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On the Boundedness of the Set of Ample Vector Bundles
with Fixed Sectional Genus.

E. BALLICO (*)

Let X be a projective variety (say, smooth) and L E Pic (X) with L
ample. Set n : = dim (X) and I~ : = KX . Recall that the sectional genus
g(L) of L can be defined by the formula: 2g (L) - 2 = (K + It is
known ([F2]) that g(L) is an integer and that g(L) ~ 0 if L is ample. If
C c X is a curve which is scheme-theoretically the intersection of n -1
divisors in then g (L) by the adjunction formula. In [F2],
Th. 13.1, it was proved that for evert integer g the set T (n, g) of pairs
(X, L) with X smooth complete variety of dimension n (in characteristic
0) and L E Pic (X) with L ample and with g(L) = g is bounded. Recall
that here «bounded» means the existence of an algebraic scheme T (a
parameter space), a flat morphism f. X - T and L E Pic (X ) such that for
every t E T we have L( f -1 (t)) and viceversa every pair (X, L) E T (n, g)
arises (up to isomorphism) in this way; the important thing here is that
T is algebraic, not only locally algebraic (and in particular it has only
finitely many irreducible components).

Now fix a rank r vector bundle E on X. In [Fl] (or see [F2], p. 174
and p. 175) T. Fujita gave two definitions of sectional genus for the vec-
tor bundle E. First we describe the less interesting one (in our opin-
ion) ; take as sectional genus the integer g (Op~E~ (1 )) where OP(1) (1) is the
tautological quotient line bundle on P(E); this integer was called the
0(1)-sectional genus (see [F2], p. 175); with this definition it is easy to
work (obtaining for instance lists of pairs (X, E) with low genera and E
ample) using properties proven for polarized manifolds. Here is the
second definition: set L : = cl (E) and call cl-sectional genus of E the
integer g(L). Both definitions have two very big advantages: they
are very general (i.e. they are always defined) and they are useful.
However they are not very natural for the following reason; if for in-
stance C is a curve which is scheme-theoretically the zero locus (s)o of
s E H° (X, E), then in general Pa (C) is neither the 0(l)-sectional genus

(*) Indirizzo dell’A.: Dept. of Mathematics, University of Trento, 38050
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nor the cl-sectional genus of E; indeed, if E = MBI with M E Pic (X)
then in general the cl-genus of E is not g(M), since L = M 0’ (which is
seldom isomorphic to M).

In [B] we gave another definition of sectional genus for the vector
bundle E, but only under extremely strong assumptions: E spanned by
its global sections and rank (E) + 1 = dim (X). Under these assump-
tions, for general the zero locus (s)o is a curve (even
smooth in characteristic zero) and it is natural to call «the» (or
«a») sectional genus of E. Note that by the adjunction formula we have

(C) - 2 = (K + L) (E). By [FL] it is easy to check that if E and
K + L are ample, then Pa (C)  g (L). ,

Here is the main result of this note.

THEOREM 0.1. Assume that the algebraically closed base field K
has char (K) = 0. Then the set A(n, r, g) : _ ~ (X, E): X is a smooth pro-
jective manifold and E is a rank r ample vector bundle on X with cl-
sectional genus g } is bounded.

Then we prove the following result 0.3 about the boundedness for
the sectional genus in the sense of [B]. To state 0.3 we need the follow-
ing definition.

DEFINITION 0.2. A pair (X, E) with X n-dimensional projective
manifold and E rank r vector bundle on X is called a scroll over a curve
(or a classical scroll or, briefly, a scroll) if there is a smooth curve C, a
rank n vector bundle F on C and a morphism 7r: X - C such that 7r is iso-
morphic to the projection P(F) - C and the restriction of E to every
fiber of n (which is isomorphic to P’-1) is the direct sum of r line bun-
dles of degree 1.

By the base change theorem and the projection formula, the last
condition of 0.2 is equivalent to the existence of H E Pic (X) and a rank r
vector bundle A on C with E = 7r* (A) (H) and = 1 for

every x E C; note that such a bundle is n-uniform in the sense of Ishimu-
ra ([Is]).

THEOREM 0.3. Assume char (K) = 0. Set Y(3, 2, g) :_ I(X, E): X is
a smooth projective threefold and E a rank 2 ample and spanned vector
bundle on X with g as sectional genus in the sense of [B], and (X, E) is
not a scrolll. Then Y(3, 2, g) is bounded.

