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On Non-Supersoluble and Non-Polycyclic
Normal Subgroups.

JAMES C. BEIDLEMAN - HOWARD SMITH (*)

ABSTRACT - This paper presents an investigation of groups G with the property
that every non-polycyclic normal subgroup H has a finite G-invariant insolu-
ble image and continues a previous investigation of groups with a similar
property in relation to non-supersolubility.

0. Introduction.

This work is concerned mainly with groups having a certain proper-
ty in relation to their non-polycyclic normal subgroups. As such, it rep-
resents a continuation of the investigations carried out in papers [ 1 ]
and [2], where properties u and (respectively) were introduced. We
recall that a group G was said to have property u (respectively ~) if,
given any non-nilpotent (respectively non-supersoluble) normal sub-
group H of G, there exists a G-invariant subgroup K of finite index in H
such that H/K is non-nilpotent (respectively non-supersoluble). By
Theorem 2 of [2], any group with c also has u.

The firts section proper presents some further results on groups
with property and, it is hoped, provides some motivation for the in-
troduction of the property 7r which is defined in Section 2 and which is
discussed throughout the remainder of the paper.

1. Non-supersoluble normal subgroups.

If the group G has ~, then we know from Proposition 1 and Theo-
rem 1 of [2] that the union H(G) of the series of iterated Hirsch-Plotkin

(*) Indirizzo degli AA.: J. C. BEIDLEMAN: Department of Mathematics, Uni-
versity of Kentucky, Lexington, KY 40506; H. SMITH: Department of Mathemat-
ics, Bucknell University, Lewisburg, PA 17837.
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radicals is polycyclic and that the intersection Of(G) of all maximal sub-
groups of finite index in G is contained in the Fitting radical Fit (G)
(which is finitely generated). These results draw attention to normal
polycyclic subgroups, which are always contained in H(G). Defining
P(G) to be product of all normal polycyclic subgroups of the group G,
we have the following.

LEMMA 1. Let G be a group with properly J. Then ~f(G)  P(G),
P(G) is polycyclic and = 

PROOF. In view of the preceding remarks, all that needs to be
shown is that, in a group G with (j, (the re-
verse inclusion being obvious). But, from Theorem 1 of [2], we know
that G = G/if;¡(G) has 7 and so, again from our remarks, P(G) is poly-
cyclic. The result follows.

Now Theorem 1 of[l] tells us that a group G has v if and only if
~¡( G) ~ Fit (G), Fit (G) is nilpotent and Fit = Fit 

Further, we have seen that all normal locally nilpotent subgroups of a
group G with c are polycyclic. Accordingly, it would perhaps be reason-
able to hope that the converse of Lemma 1 holds, but it is easy to show
that this is not the case, for if G is the group with presentation
~x, y ~ y -1 xy = x 2 ~, then G has no non-trivial normal polycylic sub-
groups = 1, but G does not have a since Fit (G) is not finitely
generated. (This is the same example as that mentioned at the end of
Section 3 of [2]). To find necessary and sufficient conditions for a group
to satisfy J, conditions which are in some way similar to those for

v-groups as given in Theorem 1 of [1], we alter our perspective a little
and notice that, for groups G with u, Fit(G) coincides with the Baer
radical of G (and, indeed, with the Hirsch-Plotkin radical). For any
group G, let us denote by PI (G) the subgroup generated by all subnor-
mal polycyclic subgroups of G. Then the following result holds.

THEOREM 1 (c.f. Theorem 1 of [1] and Theorem 1 of [2]). A group G
has property a if and only if

(a) ~ f(G)  Pl (G) and polycyclic.

Further, if G has (j, then

PROOF. If A is a subnormal polycyclic subgroup of the group G
then A is contained in the iterated Hirsch-Plotkin radical of G (since it
is contained in the iterated Baer radical). If G has ~, then this radical is
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polycyclic. Arguing as in the proof of Lemma 1, we see that properties
(a) and (b) hold. Conversely, assume that (a) holds. Then (b) also holds.
Further, Fit (G) is finitely generated (since it is contained in the Baer
radical). We shall show is nilpotent and that 

It will follow, by Theorem 1 of [2], that G has or.

