfying $J \supset J_0$. Again by Proposition 4 it follows that f is irreducible in $K[\langle X \rangle]$. Being irreducible in $R[\langle X \rangle]$, f is primitive by definition.

 $c) \Rightarrow a)$ By Propositions 4 and 6, there exists some $J_0 \in \mathcal{E}(I)$ such that f_J is primitive and irreducible in $K[X_J]$ for all $J \in \mathcal{E}(I)$ satisfying $J \supset J_0$. Hence f_J is a prime element in $R[X_J]$ for all such J, and Proposition 5 implies that f is a prime element of $R[\langle X \rangle]$. By Proposition 2, ii),

$$fR[\langle X \rangle] \cap R[\langle X \rangle]_{\aleph} = fR[\langle X \rangle]_{\aleph},$$

and hence f is also a prime element of $R[\langle X \rangle]_{\aleph}$.

THEOREM 1. Let R be a factorial domain and K a quotient field of R. Then $R[\langle X \rangle]_{\aleph}$ is a factorial domain; the prime elements of $R[\langle X \rangle]_{\aleph}$ are the primes of R and the primitive polynomials $f \in R[\langle X \rangle]_{\aleph} \setminus R$ which are irreducible in $K[\langle X \rangle]$.

PROOF. If $f \in R[\langle X \rangle]_{\aleph} \setminus R$ is primitive and irreducible in $K[\langle X \rangle]$, then f is a prime element of $R[\langle X \rangle]_{\aleph}$ by Proposition 8. If $p \in R$ is a prime element of R, then $R[\langle X \rangle]_{\aleph} / pR[\langle X \rangle]_{\aleph}$ is a domain, and thus p is a prime element of $R[\langle X \rangle]_{\aleph}$.

We must prove that every $f \in R[\langle X \rangle]_{\mathbb{R}} \setminus (\mathbb{R}^{\times} \cup \{0\})$ has a factorization $f = p_1 \cdot \ldots \cdot p_r f_1 \cdot \ldots \cdot f_s$, where $p_i \in \mathbb{R}$ are prime elements and $f_j \in \mathbb{R}[\langle X \rangle]_{\mathbb{R}} \setminus \mathbb{R}$ are irreducible. For $f \in \mathbb{R}$, this is obvious. Thus we may suppose that $f \in R[\langle X \rangle]_{\mathbb{R}} \setminus \mathbb{R}$ and that the assertation is proved for all large polynomials of smaller degree. Clearly, $f = p_1 \cdot \ldots \cdot p_r f^*$, where $p_i \in \mathbb{R}$ are primes of \mathbb{R} and $f^* \in \mathbb{R}[\langle X \rangle]_{\mathbb{R}} \setminus \mathbb{R}$ is primitive. If f^* is irreducible, we are done; otherwise $f^* = f_1^* f_2^*$ where $f_i^* \in \mathbb{R}[\langle X \rangle]_{\mathbb{R}} \setminus \mathbb{R}$ and hence $\deg(f_i^*) < \deg(f^*) = \deg(f)(i = 1, 2)$. Applying the induction hypothesis for f_i^* , the assertion follows.

For the next result, we need a Lemma.

LEMMA 1. Let $(R_{\alpha})_{\alpha \in \Lambda}$ be a family of Krull domains contained in a field K, and set

$$R = \bigcap_{\alpha \in \Lambda} R_{\alpha}$$

Suppose that for every $0 \neq x \in R$ the set $\{\alpha \in \Lambda | x \notin R_{\alpha}^{\times}\}$ is finite. Then R is Krull domain.

PROOF. [9], Lemma 1.2.

THEOREM 2. If R is a Krull domain, then $R[\langle X \rangle]_{\aleph}$ is also a Krull domain.

PROOF. Let K be a quotient field of R and $(V_{\alpha})_{\alpha \in \Lambda}$ a family of discrete valuation rings of K such that $R = \bigcap_{\alpha \in \Lambda} V_{\alpha}$ and, for each $0 \neq x \in R$, the set $\{\alpha \in \Lambda | x \notin V_{\alpha}^{\times}\}$ is finite. For $\alpha \in \Lambda$, set

$$N_{\alpha} = \{ f \in V_{\alpha}[\langle X \rangle] | f \text{ is primitive} \}.$$

By Proposition 7, N_{α} is a multiplicatively closed subset of $V_{\alpha}[\langle X \rangle]$. By Theorem 1, the domains $K[\langle X \rangle]_{\aleph}$ and $V_{\alpha}[\langle X \rangle]$ are factorial and hence the localisations $V_{\alpha}[\langle X \rangle]_{N_{\alpha}}$ are also factorial. If $0 \neq f \in R[\langle X \rangle]$ then the set $\{\alpha \in \Lambda | x \notin N_{\alpha}^{\times}\}$ is finite; this implies $f \in (V_{\alpha}[\langle X \rangle]_{N_{\alpha}})^{\times}$ for all but finitely many $\alpha \in \Lambda$. By Lemma 1 it is sufficient to prove that

$$R[\langle \boldsymbol{X} \rangle]_{\aleph} = K[\langle \boldsymbol{X} \rangle]_{\aleph} \cap \bigcap_{\alpha \in \Lambda} V_{\alpha}[\langle \boldsymbol{X} \rangle]_{N_{\alpha}}$$

