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On the Equations
of Ideal Incompressible Magneto-Hydrodynamics.

PAOLO SECCHI (*)

1. Introduction.

We consider the equations of motion of an ideal incompressible plas-
ma both homogeneous and non-homogeneous, in a bounded domain 0 of

2; here «ideal» means inviscid and non resistive. The equations
of motion (in non dimensional form) in the non-homogeneous case are
(see [8])

Here u = u(t, x) = (ul , ... , un) is the plasma velocity, B = B(t, x) =
= (B1, ... , Bn) the magnetic field, p = p(t, x) the pressure, p = p(t, x) the
density; f = f ( t, x ) = fn ) is the given external force field, v =

v(x) denotes the unit outward normal to r The initial data

uo , Bo , p o are assumed to satisfy div uo = 0, div Bo = 0 in (J, uo - v = 0,
Bo ~ v = 0 on r and 0  mo ; m1 in D. In the homogeneous case
(p(t, x) = const &#x3E; 0, say equal to one without loss of generality) the

(*) Indirizzo del’A.: Dipartimento di Matematica, Universita di Pisa, via Buo-
narroti 2, 56127 Pisa, Italy.
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equations of motion become .

As a particular case, if B = 0, (NH) contains the Euler equations for
non-homogeneous incompressible flow and (H) the homogeneous ones.
Moreover, there is an obvious structural analogy between (NH), (H)
and the corresponding Euler equations. It is therefore natural to try to
extend the known results for the Euler equations to (H) and (NH). The
aim of the present paper is to show the existence and uniqueness to a
solution of (H) and (NH), and the persistence property, namely that
the solution at each time t belongs to the same function space X as does
the initial state, and describes a continuous trajectory in X (see Theo-
rems 2.1 and 2.4); we will also show the continuous dependence of the
solutions on the data (see Theorems 2.2 and 2.5).

2. Notations and results.

Throughout the paper we assume 0 to be an open bounded subset of
Rn, n ; 2, that lies (locally) on one side of its boundary 1; the regularity
of 1, will be indicated below. We set V = (D1, ... , Dn) where Di = 

u stands for the time derivative of u, (v-V)u = E vi Di u where
i = 1

v = (vi, ... , v.). f denotes the integral over D. Let p E (1, oo), k a posi-
tive integer; we denote by W k the Sobolev space Wk, and by II. Ilk its
norm. If p = 2 we write Hk instead of Wk. For p E ( I , m ] we denote by
LP the space and its canonical norm.

We define 1, as the closure of Co (Q) in Wk and set Wi =
o 0

where 0  1 £ k. Clearly Wok Wk = If l ; 1, W 1 k is
the subspace of Wk consisting of functions vanishing on 1-’ together with
their derivatives up to order 1 - 1. The above notations will be also
used to denote functions spaces whose elements are vector fields, and
analogously for their norms. The only exception is for particular vec-
tors U of the form U = (u, B, p) (respectively U = (u, B)) where u =
= (ul , ... , un), B = (B1, ... , Bn); we will use the same symbol ||U||k to de-
note the norm in W~ defined by = IIullk + I/Bllk + 11PIlk (respectively
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11V1lk = Observe that here IIBllk are the norms in Wk
of Rn-valued vectors and Ilpllk is the norm in Wk of a scalar function.
Given T &#x3E; 0, we set IT = [0, T]. We denote by C(IT; X), L 00 (IT; X),
L’(IT; X) the function spaces of continuous, essentially bounded,
summable functions on IT with values in the Banach space X. The
norms of L °’ (IT; Wk), L 1(IT; Wk) will be denoted by 11 - IIT, k and 
respectively. 

’

Given a positive definite and bounded matrix Ao(t, x), i.e. 0  aoI ~
~ Ao(t, x) ~ all for any (t, x) e QT and some positive numbers ao, a,,
we will consider equivalent norms t in Hk depending on t and
defined by

where ( , ) denotes the scalar product in R2n+ 1 and or = ( « 1, ... , is a

multi-index, I = « 1 + ... + 
In the sequel c, c’ denote different positive constants. The symbol
n, p, k, mo , m1 ) means that c depends at most on the quantities in-

side brackets.
Let us state now our results. We consider first the simplest problem

(H) of homogeneous flow. The first result concerns the local solv-

ability.