Suppose L is a G-invariant subgroup of finite index in ~ f(G). Then
= Frat (GIL) is mte and hence nilpotent, by a result of

Gaschiitz (see 5.2.15 (i) of [7]). Since ~ f(G) is polycyclic, it follows that
all finite images are nilpotent and hence, by a theorem of
Hirsch (see 5.4.18 of [7]), ~ f(G) is nilpotent. Now let be a nor-
mal nilpotent subgroup of We need to show that F is nilpotent.
By (a) and (b), F is polycyclic and so, as above, if F is not nilpotent
there is a G-invariant subgroup T of finite index in F such that F = F/T
is non-nilpotent. T/T is finite, it is contained in

Frat (G/T). Also, is nilpotent. We can now apply the Frattini
argument as in the proof of 5.2.15(i) of [7] to conclude that F/T is nilpo-
tent, a contradiction which completes the proof of the theorem.

A further radical and one which is related to those discussed above,
is LP(G), the (unique) maximal normal locally polycyclic subgroup of
the group G. Clearly P(G) ~ PI (G) ~ LP(G), and we have already men-
tioned an example of a group G in which P(G) = 1 = ~ f (G) and PI (G) =
= Fit (G) is not finitely generated. An example due to McLain and re-
ferred to in Section 4 of [2] provides us with a non-polycyclic, locally
polycyclic group G with a in which ~ f(G) = 1. Thus PI (G) cannot be re-
placed by LP(G) in the statement of Theorem 1. Another example
worth mentioning (with regard to the relationship between the various
radicals) is one due to Dark [3]. His group G is a (non-trivial) Baer
group with no non-trivial normal abelian subgroup. In particular,
Pi (G) = G and P(G) = 1.

To illustrate further the significance of polycyclic subgroups with
regard to 7, we present the following result, which follows easily from
Theorem 1, and which should be compared with Corollary 5 of [1] and
Theorem 4 of [2].

THEOREM 2. A group G has r if and only if

(a) whenever H H and is polycyclic, then H
is polycyclic and

(b) polycyclic.

We note that condition (b) cannot be dispensed with, as is shown
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by the example mentioned following the proof of Lemma 1 (or by
any group G = 1 but not a)). -

2. Non-polycyclic normal subgroups.

A group G shall be said to have property n if, given any non-poly-
cyclic normal subgroup H of G, there exists a G-invariant subgroup K
of finite index in H such that H/K is non-polycyclic (i.e. insoluble).
Among other things, our intent is to establish, for the property 7r, re-

sults similar to those obtained for u and ~. In some cases, the proofs are
not substantially different from those of the corresponding results for u
and a and are therefore sketched briefly or omitted altogether. We be-
gin with a couple of rather straightforward results.

LEMMA 2 (c.f. Lemma 1 of [1] and Lemma 1 of [2]). A group G has
7r if and only if, whenever H is a non-polycyclic normal subgroup of G,
there is a normal subgroup N offinite index in G such that HN/N is
insoluble.

LEMMA 3. If G has properly 7r then G has a.

We note that McLain’s (locally finite) group, mentioned earlier, has
the property but not the property 7r, since a locally soluble group with
n must be polycyclic.

PROOF OF LEMMA 3. If G has 7r and H is a normal, non-supersolu-
ble subgroup of G, then either H is non-polycyclic, in which case there
is clearly a G-invariant subgroup K of finite index in H with H/K not
supersoluble, or else H is polycyclic, in which case there is, by a theo-
rem of Baer (see [8], p. 162), a normal subgroup K of finite index in H
such that H/K is non-supersoluble. Since H is finitely generated, we
may take K to be normal in G, and the proof of Lemma 3 is

complete.

Using these lemmas, the following theorem may be proved without
difficulty.

THEOREM 3. A group G has n if and only polycyclic and
has 7r. Further, if G has 7r, then P(G) (indeed LP(G)) is poly-

cyclic and P(G/~ f(G)) ~ 
As a consequence of Theorem 3, we note that a group G has 7r if and

only if G has c and and 7r.

