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Finitely Generated Soluble Groups
with an Engel Condition on Infinite Subsets.

PATRIZIA LONGOBARDI - MERCEDE MAJ (*)

Dedicated to Professor Cesarina Tibiletti Marchionna
for her 70th birthday

1. Introduction.

B. H. Neumann proved in [7] that a group G is centre-by-finite if
and only if in every infinite subset X of G there exist two different ele-
ments that commute. This answered to a question posed by Paul Er-
d6s. Extensions of problems of this type are studied in [1], [2], [4], [5],
[6], and recently in [9].

For example in [6] J. C. Lennox and J. Wiegold studied the class
of groups G such that in every infinite subset X of G there are two

elements x, y such that (x, y) is nilpotent, and proved that a finitely
generated soluble group is in if and only if it is finite-by-nilpo-
tent.

We denote by E( m ) the class of groups G such that, for every infinite
subset X of G, there exist different x, y E X such that IX, kY] = 1 for so-
me k = k(x, y) &#x3E; 1.

If the integer is the same for any infinite subset X of G, we say
that G is in the class 

We prove the following

THEOREM 1. Let G be a ftnitely generated soluble group. Then
if and only if G is 

(*) Indirizzo degli AA.: Dipartimento di Matematica e Applicazioni «R. Cac-
cioppoli», Universita degli Studi di Napoli, Via Cinthia, Monte S. Angelo, 80126
Napoli, Italy.
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Moreover, if R(G) denotes the characteristic subgroup of G con-
sisting of all right 2-Engel elements of G, we show that

THEOREM 2. Let G be a finitely generated soluble Then G E
E E2 if and only if G/R(G) is finite.

Our notation and terminology follow [8]. In particular, if x and y are
elements of a group G and k is a non-negative integer, the commutator
[x, kY] is defined by the rules

2. Proofs.

We start with some preliminary Lemmas.

LEMMA 2.1. Let G E and let A be an infinite normal abelian
subgroup of G.

Then, for every x E G, there exists a subgroup B ~ A (depending on
x) offinite index in A and such that, for every b E B, [b, = 1 for so-
me k(b) ~ 1 (defending on b).

PROOF. Let x e G. If b is in G, call ( * ) the following property:

( * ) there exists an integer k(b) ~ 1 such that [b, = 1.

Put B = { b E A/b satisfies ( * )1. For arbitrary b, c E B we have
[b, nx] = 1 = [c, mx] for suitable integers n, m. Write d = max Im, nl,
then [b -1 c, dx] _ since A is abelian and normal in G.
Therefore B is a subgroup of A.

Assume by contradiction that I is infinite. Then there exists a

sequence (ai)ieN of elements of A such that for any 
Thus the set {xai /i E is infinite, and there exist an integer k ~ 1
and such that [xai , = 1, since G E E( ~ ).

Hence and therefore

aj- 1ai E B, a contradiction.

LEMMA 2.2. Let G E E(oo) be a finitely generated soluble group.
Suppose that there exists an infinite normal abelian subgroup A of G
with G/A polycyclic. Then A fl ~(G) is infinite.

PROOF. We show that An C(H) is infinite, for every normal sub-
group H of G, with H a A and H/A polycyclic.
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Put H/A = ... , hsA). By Lemma 2.1 there exists a subgroup B
of A, with 1 A : B ~ I finite, and such that for every b E B there is a positive
integer k(b) for which [b, = 1, for any i E {1,..., s 1.

Write 1 the derived length L(H/A) of H/A and argue by induction
on 1.

If 1 = 1, then H/A is abelian and [c, [x, y]] = 1, for any c E A and

Hence [c, y, x] _ [c , x, y] for any c E A, x, y E H. Now let b E B and
put n = s k(b). Let ... , hZn be arbitrary elements of Ihi, ...,~s}.
Then, for any a E A, [a, hil, ... , 

= [a, ... , hic(n)] for every permu-
tation c of {1,...,n} 

"

Furthermore at least of the hi- 7 must be equal to the same hi E
E ..., hs}. Hence we get [b, ... , hin] = [b, hi , ... , 6 hj , = 1.

k(b) 
"

That holds for any hil , ..., h,, 1, so that b E ’n (H), the
n-th centre of H. Thus for every a E B there exists a positive integer m
such that a e tm (H). Then a G ~ ~~ (H ) since H is normal in G. But G sa-
tisfies Max n, the maximal condition on normal subgroups, because
it is a finitely generated abelian-by-polycyclic group (see [8], part I,
Theorem 5.34). Hence for some finite subset

b2 , ... , bv ~ of B. Therefore there exists a positive integer i such
that B G ~ A n ’i (H ), and A n ’i (H ) is infinite. From that we easily get
that A n ~(H) is infinite, as required.