Obviously $R[\langle X \rangle]_{\aleph}$ is contained in $K[\langle X \rangle]_{\aleph}$ and in each $V_{\alpha}[\langle X \rangle]_{N_{\alpha}}$. If $\alpha \in \Lambda$ and $f \in K[\langle X \rangle] \cap V_{\alpha}[\langle X \rangle]_{N_{\alpha}}$, then there exists some $g_{\alpha} \in N_{\alpha}$ such that $fg_{\alpha} \in V_{\alpha}[\langle X \rangle]$. Since $g_{\alpha} \in V_{\alpha}[\langle X \rangle]$ is primitive, Proposition 7, ii) implies $f \in V_{\alpha}[\langle X \rangle]$. Thus we obtain

$$K[\langle X \rangle]_{\aleph} \cap \bigcap_{\alpha \in \Lambda} V_{\alpha}[\langle X \rangle]_{N_{\alpha}} \subset K[\langle X \rangle]_{\aleph} \cap \bigcap_{\alpha \in \Lambda} V_{\alpha}[\langle X \rangle] = R[\langle X \rangle]_{\aleph} .$$

3. Polynomial functions on modules.

Throughout this section, let F be a commutative ring, R a commutative F-algebra and V an F-module. A mapping $p:V \to R$ is called a homogeneous F-polynomial function of degree $d \in \mathbb{N}$, if there exists an Fmultilinear mapping $p^*: V^d \to R$ such that $p(x) = p^*(x, \ldots, x)$ for all $x \in V$. We denote by $\mathcal{P}_F(V, R)_d$ the set of all homogeneous F-polynomial functions $p: V \to R$ of degree $d \in \mathbb{N}$; $\mathcal{P}_F(V, R)_0$ denotes the set of all constant functions $p: V \to R$ which we call homogeneous *F*-polynomial functions of degree 0. For any $d \in \mathbb{N}_0$, $\mathcal{P}_F(V, R)_d$ is an *R*-module under pointwise addition and scalar multiplication. If $p \in \mathcal{P}_F(V, R)_d$, $x \in V$ and $t \in F$, then $p(tx) = t^d p(x)$.

It is usual to define polynomial functions with values in F-modules, see e.g. [3; Ch. IV, §5, no. 9]. In this paper however, we are mainly interested in the polynomial algebra (with a pointwise multiplication), and therefore we restrict ourselves to polynomial functions taking values in an F-algebra.

PROPOSITION 9. Let $d, e \in \mathbb{N}_0$, $p \in \mathcal{P}_F(V, R)_d$ and $q \in \mathcal{P}_F(V, R)_e$ be given. If $pq: V \to R$ is defined pointwise, i.e. (pq)(x) = p(x)q(x), then $pq \in \mathcal{P}_F(V, R)_{d+e}$.

PROOF. Let $p^*: V^d \to R$ and $q^*: V^e \to R$ be *F*-multilinear mappings such that $p(x) = p^*(x, ..., x)$ and $q(x) = q^*(x, ..., x)$ for all $x \in V$. If $r: V^{d+e} = V^d \times V^e \to R$ is defined by $r(x_1, ..., x_d, y_1, ..., y_e) = p(x_1, ..., x_d) q(y_1, ..., y_e)$, then *r* is *F*-multilinear, and (pq)(x) = r(x, ..., x) for all $x \in V$.

A mapping $p: V \to R$ is called an *F*-polynomial function, if there exists some $d \in \mathbb{N}_0$ and homogeneous *F*-polynomial functions $p_0, \ldots, p_d: V \to R$ such that $p(x) = p_0(x) + \ldots + p_d(x)$ for all $x \in V$; p is called a *local F-polynomial function*, if $p \mid M: M \to R$ is an *F*-polynomial function for every finitely generated *R*-submodule *M* of *V*. We denote by $\mathcal{P}_F(V, R)$ the set of all *F*-polynomial functions and by $\overline{\mathcal{P}}_F(V, R)$ the set of all *F*-polynomial functions $p: V \to R$. Obviously,

$$\mathcal{P}_F(V, R) \subset \overline{\mathcal{P}}_F(V, R) \subset R^V$$

are R-subalgebras if R^V is viewed as the R-algebra of all functions $f: V \to R$ under pointwise addition, multiplication and scalar multiplication.