THEOREM 2.1. Let n ~ 2, p &#x3E; 1, 1~ &#x3E; 1 + n/p. Assume that 1-’ E

I ’ div u0=divB0 = 0 in D, 
on r, Wk). Then there exists a unique solution u, B E

problem (H) on IT where 

The next theorem concerns the continuous dependence of the
solutions of (H) on the data. Consider sequences {fm}
of functions satisfying the assumptions of Theorem 2.1, namely for
any m

Assume also that
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For any m, let us denote by ( H )m the problem (H) with data uo , Bo , f
substituted by fm. Theorem 2.1 guarantees the local exis-
tence of a solution um, Bm on some interval ITm. From (2.2) it follows
that Iluóm)llk + IIBOm’IIk + for some constant M, uniformly in
m. Hence from Theorem 2.1 we see that um , Bm exist on some common
interval I T ’ .

THEOREM 2.2. Let n, p, k, r be as in Theorem 2.1; moreover k a 3.
Let uo , Bo , f be as in Theorem 2.1 and uo’~~, fm satisfy (2.1) and
(2.2). Let u, B E C(IT; Wk) be the solution of problem (H) with data
uo , Bo , f. Then, for m large enough, there exists a solution um , Bm E
E C(IT ; of problem (H )m (with data Moreover

If fm ~ f in C(IT; Wk) (respect. in Lq(IT; Wk), q E (1, 00)) then 
Vp in the same topology.

REMARK 2.3. The solution u, B exists in IT if T is small enough by
Theorem 2.1. However, in Theorem 2.2, the existence interval I T can
be arbitrarily large.

The results contained in the two previous theorems are not com-
pletely new. Existence and uniqueness in Wk_spaces as in Theorem 2.1
have been proved by Alekseev in [1], except that the solution is shown
to be bounded in time with values in Wk but not continuous. The results
of both Theorem 2.1 and 2.2 have been proved by Schmidt in [16] pro-
vided that p = 2. Moreover the continuous dependence on the data has
been proved under the additional assumption of a dominated conver-
gence of fm to f, namely fm - f in Hk) and a.e. in
IT for some (lEL1(ITo;R+).

Such results are obtained by Schmidt by adapting the methods of
Temam [18] and of Kato and Lai [13] for the Euler equations of ideal
fluid flow. In the present work we apply the abstract Kato’s theory as
done by B eirao da Veiga in [2], [3], [5], again for the Euler equations.
By using a similar approach we can prove analogous results for the
more difficult non-homogeneous problem (NH). As far as we know such
a problem has never been considered in the literature. Our existence
result is as follows.
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0  mo ~ m1 in D, f E Hk). Then there exists a positive
constant e0 such that if

then problem (NH) admits a unique solution u

The previous results is unsatisfactory not only because, due to the par-
ticular structure of (NH), we are forced to consider only the case p = 2,
but especially because of condition (2.3). In fact, in analogy with the re-
sults for the non-homogeneous Euler equations (see [6], [7]), we would
expect the existence of the solution without any restriction on the size
of the gradient of the initial density. On the other hand, the extension
of results known for the Euler equations to the ideal Magneto-Hydro-
dynamics doesn’t always appear a simple matter; in this concern

see [14], [17], [20].
Consider now of functions

satisfying the assumptions of Theorem 2.4, namely for any m

Assume also that

For any m, let us denote by (NH)m the problem (NH) with data
uJm), instead of uo , Bo , P o , f. Let um , Bm , P ~ e H~ )
be the solution of (NH)m, defined on some interval ITm. Observe that
we don’t assume (2.3) for Obviously, if satisfies (2.3), Theo-
rem 2.4 guarantees the existence of um , Bm , P m and from (2.5) we de-
duce the existence on some common interval IT’.

THEOREM 2.5. Let n, k, r be as in Theorem 2.4; 3.
Let uo , Bo , p o , f be as in Theorem 2.3 and uJm), satisfy
(2.4), (2.5). Let u, B, p e C(IT; Hk) be the solution of problem (NH)
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with data uo , Bo , p o , f. Then, for m large enough, there exists a
solutions Hk) of problem (NH)m with data

u 0 (m), P(m) fm. Moreover

in the same topology,. 

REMARK 2.6. In the above theorem the existence interval IT can
be arbitrarily large as well as ·

The plan of the paper is the following: in the next section we consid-
er a linearized problem associated to (H) and give results for the corre-
sponding evolution operator. In sections 4 and 5 we prove Theorems 2.1
and 2.2 respectively. In section 6 we study a linearized problem associ-
ated to (NH) and the corresponding evolution operator. The proofs of
Theorems 2.4 and 2.5 are given in section 7 and 8 respectively.