Theorems 0.1 and 0.3 will be proved (using heavily the rank 1 case
proved in [F2], Th. 13.1) in the first section. In the second (and last)
section we turn to the positive characteristic case, and prove the
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boundedness of A(2, 2, g) (Theorem 2.1 ). The proof of 2.1 will use in an
essential way [Ek]. It is very easy to show that in 0.3 we have to ex-
clude the scrolls (X, E). Indeed, with the notations of 0.3, we may find
(exactly as in [Fu2], Remark 13.3, for the rank 1 case) E with sectional
genus C and determinant of arbitrarly high self-intersection: just take
a very positive H. We think that the existence of these exceptional cas-
es shows that the definition of sectional genus given in [B] is a very nat-
ural one (although it is very restrictive). One defines the sectional

genus g(E) of a vector bundle E on a complete variety X with dim (X) =
= rank (E) + 1 = n, by the formula: 2g (E) - 2 = (Kx + C1 (E)) cn _ 1 (E)
(assuming Kx not too bad). However we were unable to prove much
about g(E) without assuming strong restrictions on E.

1. Proofs of 0.1 and 0.3.

We work over an algebraically closed base field K. In this section
we will assume always char (K) = 0. This section contains exactly the
proofs of 0.1 and 0.3. In this paper we will use both additive and multi-
plicative notations for line bundles and divisors, and make standard
abuses of notations switching from line bundles to divisors or vice-
versa.

Here X will be a projective manifold with dim (X) = n and E a
rank r ample vector bundle on X. Take L : = C1 (E) E Pic (X) with L am-
ple ; set g : = g (L).

DEFINITION 1.1. Let B(X, L, r) be the set of rank r ample vector
bundles on X with L as determinant.

Unless otherwise stated we will assume L : = cl (E).
First we need two easy and very well-known remarks.

REMARK 1.2. Since E is ample, we have L ~ C &#x3E; 0 for every curve
C of X (no restriction on the characteristic of the base field or the singu-
larities of X).

REMARK 1.3. By 1.2, the smoothness of X and Mori theory, we
have ( K + tL) ~ C &#x3E; 0 for every curve C in X and every integer t with
rt &#x3E; n + 1 (no restriction on the characteristic of these base field). Note
that if K + tL is nef, then K + (t + 1) L is ample by Kleiman ampleness
criterion. In particular, checking directly the case n = r = 2 and X = p2
we obtain that K + nL is ample if n ~ 2 and r ~ 2.
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LEMMA 1.4. Fix an ample vector bundle F on a complete mani-
fold V and an integer t &#x3E; 0. Then F(det (F)0’) is Nakano positive. Fur-
thermore = 0 for every i &#x3E; 0.

PROOF. The first part (which is linear algebra) was proved (j ointly)
by Demailly and Skoda (see [D1] or [D2] or [Skl] or [Sk2]). The second
part is a theorem of Nakano (see either [N] or [D2], Cor. 0.5,
or [Sk1])..

LEMMA 1.5. Fix an integer m such that mL is very ample,. Then
E(kL + K) is spanned by its global sections for every integer k ; (n -
- 1) m + 1.

PROOF. Note that the restriction of a Nakano positive bundle to a
submanifold is again Nakano positive (hence satisfies the Nakano’s

vanishing theorem whose content is the last assertion of 1.4). Fix x E X;
take a smooth De mL ~ I with and apply the observation just
made, the adjunction exact sequence for the pair (X, D) and induction
on n. 0

Theorem 0.1 will follow rather easily from a result of Fujita ([Fu2],
Th. 13.1) and the next proposition.

PROPOSITION 1.6. For every X, L, and r, the set B(X, L, r) is
bounded.

PROOF. By 1.5 there is an integer m’ (depending only on (X, L),
not on E) such that E(kL + K) is spanned by global sections for every
k ~ m’. Fix any such integer k. By a theorem of Bertini type due to
Kleiman ([Kl2]), there are r - 1 sections of E which induce an exact
sequence:

with Z c S, Z reduced (and even smooth, since we are in characteristic
0), Z of pure codimension 2, Z representing the class of c2 (R(kL + K));
note that the class of c2 (R(kL + K)) is represented by the class of
c2 (E) + (r - 1) (kL + K) L + (r/(r - 1)/2) (kL + K)). Now we use that

c2.Ln-2 ([BG] or [FL]), the existence of an integer m &#x3E; 0,
m depending only on X and L, such that H:= mL is very ample, and
the existence of the Chow variety (with respect to the projective space
P(H° (X, H))) to obtain the boundedness of +

+ 1) L + rK), (r - 1) 0)) (in terms of X and L). Thus the set B(X, L, r) is
bounded, proving 1.1.
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PROOF OF 01. By [Fu], Th. 13.1, the set A(n, g) of pairs (X, L) with
X n-dimensional projective manifold, L E Pic (X), L ample and of sec-
tional genus g with (X, L) not a classical scroll (i.e. a scroll in the sense
of [Fu2], not in the sense of Sommese) is bounded. Note that by 1.2 if
L = det (E) with E ample, (X, L) is never a scroll since r : = rank (E) &#x3E;

&#x3E; 1. By 1.6 for every (X, L) E A(n, g) the set B(X, L) is bounded. From
this, [Ma2], and «general principles» (as in [K11], in particular [Klll,
Th. 3.13) (or heavy use of semicontinuity theorems) it would be easy to
deduce 0.1. But there is an alternative path: use the proof of 1.6 in a
relative setting; this is possible and 0.1 follows from [Fu], Th. 13.1, and
the exact sequence (1) for families, using either [BPS] or [L].