Now assume 1 &#x3E; 1. Then H’A is normal in G, (H’A)/A is polycyclic
and 1((H’A)IA)  1. Therefore, by induction, An ~(H’A) is infinite.
Write C = A n t(H ’ A). Then, arguing as before, we get, for any c e C,

... , [c, hia(l)’ ... , hia(t) for any t ~ 2, hil , ... , hit E ... , 

and for any permutation (7 of ~ 1, ... , t ~ . Furthermore, with D = B f 1 C,
we have that D is infinite and for any d E D there exists a positive inte-
ger m = m(d) such that [d, hj, , ... , 

= 1, for any hj, , ... , hi E
E lhl, h, 1. Hence d E ~m (H). As before, from D G = d1 ... d G for some
finite subset ... , dll of D, we get D G ~ ’j (H) f1 A for a suitable j.
Hence is infinite, and ~(H) n A is infinite, as requi-
red.

PROOF OF THEOREM 1. Let G e be a finitely generated infini-
te soluble group. By induction on the derived length 1 = l(G), we show
that ~(G) is infinite. From that the result will follow, since we get
G/~(G) finite, where ~(G) is the hypercentre of G, and finite for
some i E N, since G is finitely generated. Then G is finite-by-nilpotent
by a result of P. Hall (see [3]).
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If 1 = 1, the result is trivial. Assume 1 &#x3E; 1, and write A = G(1-1) the
last non-trivial term of the derived series of G. Then by induction every
infinite quotient of G/A has an infinite centre, so that G/A is finite-by-
nilpotent and hence polycyclic.

If A is finite, then G is finite-by-nilpotent, and is finite for
some i E N (see [3]), so that ~(G) is infinite.

If A is infinite, then Lemma 2.2 applies, and A f1 ~(G) is infinite.
Hence again ~(G) is infinite.

Conversely, assume that G is a finitely generated finite-by-nilpo-
tent soluble group.

Then, by a result of P. Hall (see [3]), there exists such that
is finite. Hence, if X is an infinite subset of G, there exist

x, y E X y and (G) (G). Thus y = xa, with a E ’(k (G),
and we get 1 = [a, x] = [xa, kxl [y, kx], as required. 0

Notice that we have shown that if a finitely generated soluble group
G is in then G E for some k a 1.

PROOF OF THEOREM 2. Suppose that G E E2 is infinite. Then G
is finite-by-nilpotent by Theorem 1, and (G) is finite, for a suitable
i E N. Thus ~(G) is infinite. Furthermore G satisfies the maximal condi-
tion on subgroups. Let A be a subgroup of G maximal with respect to
being normal, torsion-free and contained in (G), j E N.

Then is finite, and G/A is finite by Theorem 1.
We show that is finite, so that G/(A fl R(G)) is fi-

nite by Theorem 1 and G/R(G) is finite, as required.
Assume by contradiction that there exists E ~(A/(A f1

torsion-free.
Then [a, b] E A fl R(G) for every b E G. Hence ([a, bl)G is abelian,

[a, b, a, a] = 1 = [a, b, b, b]. Thus, by induction on i, it is easy to verify
that, for any i e N,

Furthermore we have

4) [a, b, a, b] = [a, b, b, a].

For, from [a, b] e R(G) it follows [a, b, a, b] = [a, b, b, a] -1, moreover,
from [a, [a, it follows [a, b, ab] = [a, b, ba] and [a, b, b]
. [a, b, a][a, b, a, b] = [a, b, a][a, b, b][a, b, b, a], so that [a, b, a, b] =
= [a, b, b, a] and [a, b, b, a]2 = 1. Thus [a, b, b, a] = 1, since A is torsion-
free.
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Finally, from 4) and 2) we get easily
5) b] = [a, b, b]i, for any i E N.

Now consider the infinite set e N}. Then there exist i, j e N,
with such that

Hence

Therefore [ac, b, = 1.
Write a [3 = i - j. Then [ac, b, 1, and

Hence, with c = we have [a, c, c] = 1.
Arguing on a and c as before on a and b, we get

for some h, k.
Then [a, c, a] = 1, since A is torsion-free, so that 1 = [a, a] =

= [[a, a] _ [a, b, and [a, b, a] = 1, again since A is torsion-
free.

Hence, by ( * ), [a, b, = 1 and [a, b, b] = 1. That holds for every
b E G, so a E R(G).

From a s e A for some s E N it follows a s e A n R(G), a contradiction
since a(A f1 R(G)) is torsion-free.

Conversely, if G/R(G) is finite, then G e E2 ( m ) arguing as in Theo-
rem 1. ~ .
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