3. The linearized problem associated to (H).

and_ H = (Hl , ... , Hn) be two vectors field;
v and H are defined over QT. Assume further that

Let us consider the differential operator defined on vectors

The operator a(t) is defined on Wi in the domain {U E Wi : a(t) U E
for any fixed t E I T and for each couple of integers such

that 0 ~ 1 £ k, 1 ~ 1~. The lower index 1 means that there are 1 - 1
boundary conditions. Let us consider the initial boundary value

problem

where
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= (uo , Bo ) are given. Here 1 is a fixed nonnegative integer (if 1 = 0,
equation (3.2)2 has to be dropped).

THEOREM 3.1. Let n &#x3E; 2, p &#x3E; 1, k &#x3E; 1 + nip and r E Ck+2. Assume
that v, H E L 00 (IT; Wk) fl C(IT; Wk-1) and that (3.1) holds. Then for
any Uo E Wk and F E the Cauchy problem (3.2)1, (3.2)3 has a
unique strong solution U E C(IT; W k). If 0  1 ~ k and if 0  1 ~ k and

if Uo E wf, F E Wf) the above solution U belongs to C(IT; Wlk).
Moreover

where

PROOF. We set V = (w, z), w = u + B, z = u - B and define the

operator

Then problem (3.2) is equivalent to

where G = ( f + g, f - g), vo = (uo + Bo , uo - Bo). We solve (3.5) by ap-
plying Theorem 5.2 of [10] as in [2]; the proof is essentially the same.
The crucial a priori estimates

for any h such that 0 ~ h ~ k ,

for the solution V of kV + 83V = G, where [k I &#x3E; 0k, are obtained by
multiplication of the equations for w and z separately by the corre-
sponding suitable quantities; then the two estimates are summed to
give the estimate for V. Estimate (3.6) is used to prove the (1, 
bility in Wi , h = k - 1 and k. The other assumtions of Theo-
rem 5.2 of [10] are easily verified by adapting the method of [2]. Thus
we can construct in Wz the evolution operator associated sat-

isfying the properties described in Theorem 5.2 and Remarks 5.3, 5.4
of [10]. Estimates (3.3) and (3.4) follow from the representation formula
plus (a) in theorem 4.1 and (e) in theorem 5.1 of[10], respectively. The
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multiplicative factor 2 in (3.3), (3.4) follows from

and analogously for

With Theorem 3.1 at hand we will prove the local solvability of (H).
The continuous dependence on the data will be shown by means of the
following perturbation result. Consider v, H and sequences {vm}, {Hm}
satisfying the assumptions of Theorem 3.1 for any m. Assume that

I/HmIIT, k are bounded uniformly in m

and that

By using the coefficients vm instead of v, Hm instead of H we define op-
erators and the associated evolution operators W(m)(t, s). Let
us denote by s) the evolution operator W ~m~ (t, s) when de-
fined on Wi .

THEOREM 3.2. Let n ~ 2, p &#x3E; 1, k &#x3E; 1 + 3. Under the
above assumptions on the coefficients of a(t), cr(m) (t),

strongly in uniformly in (t, s ) e I T x I T. = 0 or 1.

£(Wl2) denotes the space of linear and continuous operators from Wl2
onto itself.

PROOF. The result is obtained by means of Theorem VI of [11].
Since the verification of the hypotheses of such theorem is essentially
the same of[3], we omit the details.

4. Proof of Theorem 2.1.

We solve (H) by a fixed point argument. Consider

The constants T, a, f3 will be chosen later on. K is a convex, closed and
bounded subset of C(IT ; W k -1 ). Given (v, H) E K we solve the Neu-
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mann problem

The compatibility condition fy = -fdT holds because

similarly for the term in H. Standard estimates give

We then consider the Cauchy problem

Theorem 3.1 guarantees the existence and uniqueness of the solution
u, B E C(IT; Wk). We introduce the Helmholtz decomposition of Lq,
see ref. [9]. Denote by P the projection on the subspace of solenoidal
and tangential on I’ vectors and set Q = I - P. The restrictions of P and
Q are continuous from Wh into W h, h = I~ -1 and 1~. Thus, by using
(3.4) and (4.2), we have