PROOF OF 0.3. By 1.2 the pair (X, L) has no exceptional divisor in
the sense of [Iol (i.e. no divisor J = p2 with deg (L ~ J),), i.e. (X, L) is its
own reduction. By 1.2, [Io], part (1.7) of the theorem in § 1, and the fact
(X, E) is not a P2-bundle (again by 1.2), we obtain that K + L is nef.
With the notations just introduced (with n = 3) we have again the ex-
act sequence (1) with Z smooth curve of genus g. Fix x E X and an inte-
gral surface By the ampleness of K + L, the vanishing of Ko-
daira, the classification of surfaces and the exact sequence

we see that tK + tL is spanned by global sections if, say, t &#x3E; 12. Fix a
smooth surface S E ~ 12K + 12L ~ ; set x : = c2 ( 12K + 12L) : = 24( g - 1)

4x, then L 3 ~ 8( g - 1), i.e. L 3 is bounded only in
term of g and we conclude by 0.1. Thus we may assume M2 &#x3E; 4x. Hence

is Bogomolov unstable. Hence there is a filtration

with finite and AM ~ BM (i.e. A 2 ~ B 2 because A ® B = M). Note
that B 2 &#x3E; 0 by the ampleness of E. Since BM &#x3E; 0, if BA  0, then
A 2 &#x3E; the contradiction comes from Hodge index theorem. Since
B 2 ~ 1, AB ~ 0, AB ~ x, A 2 ~ B 2 and (A 2 ) ( B 2 ) ~ (AB)2 , we obtain
M 2 ~ 2x 2 + 2x, proving 0.3.

2. Positive characteristic.

Here we consider the case char (K) &#x3E; 0, but only for n = 2 and r = 2;
the restriction «n = 2» will be extemely important for the proof. Hence
here X will be a smooth projective surface. Here we will prove the fol-
lowing result.
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PROPOSITION 2.1. Assume p : = char (K) &#x3E; 0. Fix an integer g ; 0.
Then the set A(2, 2, g) of all pairs (X, E) with X smooth, E ample and
spanned, rank (E) = 2, E with cl-sectional genus g (over K) is bounded.

PROOF. The proof will be divided into 5 steps.

(a) By the adjunction formula we have:

Hence if K - L ~ 0 (or - K - L has an upper bound depending only on g),
L 2 is bounded in terms of g. Note that K - L ~ 0 if X has Kodaira di-
mension x(X ) ~ 0, Now take E E B(X, L, 2). Since E is ample, we
have L 2 &#x3E; C2 and c2 &#x3E; 0 ([BG] or [FL]). Hence if L 2 is bounded only in
terms of g there are only finitely many possibilities for c2 (E) (for
fixed g).

(b) Here we check that 1.6 holds in our situation under the as-
sumption that K - L ~ 0 (or - K - L is bounded in terms of g), and in par-
ticular tha it holds if X has Kodaira dimension x(X) ~ 0. Fix L with
g(L) = g and E E B(X, L, 2). By part (a) c2 (E) can take only finitely
many values. We will give a few estimates depending only on X and
L : = det (E). If E is L-stable, it is sufficient to note that the set of L-
stable rank 2 vector bundles on X with C1 = L and fixed c2 is bounded
([M1] and [M2]). Hence we may assume that E is not L-stable, i.e. we
may assume the existence of the exact sequence (3) with AL ~ BL (i.e.
A 2 &#x3E; B2). Note that B 2 &#x3E; 0 by the ampleness of E. Since BL &#x3E; 0, if
BA  0, then A 2 &#x3E; the contradiction comes from Hodge index
theorem. Since B 2 ~ 1, AB ~ 0, AB~C2, A 2 ~ B 2 and (A 2) ( B 2 ) ~
; (AB)2 , we obtain L 2 ~ 2(c2 )2 + 2c2 , (exactly the same words as in the
proof of 0.3), concluding this part.