On the algebra \mathbb{R}^{V} we introduce a topology as follows. Denote by $\mathfrak{E}(V)$ the set of all finitely generated F-submodules of V. For $M \in \mathfrak{E}(V)$, define $\pi_{M} \colon \mathbb{R}^{V} \to \mathbb{R}^{M}$ by $\pi_{M}(f) = f \mid M$, and for $M, M' \in \mathfrak{E}(V), M \supset M'$, define $\pi_{M,M'} \colon \mathbb{R}^{M} \to \mathbb{R}^{M'}$ by $\pi_{M,M'}(g) = g \mid M'$. With the mappings $\pi_{M,M'}$, the system $(\mathbb{R}^{M})_{M \in \mathfrak{E}(V)}$ becomes a projective system of R-algebras, and

$$\pi = \lim_{\stackrel{\leftarrow}{M \in \mathfrak{S}(V)}} \pi_M \colon R^V \to \lim_{\stackrel{\leftarrow}{M \in \mathfrak{S}(V)}} R^M$$

is an *R*-algebra isomorphism. If $f \in \mathbb{R}^V$, then $\pi(f) = (f | M)_{M \in \mathfrak{E}(V)}$. For

every $M \in \mathfrak{E}(V)$, we give \mathbb{R}^M the discrete topology, and we shift the topology of the projective limit to \mathbb{R}^V be means of the isomorphism π . This topology on \mathbb{R}^V (obviously different from the product topology) will be called the *limit topology*.

With the limit topology, $R^{\check{V}}$ is a separated complete topological *R*-algebra. For $f \in R^{V}$ and $M \in \mathfrak{E}(V)$, we set

$$\mathcal{U}_{M}(f) = \left\{ g \in \mathbb{R}^{V} \mid g \mid M = f \mid M \right\}.$$

Then $\{\mathcal{U}_M(f)|M \in \mathfrak{E}(V)\}\$ is a fundamental system of neighbourhoods of f, and therefore the limit topology on \mathbb{R}^V coincides with the topology of $\mathfrak{E}(V)$ -convergence; see [4], Ch. X, § 1.

For the next result, let $\mathfrak{E}^+(V)$ be the set of all finitely generated F-submodules of V which are F-direct summands.

PROPOSITION 10. i) $\overline{\mathcal{P}}_F(V, R)$ is closed in \mathbb{R}^V , and

 $\pi(\overline{\mathscr{P}}_F(V, R)) = \lim_{\substack{\leftarrow \\ M \in \mathfrak{E}(V)}} \mathscr{P}_F(M, R) \subset \lim_{\substack{\leftarrow \\ M \in \mathfrak{E}(V)}} R^M.$

ii) Let $M \in \mathcal{E}(V)$ be given and suppose that either $M \in \mathfrak{E}^+(V)$ or R is an injective F-module. Then the restriction map

$$\circ: \begin{cases} \mathscr{P}_F(V, R) & \to & \mathscr{P}_F(M, R), \\ f & \mapsto & f \mid M, \end{cases}$$

is surjective.

iii) Suppose that either $\mathfrak{E}^+(V)$ is cofinal in $\mathfrak{E}(V)$ or R is an injective F-module. Then

$$\overline{\mathcal{P}}_F(V,R) = \overline{\mathcal{P}_F(V,R)} \subset R^V.$$

PROOF. i) A function $f \in \mathbb{R}^V$ lies in $\overline{\mathcal{P}}_F(V, \mathbb{R})$ if and only if $f \mid M \in \mathcal{P}_F(M, \mathbb{R})$ for all $M \in \mathfrak{E}(V)$, i.e.,

$$\pi(f) = (f | M)_{M \in \mathfrak{E}(V)} \in \lim_{\substack{\leftarrow \\ M \in \mathfrak{E}(V)}} \mathscr{P}_F(M, R).$$

This implies $\pi(\overline{\mathscr{P}}_F(V, R)) = \lim_{\leftarrow} \mathscr{P}_F(M, R)$. If $f \in \overline{\mathscr{P}_F(V, R)}$, then

$$\pi(f) \in \pi \overline{\mathcal{P}}_F(V, R) = \lim_{\substack{\leftarrow \\ M \in \mathfrak{E}(V)}} \pi_M \overline{\mathcal{P}}_F(V, R) \subset \lim_{\substack{\leftarrow \\ M \in \mathfrak{E}(V)}} \mathcal{P}_F(M, R),$$

and consequently $f \in \overline{\mathcal{P}}_F(V, R)$. Hence $\overline{\mathcal{P}}_F(V, R)$ is closed in R^V .