We choose a = 4c1 (1luollk + JIB,,Ilk). Then, for T sufficiently small, we
prove that Pu, PB satisfy the first estimate required in K. Directly
from (4.3) we obtain an estimate for u,13 in W k -1 ), by using
(3.4), and this gives an estimate for u, B in C(I T ; Wk-1) from which we
derive the second estimate required in K, provided that T is sufficient-
ly small, if B is a suitable constant multiplied by a. Hence the map A:
(v, H) - (Pu, PB) satisfies c K. Similar calculations and the use
of (3.3) yield that A is a contraction with respect to C(IT; Wk-1) provid-
ed that T is sufficiently small. Thus we obtain a fixed point v = Pu,
H = PB. Finally we have to show that u = Pu, B = PB, namely
Qu = 0, QB = 0. We observe that (4.1) implies +

+ Vq - f ] = 0. On the other hand, we have also Q[(v.V) H-V] = 0
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= 0 on 1, since v = ± V~, if ~ is a map defined in a neighbour-
hood of r such that ~ = 0 describes r. We apply Q to (4.3)1,~. Since u =

we obtain

Multiplying the two equations by Qu and QB respectively, integrating
over S2 and adding the two equations easily give

Since = Quo = 0, = QBO = 0 it follows Qu(t) = QB(t) = 0
for any t e [0, T]. Then ?4 B solve problem (H) together with p = q -
- (1/2)IBI2.

5. Proof of Theorem 2.2.

First of all we observe that, since and are uniformly
bounded in W~ and fm are uniformly bounded in from the
results of theorem 2.1 it follows that the solutions um , Bm of ( H )m exist
on a common interval I T’ c I T and are uniformly bounded in

C(IT ’ ; W k). It readily follows from problems (4.1)m that are uni-

formly bounded in W k ) and from ( H )m that alm , 8m are uni-
formly bounded in L 1 (I T ’ ; W k -1 ). By using these uniform bounds we
can prove the equicontinuity of the Um, Bm on IT’ with values in Wk-1.
Since the embedding of Wk into Wk -1 is compact, by the Ascoli-Arzelà
theorem we deduce are relatively compact in

C(IT’; W ~ -1 ). Since limits of convergent sunsequences are solutions of
(H) and since the solution of (H) is unique we obtain that 
B in C(IT’; Wk-1). Consider now any space derivative D" with 0 ~

From (H)

. V) ~c. Observe that F" and G2 contain derivative of u and B of order k - 2
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at most. A similar calculations is caried out for (H)m. We easily prove
that

and similarly for G2 . From the difference of problems (4.1), (4.1 )m we
obtain

It then follows that a similar estimate holds for Gr. We set U = (u, B)
and denote by W(t, s) the evolution operator generated by the family of
operators in the space W’. Similarly s) is the evolution
operator generated in W2. From Theorem 3.2 W ~m~(t, s) ~
-~ W( t, s ) strongly in uniformly in (t, s) E I T’ x I T’ . From (5.1) we
have

and an analogous formula for Um = (um , Bm). By subtracting the two
equations for D" U and D" Um, using the estimates for G" and
adding over a, 0 ~ I ~ k - 2, we obtain

for a sufficiently small positive value of z depending only on 0, n, p, k,
M, T’ (for the definition of M see after (2.2)). By using the result of the-
orem 3.2 and the dominated convergence theorem it readily follows
that U, namely and B in C(Ir; W k). By applying
successively this result to the intervals [iz, (i + 1 ) ~] fl I T’ we prove
the convergence in all I T’ . Theorem 3.1 and a standard continuation ar-

gument yield that Um, Bm exist on I T if m is large enough. The repeti-
tion in I T of the above argument gives the convergence of um to u, Bm
to B over all IT. The last assertion in Theorem 2.2 easily follows from
(4.1), (4.1)m.
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6. The linearized problem associated to (NH).

Given two vectors fields v and H satisfying (3.1) and a scalar func-
tion (7, all defined over QT, we introduce the differential operator A(t)
acting on vectors U = (u, B, p), where u = (ul , ... , un), B =
= (B1, ... , Bn) and where p is a scalar function. A(t) is defined for any
t E IT by

on the space HL for any pair of integers k, 1 such that 0 ~ t ~ k, 1 ~ k.
Let us consider the initial-boundary value problem

where F = (F1, ... , F7) and Uo = (uo , Bo , p o) are given. Here 1 is a fixed
non-negative integer (if 1 = 0, equation (6.1)2 has to be dropped). More-
over, let us define the (2n + 1) x (2n + 1) matrix

where I~ is the m x m identity matrix. Observe that we have 0 
 aOI2n+1 ::::; A0  a1I2n+1whereao = min{1,
respondingly to Ao we consider t in t E I T , defined in
section 2. Norms 11 - Ilk, t are equivalent to the usual II. Ilk for t E IT.