Our sufficient conditions for a group G to have 7r include the hypoth-
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esis that have 7r. This is, perhaps, a little unsatisfactory. Ac-
cordingly, it would be interesting to know of a (reasonable) sufficient
condition for a group G = 1 to have 7r. Also, there is
perhaps a theorem with regard to the property 7r which is comparable
to Theorem 1 of[l] and Theorem 1 of [2] (or Theorem 1 above) for u and
~ respectively. One conjecture might be that a group G has 7r if and only
if LP(G), LP(G) is polycyclic and = 

However, in the final section we give an example which shows that this
is not the case. (The given hypotheses are, nonetheless, seen to imply
that G has c and if, in addition, G is locally finite then G has n - this
follows from Theorem 8 below).

3. Closure properties and finiteness conditions.

We begin this section with some results concerning n which recall
similar results from [1] and [2]. (Part (iii) of course has no counterpart
for the property u).

THEOREM 4. (i) Let G be a group with properly n and let H be a
non-polycyclic ascendant subgroup. of G. Then there is a normal sub-
group L of finite index in G such that HL/L is insoluble (see Corol-
Lary 2 of [1 ]).

(ii) Let H be an ascendant subgroup of the group G. If G 
then so does H (see Lemma 2 of [1 ] and Lemma 3 of [2]).

(iii) Let G be a group with a subgroup. H offinite index. Then G
has properly 7r if and onLy if H does (see Theorem 10 of[2]).

We now present a theorem which indicates one way of distinguish-
ing the class of groups with 7r within the class of groups satisfying a. To
do this we require the following definition.
A group G shall be said to satisfy the property 7r* if, for each normal

subgroup N whose finite G-quotients are all soluble, there is a bound
(depending in general on N) for the derived lengths of these quotients.
We are now ready to prove:

THEOREM 5. Let G be a group with a. Then G has n if and only if G
satisfies n*.

PROOF. It is easily seen that ~c implies 7r*. Suppose then that G sat-
isfies 7r*. Then is polycyclic and has c ([2], Theorem 1). It
is straighforward to verify that G (G) has 7r* and, in order to show
that G has 7r, we can (in view of the remark following Theorem 3 above)
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assume that ~f(G) = 1. Let N be a normal subgroup of G all of whose fi-
nite G-quotients are soluble and hence of derived length at most d, say.
Let M be a maximal subgroup of finite index in G. It suffices to prove
that N ~d~  M, for then N ~~ 5 ~f(G) = 1 and so N is soluble and hence,
by Proposition 1 of [2], polycyclic. Clearly we may suppose N 1- M,
so that G = MN. Let T =mnN. Then N : T ) I is finite and the conju-
gates of T in G are precisely the conjugates in N. Write To = CoreG T.
Then N: To ) I is finite and so N ~d ~  To ~ M, as required.

Using results of Mal’cev and Zassenhaus (4.2 and 3.7 of [8]), the
above theorem and Theorem 7 of [2], we obtain the following.

THEOREM 6. Let G be a subgroup of GL(n, R), where R is a finite-
ly generated domain. Then the following statements are equiva-
lent : 

°

(a) G has 7r.

(b) G has a.

(c) The unipotent radical of G is finitely generated.

COROLLARY 1. Let G be a subgroup of GL(n, Z). Then G has 7r.

Returning now to closure properties, we shall establish a result
which depends partly on the above corollary.

THEOREM 7. Let G be a group with normal polycyclic by-finite
subgroup S. Then G if and only if GIS has 7r.

PROOF. Suppose G/S has property n and let N be a normal sub-
group of G with all of its finite G-quotients soluble. Then NS/S is
polycyclic and so N is polycyclic-by-finite-by-polycyclic and hence

polycyclic-by-finite and thus polycyclic. So G has 7r. Conversely, sup-
pose that G has n and let C = CG (8). Assume that S is finite. Then, by
Theorem 4, both C and CS have 7r. Since C n S  Z(C), it follows easily
that C/C n S has and thus, by Theorem 4 again, that G/S has n. By
induction on the Hirsch length, we may thus suppose that S is finitely
generated and free abelian. Then GIC is Z-linear and thus has 7r, by
Corollary 1.