ii) It is sufficient to prove that every homogeneous *F*-polynomial function $q:M \to R$ of degree $d \ge 1$ can be extended to an *F*-polynomial function $\tilde{q}: V \to R$. Let $q^*: M^d \to R$ be *F*-multilinear such that $q(x) = q^*(x, ..., x)$ for all $x \in M$. If either $M \in \mathfrak{S}^+(V)$ or *R* is *F*-injective, then there exists an *F*-multilinear mapping $\tilde{q}^*: V^d \to R$ such that $\tilde{q}^* | M^d = q^*$, and $\tilde{q}: V \to R$, defined by $\tilde{q}(x) = \tilde{q}^*(x, ..., x)$, is an *F*-polynomial function extending q.

iii) If $M \in \mathcal{E}^+(V)$ or R is F-injective, ii) implies

$$\mathscr{P}_F(M, R) = \pi_M \mathscr{P}_F(V, R) \subset \pi_M \mathscr{P}_F(V, R) \subset \mathscr{P}_F(M, R),$$

whence equality holds. This implies

$$\overline{\pi\mathscr{P}_F(V,R)} = \lim_{\substack{\leftarrow\\ M \in \mathfrak{E}(V)}} \mathscr{P}_F(M,R) = \pi\overline{\mathscr{P}}_F(V,R),$$

and consequently $\overline{\mathscr{P}_F(V,R)} = \overline{\mathscr{P}}_F(V,R).$

Next we investigate the connection between F-polynomial functions and large polynomials; we start with the case of polynomials in a finite number of indeterminates.

We say that F has no zero divisors on R if

$$t \in F$$
, $x \in R$, $tx = 0$ implies $t = 0$ or $x = 0$;

notice that this condition implies that F itself is a domain.

A polynomial $f \in R[X_1, ..., X_n]$ (in $n \in \mathbb{N}$ indeterminates) is called *q*-reduced (for some $q \in \mathbb{N}$), if $\deg_{X_i}(f) < q$ for all $j \in \{1, ..., n\}$.

LEMMA 2. Suppose that F has no zero divisors on R, and let $f \in \mathbb{R}[X_1, ..., X_n]$ be a polynomial.

i) If F is infinite and $f(x_1, ..., x_n) = 0$ for all $(x_1, ..., x_n) \in F^n$, then f = 0.

ii) If $\# F = q \in \mathbb{N}$, then there exists a unique q-reduced polynomial $f_0 \in R[X_1, ..., X_n]$ such that $f(x_1, ..., x_n) = f_0(x_1, ..., x_n)$ for all $(x_1, ..., x_n) \in F^n$.

PROOF. Exactly as in the classical case; cf. [14], Ch. V, §4. ■

Now let again $X = (X_i)_{i \in I}$ be a family of indeterminates, and adopt all notations of section 1.

THEOREM 3. For

$$f = \sum_{n \ge 0} \sum_{(i_1, \dots, i_n) \in I_{\leq}^n} \lambda_{i_1, \dots, i_n} X_{i_1} \cdot \dots \cdot X_{i_n} \in \overline{R[\langle X \rangle]}$$

we define $f^{F}: F^{(I)} \rightarrow R$ by

$$f^F((x_i)_{i\in I}) = \sum_{n\geq 0} \sum_{(i_1,\ldots,i_n)\in I^n_{\leq}} \lambda_{i_1,\ldots,i_n} x_{i_1} \cdot \ldots \cdot x_{i_n}$$

i) $f \in \overline{R[\langle X \rangle]}$ implies $f^F \in \overline{\mathcal{P}}_F(F^{(I)}, R)$, and $f \in R[\langle X \rangle]$ implies $f^F \in \mathcal{P}_F(F^{(I)}, R)$.

ii) The mapping

$$\phi^{F} : \begin{cases} \overline{R[\langle X \rangle]} & \to & \overline{\mathcal{P}}_{F}(F^{(I)}, R), \\ f & \mapsto & f^{F}, \end{cases}$$

is a homomorphism of R-algebras satisfying

$$\phi^F(R[\langle X \rangle]) = \mathscr{P}_F(F^{(I)}, R).$$

iii) Suppose that F has no zero divisors on R; then

$$\phi^F(\overline{R[\langle X \rangle]}) = \overline{\mathcal{P}}_F(F^{(I)}, R).$$

If moreover F is infinite, then ϕ^F is a topological isomorphism.

PROOF. We set $V = F^{(I)}$, and we denote by $(e_i)_{i \in I}$ the cannonical basis of V, i.e.,

$$\boldsymbol{x} = (x_i)_{i \in I} = \sum_{i \in I} x_i \boldsymbol{e}_i \quad \text{for all} \quad \boldsymbol{x} \in V.$$

