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On the Multiplicity of Holomorphic Maps
and a Residue Formula.

TELEMACHOS HATZIAFRATIS (*)

ABSTRACT - We obtain integral formulas for the multiplicity of a holomorphic
map at an isolated zero of it. The proof is based on Stokes’ theorem and a pro-
cess of passing to a residue.

1. Introduction.

Let U c C~n be an open set, 0 E U and f = ( fl , ... , fn ): U ~ C~n a holo-
morphic map with 0 an isolated zero of f. Then it is defined, by various
equivalent ways, the multiplicity mult ( f, 0) of f at 0; see [3, p. 667].
This multiplicity turns put to be the following integral

where

(*) Indirizzo dell’A.: Department of Mathematics, University of Athens, Pa-
nepistimiopolis 157 84, Athens, Greece.
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see [ 1, p. 20].
(In the above determinants j runs from j = 1 to j = n forming the n

rows; the integer above a column means that this column is to be re-
peated so many times as the integer indicates.)

If n = 1 then the above integral is reduced to ( f ’/f ) dz
which by the residue theorem is equal to Res (f’lf, 0). 

Se

In this paper we generalize, in a sense, this situation (to the case
n &#x3E; 1) by writing integral (1) which is an integral of a (2n - 1)-form as
an integral of a differential form of lower degree, more precisely of
(2n - 2p - 1) degree for 1 ~ p ~ n -1. In particular (by applying our
formula for p = n -1 ) we express the multiplicity of f at 0 as a line inte-
gral. Let us also point out that there are certain choices that can be
made in constructing these differential forms which give various
formulas.

The (2n - 2p - l)-dimensional cycles on which the integrals are

taken lie on appropriately chosen analytic varieties which pass from 0
and which could be singular at 0.

As for the process of obtaining these formulas it is the classical pro-
cess of passing to a residue after the use of Stokes’ theorem (see [3,
chap. 3]).

The arrangement of the paper is as follows: in Section 2 we state the
formula, in Section 3 we give the proof of it and in Sections 4 and 5 we
obtain some consequences of it in some special cases.

2. Statement of the result.

With notation as above let us consider a holomorphic map h =
=?1, ..., hp): U - CP so that

for some E 0( U), 1 ~ i ~ p, 1  j ~ n.
Let us also assume that M =: IZ E U: h(z) = 01 is smooth near the

points of Se and that M meets S., transversally so that is a
smooth (2n - 2p - l)-dimensional manifold. Of course 0 E M and 0
could be a singular point of M.

Let us define
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and

where

With this notation we will prove the following

THEOREM 1. The multiplicity of f at 0 is given by the formula

3. Proof of Theorem 1. 
°

The idea of this proof is similar to the one in the proof of Theorem
2.1 of [4]; so we will give only the modifications which are needed to
carry out the proof in this case and we will refer to [4] where more de-
tails can be found about some calculations.

We devide the proof into several steps.

STEP 1. Let

and

Then s~ (z) is defined for z e U - M and

Let us set
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We claim that a1) = c~~ (g~) _ on U - M.
To prove this it suffices to work close to a point where f1 = 0 and to

write

(in the last determinant j runs from j = 2 to j = n forming the 2nd to
n-th row of it).

Then, in view of ( 1 ), ~ can be written

which implies that where

Therefore 8Y) = ( 1 ~fl ) (Xn _ 1 - Xo).
But it is easy to calculate and find that and Xo = 0,

which proves the claim.

STEP 2. Let us start with the integral

and write it as

where Se,a = I &#x3E; ~}.
But for z ESe, a we have (by Step 1)
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Therefore the above limit can be written (also in view of Stokes’ theo-
rem) as

where TE,8 = {2: E I = d} (here E and d are small enough and so
that the various sets over which we integrate are smooth).

p-2

STEP 3. We can write q = q + I r. where
m=0

and

provided that differential forms are restricted to T,, t.
This follows from the fact that on we have rm = 0 if m &#x3E; p;

see [4, p. 791].

STEP 4. With differential forms restricted to Te, t, if can be written
(up to a sign) as follows:

The proof of this is similar to the proof of Lemma 3 of [4].

This follows from an analogous estimate to the one in Lemma 4
of [4].

STEP 6. By Steps 2, 3 and 5 we obtain
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But

(up to a sign); this follows from Lemma 1 of [4].
Therefore (also by Step 4)

which completes the proof.

4. Parametrizing T,,.

With the notation of Theorem 1 let us consider the case p = n -1 in
which case the integrand 0 in the integral of Theorem 1 is a differential
form of type (1, 0).

Now suppose that ~ is a holomorphic map from a neighborhood
VcC of 0 to U so that the map ~ H ~(~) _ ( ~1 (~), ..., ~n (~)) is
a parametrization of M = {2: E U: h, (z) = ... = hn _ 1 (z) = 01 with

, Then ~: Te - T., and let deg ~ de-

note. the degree of ~. 
’

With this notation we have the following.

THEOREM 2. The multiplicity of f at 0 is given by the formula

where t*(0) in the pull-back of 0 via ~.
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PROOF. First let us mention that a0 = 0 (as a computation shows)
whence 5(~* (0)) = 0; from this it follows that there is a holomorphic
function in V - 101, denoted by ~* (0)/dA which has a pole at 0 so that
~* (0) = (~* (e)/d~,) da.

Now, by Theorem 1, mult ( f, 0) =j 0. But by [2, p. 253] we have:

Also, by the residue theorem,

and the formula of the theorem follows.

REMARK. Of course an analogue of Theorem 2 can be proved in the
case 1 ~ p £ n - 2 too.

5. A special case.

We will prove the following.

THEOREM 3. Let U c Cn be an open neighborhood of 0 and

f = ( fi , ..., fn): U - cn a holomorphic map with 0 isolated zero of f.
Suppose that 0 is an isolated singular point of M = {2: E U: f1 = ... =
= fp = 0}.

Then for E &#x3E; 0 sufficiently small we have

where 7% = n - p and ~ = (h+1, 

PROOF. We will apply Theorem 1 with hi = 11’ ...,~p = fp. Then we
may choose ~ = 1 if i = j and ~ = 0 if 
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Then

On the other hand

provided that differential forms are restricted to M. This follows
from [5, p. 483] and the representation of B(z) in terms of local coordi-
nates as is given by [4, Lemma 2]. Now (1) and (2) and Theorem 1 com-
plete the proof.

EXAMPLES. 1) Let f: (;3 ~ ~3 be the map

Consider the map ~: C - (~3 defined by r(A) = (À21, ~14, À 10). If TF =

then ~: T£ ~ T, and deg f = 1.
Thus combining Theorems 1 and 2 we obtain that
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2) Let g: C2 ~ C be the function

which defines the hypersurfaces S = f(Zl, Z2) e ~2 : g (zl , Z2) = 0} whose
0 is an isolated singular point.

Then the Milnor number of C at 0 is the multiplicity of the map f =
= (Bg/Bz1, at 0 (see [6]).

Now f (zl, z2) _ (z1 - z2 + 5zi). Hence in the setting of The-
orem 2, if we set z1 = À3, z2 = ~2 we compute (using also Theorem 3)
that the Milnor number of S at 0 is 7.
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