Now let N be a normal subgroup of G such that S  N and all finite
G-quotients of N/S are soluble. Since S ~ C, we have NC/C polycyclic.
If N1 = N f1 C is not polycyclic then there is a G-invariant subgroup T
of finite index in N1 with N1/T insoluble. Let D = which is
normal in G and of finite index in N. Since S ~ D we have N/D soluble
and so N1/T is centre-by-soluble and thus soluble. This contradiction
completes the proof of the theorem.
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We note the following consequence, whose proof requires (besides
Theorem 7) Theorem 6 and Lemma 3 above and Proposition 1

of [2].

COROLLARY 2. Let S be a soluble-by-finite normal subgroup of the
group G. Then G has 7r if and only if G/S and S both have 7r.

It is easy to see that any polycyclic-by-finite group G has n, and we
know from Theorem 6 of [2] that a group G with finite rank has o~ if and
only if G is polycyclic-by-finite. Thus a group G of finite rank has 7r if
and only if it has a (if and only if it is polycyclic-by-finite).

Next, we give a couple of results on locally finite groups.

LEMMA 4. Let G be a locally finite groups which is also residually
finite,. Then G has n if and only if every locally soluble normal, sub-
group. of G is finite.

PROOF. Suppose G has 7r and let N be a locally soluble, normal sub-
group of G. Since every finite image of N is soluble, N is polycyclic and
therefore finite. Conversely, assume G satisfies the given hypothesis
on locally soluble normal subgroups and let N be a normal subgroup of
G all of whose finite G-quotients are soluble. Then N is residually solu-
ble and hence locally soluble. This gives N finite and thus polycyclic.
Hence G has 7r.

THEOREM 8. A locally finite group G has property n if and only if
the foLLo2ving conditions hold:

(a) Every locally soluble, normal subgroup of G is finite.
(b) G has a.

PROOF. If the locally finite group G has cor, then the finite residual R
of G is finite (and nilpotent), by Theorem 8 of [2]. Suppose G has n and
let N be a locally soluble, normal subgroup of G. Then G/R has 7r and

so, by Lemma 4, NR/R is finite. Hence, by Lemma 3, N is finite. Now
assume G satisfies (a) and (b) and let N/R be a locally soluble, normal
subgroup of G. Then N is locally soluble and therefore finite. Thus N/R
is finite and it follows from Lemma 4 that G/R has 7r. Let H be a normal
subgroup of G all of whose finite G-quotients are soluble. Then HR/R
is polycyclic and therefore H is polycyclic. Thus G has 7r.

We conclude this section with some consequences of Theorem 8,
Theorem 6 of [1] and Theorem 4.32 of [6] on groups with finiteness con-
ditions on conjugates. For the second theorem here, we recall that a
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group G is a CC-group if G/CG«x)G) is a Cernikov group, for all x in G.
By Lemma 2.1 of [5], R’ ~ Z(G) and G/R is an FC-group, where R de-
notes the radicable part of G.

THEOREM 9. Let G be an FC-group. Then G has n if and only if,
whenever H is a locally soluble, normal subgroup of G, then H has a
subgroup K ~ Z(G) such that H/K is finite.

THEOREM 10. Let G be a Then

(i) G has u if and only if Fit (G) is nilpotent and Fit (G/R) _
= (Fit (G))/R.

(ii) G has a if and only if Fit (G) is finitely generated and
Fit (G/R) = (Fit (G))/R.

(iii) G has 7r if and only if G has a and G/R has ~c.

4. An example and an algorithm.

In this final section we present an algorithm which determines
whether certain normal subgroups of a group with n are polycyclic, but
first we give an example which disposes of the conjecture mentioned at
the end of Section 2. In fact, we present a (non-trivial) locally soluble
group G with trivial locally polycyclic radical in which ~f(G) = 1. Clear-
ly this group cannot satisfy 7r. The group is easily described.