For $J \in I$, we set

$$V_J = \bigoplus_{i \in J} Re_i \subset V.$$

If $J \in \mathcal{E}(I)$, then $V_J \in \mathfrak{E}^+(V)$, and the system $\{V_J | J \in \mathcal{E}(I)\}$ is cofinal in $\mathfrak{E}(V)$. Identifying V_J with $F^{(J)}$ we obtain, for any $f \in \overline{R[\langle X \rangle]}$,

$$f^F | V_J = (f_J)^F .$$

i) We show first that $f \in R[\langle X \rangle]$ implies $f^F \in \mathcal{P}_F(V, R)$ and it suffices to do this for large forms $f \in R[X]_n$, where $n \in \mathbb{N}$. Suppose that

$$f = \sum_{(i_1, \ldots, i_n) \in I_{\leq}^n} \lambda_{i_1, \ldots, i_n} X_{i_1} \cdots X_{i_n} \in R\llbracket X \rrbracket_n,$$

and let $p^*: V^n \to R$ be the unique F-multilinear mapping satisfying

$$p^*(\boldsymbol{e}_{i_1}, \ldots, \boldsymbol{e}_{i_n}) = \begin{cases} \lambda_{i_1, \ldots, i_n} & \text{if } (i_1, \ldots, i_n) \in I_{\leq}^n \\ 0 & \text{otherwise.} \end{cases}$$

If $p \in \mathcal{P}_F(V, R)$ is defined by $p(\mathbf{x}) = p^*(\mathbf{x}, ..., \mathbf{x})$, then

$$p((x_i)_{i \in I}) = p^* \left(\sum_{i \in I} x_i e_i, \dots, \sum_{i \in I} x_i e_i \right) =$$

=
$$\sum_{(i_1, \dots, i_n) \in I_{\leq}^n} x_{i_1} \cdot \dots \cdot x_{i_n} \lambda_{i_1, \dots, i_n} = f^F((x_i)_{i \in I}),$$

whence $f^F = p \in \mathcal{P}_F(V, R)$.

If $f \in \overline{R[\langle X \rangle]}$, then $f_J \in R[X_J]$ for all $J \in \mathcal{E}(I)$ and consequently $(f_J)^F = f^F | V_J \in \mathcal{P}_F(V_J, R)$, which implies $f^F \in \overline{\mathcal{P}_F(V, R)}$.

ii) Clearly, ϕ^F is a homomorphism of *R*-algebras. In order to prove the equality $\phi^F(R[\langle X \rangle]) = \mathscr{P}_F(V, R)$, it is sufficient to show that every homogeneous *F*-polynomial function $p: V \to R$ of degree $n \ge 1$ is of the form $p = f^F$ for some $f \in R[\![X]\!]_n$.

Let $p: V \to R$ be a homogeneous *F*-polynomial function, and let $p^*: V^n \to R$ be *F*-multilinear such that $p(\mathbf{x}) = p^*(\mathbf{x}, ..., \mathbf{x})$ for all $\mathbf{x} \in V$. For $(i_1, ..., i_n) \in I^n$, we set

$$[i_1, ..., i_n] = \{(i_{\sigma(1)}, ..., i_{\sigma(n)}) | \sigma \in S_n\},\$$

and we define $f \in R[\![X]\!]_n$ by

$$f = \sum_{(i_1, \ldots, i_n) \in I_{\leq}^n} \left(\sum_{(j_1, \ldots, j_n) \in [i_1, \ldots, i_n]} p^*(\boldsymbol{e}_{j_1}, \ldots, \boldsymbol{e}_{j_n}) \right) X_{i_1} \cdot \ldots \cdot X_{i_n}.$$

Then we obtain

$$f^{F}((x_{i})_{i \in I}) = \sum_{(i_{1}, \dots, i_{n}) \in I^{n}} p^{*}(e_{i_{1}}, \dots, e_{i_{n}}) x_{i_{1}} \cdots x_{i_{n}} =$$
$$= p^{*} \left(\sum_{i=1}^{n} x_{i} e_{i}, \dots, \sum_{i=1}^{n} x_{i} e_{i} \right) = p((x_{i})_{i \in I}),$$

whence $p = f^F$.

iii) For a large polynomial $f \in R[\langle X \rangle]$, we have $f^F = 0$ if an only if $0 = f^F | V_J = (f_J)^F$ for all $J \in \mathcal{E}(I)$. If F is infinite, this implies $f_J = 0$ for all $J \in \mathcal{E}(I)$ (by Lemma 2) and hence f = 0; therefore

$$\phi^F \left| R[\langle X \rangle] : R[\langle X \rangle] \xrightarrow{\sim} \mathscr{P}_F(V, R) \right|$$

Franz Halter-Koch

is an isomorphism and

$$(\phi^F | R[X_J]: R[X_J] \xrightarrow{\sim} \mathscr{P}_F(V_J, R))_{J \in \mathcal{S}(I)}$$

is a family of isomorphisms, compatible with the mappings $\pi_{J,J'}$ of the projective systems on either side. Taking projective limits and observing the commutative diagram

$$\begin{array}{ccc} \overline{R[\langle X \rangle]} & \stackrel{\phi^F}{\longrightarrow} & \overline{\mathcal{P}}_F(V, R) \\ \pi & & & & \downarrow \pi \\ \lim R[X_J] & \stackrel{\sim}{\longrightarrow} & \lim \mathcal{P}_F(V_J, R), \end{array}$$

it follows from Proposition 9, iii) that ϕ^F is an isomorphism if F is infinite.