THEOREM 6.1. Let n ~ 2, k &#x3E; 1 + n/2 and 1~ E Ck+2. Assume that
v, H, 7,E L 00 (IT; Hk) NC(IT; Hk-1) and that v, H satisfy (3.1). As-
sume also that 0  mo ~ 7 (t, x) ~ ml holds in QT and that o-
E L °°(IT; H k- 1). Then for any Uo E Hk and F E L1(IT; Hk) the Cauchy
problem (6.1)1, (6.1)3 has a unique strong solution U E C(IT; Hk). If
0  l  k and if Uo E Ht, F E Hlk), the above solution U belongs
to C(IT; Ht). Moreover
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depends only on 0, n, kwhere
and

PROOF. We solve (6.1) by applying Theorem I of [11]. We follow
the method of [2] and prove that A(t) E G(W,’, 1, Ok) for 0 ~ 1 ~ h,
1 ~ h, where Wl has t , for any fixed t E 1 T. To illustrate how,
by means of such norms, we can use the special structure of the opera-
tor A(t), let us show for example how we prove the analogous of Lem-
ma 3.5 of [2]: namely that any solution U E H 1 + A(t) U = F satis-
fies (I À I - t provided that |k I &#x3E; 0, for a suitable e &#x3E; 0.
The equation for U is (F = (f, g, h))

We multiply the equations by a-u, B, p respectively and integrate over
D. We then have, by integration by parts,

We add the three equations; the third term in the first and in the sec-
ond equation cancel. We easily obtain

which implies the required estimate. Then we show that the assump-
implies the (ko, Ok)-stabflity by arguing as in

Lemma 3.3 of [12] and Proposition 3.4 of[10].The rest of the proof is as
in [2].
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Consider now v, H, o- and all functions

satisfying the hypotheses of Theorem 6.1. Assume further that

are bounded uniformly in m

and that

By using the coefficients vm , instead of v, we define opera-
tors A ~m~ ( t ) and the associated evolution operators w(m)(t, s). Let us
denote by s) the evolution operator W ~’~~ ( t, s ) when defined on
Hl’. By applying Theorem VI of [11] we prove as above the following
perturbation result.

THEOREM 6.2. Let n ~ 2, k &#x3E; 1 + n/2. Under the above a,ssump-
tions

strongly in ~(Hi ), uniformly in (t, s) E IT x IT. Here 1 = 0 or 1.

7. Proof of Theorem 2.4.

We solve (NH) by a flxed point argument. Set

K’ is a convex, closed and bounded subset of C(IT; Hk -1 ). Given
(v, H, ~) E K’ we solve the Neumann problem

It is easily verified that the necessary compatibility condition rp _ -
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holds. The solution Hk) verifies

Consider now the Cauchy problem

Theorem 6.1 guarantees the existence and uniqueness of the solution
u, B, p E C(IT; Hk). We introduce the projection P for u, B. From (6.3)
we then obtain

where e2 (a) is an increasing function of a depending also on mo. From
(7.3)1,~ we have

From (7.3)3 we have

Moreover, the first order space derivatives of p satisfy the system

where i = 1, ..., n. Such kind of system has been studied in [2], [4]. The
solution Vp E C(IT; H k -1 ) satisfies
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and T is such that log 2 we have from (7.7)
Let now T be such that

c. Thus the map ~1’ : (v, H, r) - (Pu, PB, p) satisfies ~l’(I~’) c I~’. Simi-
lar calculations and (6.2) yield that A’ is a contraction with respect to
C(IT; Hk-1) if T is sufficiently small. Thus there exists a fixed point
v = Pt4 H = PB, J = p of Al’ . Finally we have to show that

Qu = QB = 0. This is easily obtained as in the proof of Theorem 2.1 by
observing that (7.1) gives 
Thus u, B, p solves (NH) together with p = q - (1/2) I B 12.

8. Proof of Theorem 2.5.

The proof is similar to the one of Theorem 2.2, where instead of The-
orem 3.2 we use Theorem 6.2. We only remark that the difference of
the gradients of the pressure is obtained from system

and similar one for qm in terms of um , Bm , pm.
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