For each integer i ~ 0, let Hi be an infinite cyclic group. Define G1
to be Ho and, inductively, Gi + 1 = Hi wr Gi for each i ~ 1, where the
wreath product in each case is the standard one. Then let G be the as-
cending union of the Gi , i = 1, 2, .... Clearly G is locally soluble and
torsion-free.

In order to establish this claim, we require two lemmas, the first of
which is almost obvious. Incidentally, we remark that the group G is
not a «wreath power» of infinite cyclic groups in the sense of P. Hall
(see 6.2 of [6]).

LEMMA 5. With G defined as above, let i be an arbitrary positive
integer and let N be the normal closure in G Hi+1’ ...). Then
G = Gi N and Gi n N = 1.

LEMMA 6. Suppose G = ~a~ wr H, the standard wreath product
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of the infinite cyclic group. (a) with a group H satisfying ~ f ( H ) = 1.
Then ~ f(G) = 1.

Before sketching the proofs of these lemmas, let us see how they
suffice to establish our claim.

Firstly, suppose K is a non-trivial, locally polycyclic, normal sub-
group of our group G and let g be a non-trivial element of K. Then
g E Gi , for some i, and (g)H1 is locally polycyclic. Suppose Hi = (h). Then
[h, g] ~ 1 and, since g has infinite order, ([h, g]~~9&#x3E; is not finitely gener-
ated. Thus ([g, h], g) is not polycyclic, a contradiction.

Now let x be any non-trivial element of G. Again x E Gi , for some i.
By Lemma 6 (and induction), ~ f(Gi) = 1. By Lemma 5, therefore, we
can find a maximal subgroup M of G which does not contain x. Thus
~f(G) = 1.

PROOF OF LEMMA 5. Clearly we have G = Gi N. Now, for each
j ~ i, let ..., Hj), a subgroup -of 

ing this argument (if necessary) we obtain (eventually) x e HGi n Gi =
- 1. The result follows.

PROOF OF LEMMA 6. The proof here imitates (so far as possible) a
couple of the proofs from [4]. Let G be as stated, and suppose first that
H is finite. Let x be a non-trivial element of the base group A = (a)H
and choose a prime p not dividing the order of H such that 
Using Maschke’s Theorem, one then easily obtains a G-invariant sub-
group D of A such that z g D and A/D is a simple H-module. Then

HD, a maximal subgroup of finite index in G. It follows that §f(G) =
= 1. In the general case, again assume x is a non-trivial element of A =
= (a)H. As in the proof of Lemmas 3.2 and 3.3 of[4], but using the
stronger condition ~f(I~ = 1, we can obtain a normal subgroup K of fi-
nite index in H such that Frat (H/K) = 1 and a homomorphism 0 from
G onto ~a~ wr H/K such that 1. This allows us to reduce to the
case where H is finite and the result follows.

Corollary 1 of each of papers [1] and [2] describes an algorithm for
detecting nilpotency or supersolubility of certain normal subgroups.
We conclude with a similar algorithm for the property 7r.

PROPOSITION. Let G be a finitely presented group with the property
7r. Then there is an aLgorithm which, when a finite subset ..., xm ~
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. of G is together with the information that N = x.)
is normal in G, decides whether N is polycyclic.

PROOF. As in the proof of Corollary 1 of [1], we introduce two re-
cursive procedures, one of which must terminate, by Lemma 2. The re-
sult will follow immediately.

The first procedure is the obvious analogue of that described in the
above-mentioned corollary.

Now let (~wl,1, ..., wl, ml ~ , ~w2,1, ..., w2, ~ ~ , ..., ~wn,1, ..., wn, ~ ~)
be an n-tuple of subsets of words in the generators xl , ..., Xm. Fur-

ther, for each i = 1, ..., n, let Hi be the subgroup (of N) generated by
the elements wl,1, 9 ..., wl, mi , ..., ..., wi, Tnï. The second procedure
attempts to show that the subgroups Hi form a polycyclic series for N.
Again referring to the proof of Corollary 1 of [1], it is not difficult to see
how to proceed. The details are omitted here.
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