Now consider the case $\#F = q \in \mathbb{N}$. If $g \in \mathcal{P}_F(V, R)$ and $J \in \mathcal{E}(I)$, then $g | V_J \in \mathcal{P}_F(V_J, R)$, and by ii), there exists a polynomial $f^{(J)} \in R[X_J]$ such that $(f^{(J)})^F = g | V_J$. By Lemma 2, there exists a unique q-reduced polynomial $f_0^{(J)} \in R[X_J]$ such that $(f_0^{(J)}) = (f^{(J)})^F = g | V_J$. If $J, J' \in \mathcal{E}(I)$ and $J \supset J'$, then $\pi_{J,J'}(f_0^{(J)})$ is q-reduced, and $\pi_{J,J'}(f_0^{(J)})^F = (f_0^{(J)})^F | V_{J'} =$ $= g | V_{J'}$, whence $\pi_{J,J'}(f_0^{(J)}) = f_0^{(J')}$. This implies $(f_0^{(J)})_{J \in \mathcal{E}(I)} \in \lim_{T \to \mathcal{E}(I)} R[X_J]$, $f = \pi^{-1}((f_0^{(J)})_{J \in \mathcal{E}(I)}) \in R[\langle X \rangle]$ and $f^F | V_J = (f_J)^F = (f_0^{(J)})^F = g | V_J$, whence $f^F = g$.

4. Polynomial functions on groups.

In this section we study (\mathbb{Z} -) polynomial functions and local (\mathbb{Z} -) polynomial functions $q: G \to R$, where G is an abelian group and R is a commutative ring containing a prime field F.

Let G be an (additively written) abelian group, F a prime field (i.e. $F = \mathbb{Q}$ or $F = \mathbb{F}_p$ for some prime number Hp) and R a commutative Falgebra. We shall be concerned with the R-algebras $\mathcal{P}(G, R) = \mathcal{P}_{\mathbb{Z}}(G, R)$ and $\overline{\mathcal{P}}(G, R) = \overline{\mathcal{P}}_{\mathbb{Z}}(G, R)$; we always write \otimes instead of $\otimes_{\mathbb{Z}}$.

 $F \otimes G$ is a vector space over F, and $F \otimes G = \{\lambda \otimes g \mid \lambda \in F, g \in G\}$. Let $\omega: G \to F \otimes G$ be the group homomorphism defined by

$$\omega(g)=1\otimes g.$$

Let $\mathcal{L}^n(G, R)$ resp. $\mathcal{L}^n_F(F \otimes G, R)$ be the *R*-module of all multiadditive functions $G^n \to R$ resp. *F*-multilinear functions $(F \otimes G)^n \to R$. For $p^* \in$

On the algebraic and arithmetical structure etc.

$$\in \mathcal{L}^n_F(F \otimes G, R)$$
 we define $\omega^n(p^*) \in \mathcal{L}^n(G, R)$ by

$$\omega^{n}(p^{*})(g_{1},...,g_{n}) = p^{*}(1 \otimes g_{1},...,1 \otimes g_{n}).$$

Then we obtain the following Lemma.

LEMMA 3. The mapping $\omega^n \colon \mathscr{L}^n_F(F \otimes G, R) \to \mathscr{L}^n(G, R)$ is an isomorphism of *R*-modules.

PROOF. ω^n is *R*-linear by definition. Now we consider the canonical isomorphism

$$\mathcal{L}^{n}(G, R) \xrightarrow{\sim} \operatorname{Hom} (G \otimes \ldots \otimes G, R),$$
$$\mathcal{L}^{n}_{F}(F \otimes G, R) \xrightarrow{\sim} \operatorname{Hom}_{F}((F \otimes G) \bigotimes_{F} \ldots \bigotimes_{F} (F \otimes G), R)$$

and

$$(F\otimes G)\bigotimes_{F}\ldots\bigotimes_{F}(F\otimes G)\,\tilde{\rightarrow}\,F\otimes(G\otimes\ldots\otimes G)\,;$$

they induce a commutative diagram

$$\begin{array}{cccc} \mathscr{L}_{F}^{n}(F\otimes G,R) & \xrightarrow{\sim} & \operatorname{Hom}_{F}(F\otimes G^{\otimes n},R) \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ \mathscr{L}^{n}(G,R) & \xrightarrow{\sim} & \operatorname{Hom}(G^{\otimes n},R) \end{array}$$

where $\omega^*(\phi)(g_1 \otimes \ldots \otimes g_n) = \phi(1 \otimes g_1 \otimes \ldots \otimes g_n)$. By [11], Lemma 2, ω^* is an isomorphism (there *R* is assumed to be a field, but this is immaterial). Hence ω^* is also an isomorphism.