(c) Here we assume x(X) = 2 and give the full Proof of 2.1. By
steps (a) and (b) it is sufficient to check the boundedness of the set of all
pairs (X, L) with fixed g: = g (L). Fix any such X. Let U be the minimal
model of X and let c be the number of blowing-ups of points needed to
pass from U to X (hence (KU)2 = K2 + c). By 1.2 we have KL &#x3E; 2c;
since L 2 &#x3E; 0, c is bounded only in terms of g by eq. (4). Since both L 2
and KL have 2g - 2 as upper bound, by Hodge index theorem K2 has an
upper bound depending only on g. Thus ( KU)2 is bounded only in terms
of g. It is known (see for instance [Ko]) that this implies the bounded-
ness of the set of all possible minimal models U, hence of the possible
surfaces X. Hence we may fix X; it remains only to show that the set of
possible L on a fixed X is bounded (or equivalently the set of all possi-
ble 3K + 6L). Consider the possible Hilbert polynomials p(t):=
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: = ~(0(~(3~+6L))=a~+~~+~(0~)). We have 2a = (3K + 6L)2
(which, for fixed X, is bounded only in terms of g). By general princi-
ples (see for instance again [Kll], Th. 3.13) it is sufficient to give a
bound for I a’ I in terms of g, or equivalently to bound It was
checked in[AB] (using the theorem stated in the introduction of [Ek]
as fundamental tool) that h 1 (3K + 6L) = 0. Fix a point x of X. Note that
we may find D e 3K + 6L ~ 11 with high multiplicity, rrt at x, and in-

creasing with h ° (3K + 6L). By the easy part of a criterion of ampleness
due to Seshadri ([Ha]), p. 37), and the fact that (3K + 6L) L ~ 12g, we
see that m is bounded by a function of g; the same holds true for

+ 6L). Since h 2 (3K + 6L) = 0, we obtain that I is bounded

only in terms of g.

(d) Here we prove the full statement of 2.1 under the assumption
that K(P 5 1, except for the class of quasi-elliptic surfaces with p = 2
or p = 3 and = 1 considered as exceptional cases in [Ek], Th. 1.6
of § 2. By assumption we may apply Ekedhal’s vanishing theorem ([Ek],
Th. 1.6 of § 2). Thus with q : = q (X ) : _
: = h 1 (OX). Hence q is bounded in terms of g if k(X ) ~ 0; if = 1, to
prove the same assertion we need to bound p - this is done exactly as in
the last part of step (c). Hence we may fix q. If L 2 ~ 4q + t(g) with t(g)
any function depending only on g, the proof of part (b) applies. Thus we
may assume L 2 &#x3E; 4q + t(g) for suitable t(g). By [BCM], Th. 0.1 and Re-
mark 1.1, for the case «k = 1 », the line bundle K + L is very ample for
suitable t(g) (in the case x(X) = 1 we have to use that h ° (2K) is bound-
ed by a function of g, again by the ampleness criterion of Seshadri
([Ha], p. 37) exactly as in the last part of step (c)). Let h be the embed-
ding of X into a projective space P determined by K + Note that
since (K + L)2 = K2 + KL + 2g - 2  8 + 2g - 2, the set of possible X
is bounded (e.g. by the existence of the Chow varieties of P); thus (as in
the first sketch of the proof of 0.1) we may fix X. Fix a general integral
Cue K + L ~ . 
+ L 2 , we have - KL ~ 7 + (L 2 )/3. Thus by eq. (4) the integer L 2 is
bounded in terms of g and we may apply the proof in part (b).

(e) Here we check the exceptional cases with p = 2 or p = 3 left
open in step (d). We have only to find a suitable ample line bundle to
whom to apply Ekedhal vanishing theorem, to obtain the boundedness
of Let ~: X - C be the quasi-elliptic fibration (i.e. the Albanese
map). Since by 1.2 K + L is nef, we have ( K + L)2 &#x3E; 0, i.e. L 2 , KL, and
the number of blowing-ups needed to obtain X from its minimal model
are bounded by a function of g. Look at parts (a) and (b) of the state-
ment of [Ek], Th. 1.6 in § 2; we will use the notations of that statement.
We do not need Kodaira vanishing for L; it is sufficient to have it for,
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say, L : = L ®3 . With the notations of loc. cit. it is sufficient to check

that h0(NXL-1)=0 if p=2 and h0(MXL-1)=0 if p=3. Note that
the degree of the restriction to a general fiber of ~ of the line bundle
N (if p = 2) or M (if p = 3) depend only on p, not on X, because it can be
calculated after completion at one sufficiently general fiber, further-
more, this degree depends only on what happens to the restriction of
such a line bundle near the cusp of T. Thus, for instance for p = 3,
deg (L ) will be greater than such a degree; hence h ° ( M ® L -1 ) = 0 as
wanted.
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