THEOREM 4. The mapping

$$\omega^*: \begin{cases} \overline{\mathcal{P}}_F(F \otimes G, R) & \to & \overline{\mathcal{P}}(G, R), \\ p & \mapsto & p \circ \omega, \end{cases}$$

is an isomorphism of K-algebras satisfying

$$\omega^*(\mathscr{P}_F(F\otimes G,R))=\mathscr{P}(G,R).$$

PROOF. We prove first that $p \in \mathscr{P}_F(F \otimes G, R)$ implies $\omega^*(p) \in \mathscr{P}(G, R)$, and it is sufficient to do this in the case where $p: F \otimes G \to R$ is a homogeneous *F*-polynomial function of degree $n \ge 1$. In this case, let

 $p^* \in \mathcal{L}_F^n(F \otimes G, R)$ be such that $p(z) = p^*(z, ..., z)$ for all $z \in F \otimes G$. Then we obtain, for $g \in G$,

$$\omega^*(p)(g) = p(1 \otimes g) = p^*(1 \otimes g, ..., 1 \otimes g) = (\omega^n p)(g, ..., g)$$

which implies $\omega^*(p) \in \mathcal{P}(G, R)$. Now we set

$$\widetilde{\omega} = \omega^* \mid \mathscr{P}_F(F \otimes G, R) \colon \mathscr{P}_F(F \otimes G, R) \to \mathscr{P}(G, R),$$

and we prove that $\tilde{\omega}$ is an isomorphism of *R*-algebras.

In order to prove that $\tilde{\omega}$ is surjective it suffices to show that every homogeneous polynomial function $q: G \to R$ of degree $n \ge 1$ lies in the image of $\tilde{\omega}$. Let $q: G \to R$ be a homogeneous polynomial function of degree $n \ge 1$, and let $q^* \in \mathcal{L}^n(G, R)$ be such that $q(g) = q^*(g, ..., g)$ for all $g \in G$. By Lemma 3, $q^* = \omega^n(p^*)$ for some $p^* \in \mathcal{L}^n_F(F \otimes G, R)$. If $p: F \otimes G \to R$ is defined by $p(z) = p^*(z, ..., z)$ then

$$\omega^{*}(p)(g) = p^{*}(1 \otimes g, \dots 1 \otimes g) = q^{*}(g, \dots, g) = q(g)$$

for all $g \in G$, whence $\omega^*(p) = q$.

In order to prove that $\tilde{\omega}$ is injective, let $p \in \mathcal{P}_F(F \otimes G, R)$ be in the kernel of $\tilde{\omega}$, i.e., $p(1 \otimes g) = 0$ for all $g \in G$.

CASE 1. char (R) = p > 0, $F = \mathbb{F}_p$. In this case, all elements of $F \otimes \otimes G$ are of the form $z = \overline{m} \otimes g = 1 \otimes mg$ for some $m \in \mathbb{Z}$, which implies p = 0.

CASE 2. char (R) = 0, $F = \mathbb{Q}$. We write p in the form $p = p_1 + \ldots + p_d$, where $p_i: F \otimes G \to R$ is a homogeneous *F*-polynomial function of degree *i*. For $t \in \mathbb{Q}$ and $g \in G$, we obtain

$$p(t\otimes g)=\sum_{i=0}^d t^i p_i(1\otimes g)\in R\,,$$

and if $t \in \mathbb{Z}$, then $p(t \otimes g) = p(1 \otimes tg) = 0$. Hence the polynomial

$$\sum_{i=0}^d \, p_i(1 \otimes g) \, T^i \in R[T]$$

vanishes on \mathbb{Z} which, by Lemma 2, implies $p_i(1 \otimes g) = 0$ for all $i \in \{0, ..., d\}$ and $g \in G$. Therefore we obtain $p(t \otimes g) = 0$ for all $t \in \mathbb{Q}$ and $g \in G$, i.e., p = 0.

Now we consider local polynomial functions. Let $\mathfrak{E}(G)$ be the set of all finitely generated subgroups of G and $\mathfrak{E}(F \otimes G)$ the set of all finitely generated F-submodules of $F \otimes G$. Obviously, the set

$$\mathfrak{E}_0(F \otimes G) = \{F \otimes C | C \in \mathfrak{E}(G)\}$$

is cofinal in $\mathfrak{E}(F \otimes G)$ and therefore a function $p: F \otimes G \to R$ lies in $\overline{\mathscr{P}}_F(F \otimes G, R)$ if and only if $p | F \otimes C \in \mathscr{P}_F(F \otimes G, R)$ for all $C \in \mathfrak{E}(G)$. If $p \in \overline{\mathscr{P}}_F(F \otimes G, R)$, then $(p \circ \omega) | C = (p | F \otimes C) \circ (\omega | C) \in \mathscr{P}(C, R)$ for all $C \in \mathfrak{E}(G)$ which implies $\omega^*(p) = p \circ \omega \in \overline{\mathscr{P}}(G, R)$. For $C \in \mathfrak{E}(G)$, we have established an isomorphism

$$\widetilde{\omega}_C: \mathscr{P}_F(F \otimes C, R) \xrightarrow{\sim} \mathscr{P}(C, R)$$

satisfying $\tilde{\omega}_C(p) = p \circ \omega$; the family $(\tilde{\omega}_C)_{C \in \mathfrak{E}(G)}$ is compatible with the morphisms of the projective system, and therefore we get a commutative diagram.

$$\begin{array}{cccc} \overline{\mathscr{P}}_{F}(F\otimes G,R) & \stackrel{\omega^{*}}{\longrightarrow} & \overline{\mathscr{P}}(G,R) \\ & \pi & & & & \downarrow \pi \\ \lim_{C \in \mathfrak{G}(G)} \mathscr{P}_{F}(F\otimes C,R) & \stackrel{\sim}{\underset{\lim_{m \to c}}{\longrightarrow}} & \lim_{C \in \mathfrak{G}(G)} \mathscr{P}(C,R). \end{array}$$

The left vertical arrow is an isomorphism by Proposition 9. Hence the right vertical arrow is surjective, and since it clearly is injective it is also an isomorphism. Therefore ω^* is an isomorphism.

COROLLARY. Let K be a field of characteristic zero. Then $\overline{\mathcal{P}}(G, K)$ is a factorial domain.

PROOF. By Theorem 4, $\mathcal{P}(G, K) \simeq \mathcal{P}_F(F \otimes G, K)$, where $F \simeq \mathbb{Q}$ is the prime field of K. If $F \otimes G = \{0\}$ then $\mathcal{P}_F(F \otimes G, K) \simeq K$; thus we suppose that $F \otimes G \simeq F^{(I)}$ for some set $I \neq \emptyset$. Then we obtain $\mathcal{P}_F(F \otimes G, K) \simeq \mathcal{P}_F(F^{(I)}, K) \simeq K[\langle X \rangle]$ by Theorem 3, and the latter ring is a factorial domain by Theorem 1.

Remark and acknowledgments. Without using to formalism of large polynomials it was proved in [12] that $\mathcal{P}(G, K)$ is a domain if char (K) = 0. I am indebted to Professor Jens Schwaiger for interesting me in generalized polynomial functions and for valuable discussions.

REFERENCES

- D. D. ANDERSON D. F. ANDERSON M. ZAFRULLAH, Factorization in integral domains, J. Pure Appl. Algebra, 69 (1990), pp. 1-19.
- [2] B. BALLET, Diviseurs dans les anneaus des séries formelles en une infinité d'indéterminées, Canad. Math. Bull, 27 (1984), pp. 301-308.

Franz Halter-Koch

- [3] N. BOURBAKI, Algèbre, chap. 1 à 3, Hermann, Paris (1970); chap. 4 à 7, Masson, Paris (1966).
- [4] N. BOURBAKI, General Topology, Part 1 and 2, Hermann, Paris (1966).
- [5] N. BOURBAKI, Theory of Sets, Hermann, Paris (1968).
- [6] E. D. CASHWELL C. J. EVERETT, Formal power series, Pac. J. Math., 13 (1963), pp. 45-64.
- [7] D. Z. DJOKOCIĆ, A representation theorem for $(X_1 1)(X_2 1)...(X_n 1)$ and its applications, Ann. Polon. Math., 22 (1969), pp. 189-198.
- [8] R. M. FOSSUM, The Divisor Class Group of a Krull Domain, Springer (1973).
- [9] R. GILMER, Power series over a Krull domain, Pacific J. Math., 29 (1969), pp. 543-549.
- [10] F. HALTER-KOCH, Finiteness theorem for factorizations, Semigroup Forum, 44 (1992), pp. 112-117.
- [11] F. HALTER KOCH, On products of additive functions (a third approach), Aequat. Math., 45 (1993), p. 281-284.
- [12] F. HALTER-KOCH L. REICH J. SCHWAIGER, On products of additive functions, Aequat. Math., 45 (1993), p. 83-88.
- [13] K. H. HEUVERS, Functional equations which characterize n-forms and homogeneous functions of degree n, Aequat. Math., 21 (1980), pp. 319-322.
- [14] S. LANG, Algebra, 2nd ed., Addison-Wesley (1984).
- [15] H. NISHIMURA, On the unique factorization theorem for formal power series, J. Math. Kyoto Univ., 7 (1967), pp. 151-160.

Manoscritto pervenuto in redazione il 6 maggio 1992.