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Bifurcation of Periodic Solutions

from Inversion of Stability
of Periodic O.D.E.’S.

M. SABATINI (*)

ABSTRACT - Bifurcation of periodic solutions as a consequence of a sudden inver-
sion of stability of a given one is proved via Lefschetz fixed point theorem.
The results hold in odd-dimensional spaces for periodic systems, and in even-
dimensional spaces for autonomous ones.

1. Introduction.

In this paper we consider one-parameter families of periodic ordi-
nary differential systems

where X E [0, À~), T is a positive constant, /e &#x26; ([0, ~# ) x R x U, R’~),
U is an open subset of R n. We assume that for any À e [0, ~# ), à has a
periodic solution u(t). We are interested in determining sufficient con-
ditions for the existence of periodic solutions of E~ bifurcating from u(t)
as À crosses some special value. We follow the approach used in [6] to
prove the existence of asymptotically stable sets bifurcating from a
given invariant set after a sudden change of stability, together with
Lefschetz fixed point theorem for polyhedra [9]. The main result pre-
sented here is the following.

THEOREM. Let n be odd and u(t) be a periodic solution of EÀ, for
À E [0, À~). If u(t) is asymptotically stable for À = 0 and negatively
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(asymptotically stable for À &#x3E; 0, then = 0 is a points of bifurcation
from u(t) for a family of periodic solutions.

A result similar to the above theorem holds also when, for À = 0,
there exist even-dimensional submanifolds DA of Rn + 1 containing u(t),
that are locally invariant with respect to the systems E~, . This is the
case when an odd number of the characteristic multipliers of u(t) leave
simultaneously the unit circle as À becomes positive, while the other
ones stay inside the open unit circle for any À e [0, ~# ). A similar situ-
ation has been considered by several authors for the case of an even
number of characteristic multipliers crossing the imaginary axis

(see [3], and [2] for more recent results). As a consequence of the above
theorem, we obtain an analogous statement for autonomous systems in
even-dimensional spaces. In this case we assume that f E &#x26; ([0, ~# ) x
X U, I~ n):

COROLLARY. Let n be even, Eà autonomous and u(t) a non-trivial
periodic solution of E).,for À e [0, ~# ). If u(t) is orbitally asymptotical-
ly stable four = 0 and orbitally negatively asymptotically stable for
z &#x3E; 0, then = 0 is a points of bifurcation from u(t) for a family of non-
trivial. periodic solutions.

Also in this case, a more general statement holds in presence of in-
variant manifolds of even dimension containing u(t). For autonomous
systems, the bifurcating periodic solutions do not have, in general, the
same period as u(t). However, the method used here does not seem to
be useful to prove the existence of period-doubling bifurcation.

In a forthcoming paper, part of the results presented here will be
extended to the study of bifurcation from infinity. The author wishes to
thank Professors Loud and Sell of the University of Minnesota for
many useful conversations.

2. Definitions and results.

We assume that, for any À e [0, ~#), the differential system’ 
"

where f E &#x26;([0, ~# ) x R x U, I~ n), U open subset of R n, defines a dy-
namical system on R x U. We can always reduce to such a situation, by
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possibly altering the vector field out of a neighbourhood of the periodic
solution involved. By possibly performing a change of variables, we
may also assume that u(t) coincides with the zero solution, so that
f(À, t, 0) = 0. We denote by ~~ (t, T, x) the solution of (8).) such that
§à (z, r, x) = x. We recall the definition of bifurcation given in [6], for a
one-parameter family of flows 7rÀ (t, x).

DEFINITION 1. Let X be a locally compact metric space with dis-
tance d, and C the set of all proper, non-empty, compact subsets of X.
Let us consider a map Z:[0, ~# ) ~ C, ~ H K~ , such that:

i) VÀ E [0, ~# ), K). is ~-invariant,

then À = 0 is said to be a bifurcation point for the map K if there exists
~* E (0, À~ ), and a second map M:(0, ~* ) -~ C, ~ H M~ , satisfying the
conditions:

i)’ à E (0, ~* ), M~ is nà-invariant and K). f1 Mà = 0,

In the same paper, the following theorem has been proved.

THEOREM 1. Let X be connected be a continuous family of
flows on X. Let ~ &#x3E; 0 and K: [0, À~) - C be a map as in Definition 1. If
Ko is 7:0-asymptotically stable and K). is nk-negatively asymptotically
stable for k e (0, k#), then = 0 is a bifurcation point for K. Further-
more, the map M and À can be chosen so that VÀE (0, À *), Mà is 7rx-

asymptotically stable.

REMARK 1. There exists a neighbourhood Uo of Ko such that the
set M~ is the largest 7rÀ-invariant compact set contained in Uo and dis-
joint from Ko, for À E (0, À*). If vo is a Liapunov function associated to
the asymptotic stability of Ko with respect to (,So ), then Uo can be taken
of the form Vo~([0, bo]), for some bo &#x3E; 0.

Let S 1 be the set x 1 = 1 ~. We associate to (8).) a vector
field v~ on a subset S 1 X U of the cylinder C : _ 81 1 &#x3E;C R n, in the usual
way. A curve in 81 1 X U is an integral curve of vÀ if and only if
there is a solution §à (t, T, x) of such that y~ (t) = n o ~ (t, r, x), where
~ is the canonical projection of 1 onto 81 x The set 1-’ = x

x ~0~) is a cycle, whose stability properties are strictly related to those of
u(t). In fact, r is stable (asymptotically stable) with respect to the flow
on the cylinder if and only if u(t) is stable (asymptotically stable) with
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respect to EA. This suggests an alternative proof of Theorem 3.1 in [7].
If u(t) is asymptotically stable for À = 0 and negatively asymptotically
stable for À &#x3E; 0, then the same is true for 1~ with respect to the flows on
the cylinder. Since r is compact, we may apply Theorem 1 to deduce
the existence of a family of asymptotically stable compact invariant
sets MA, bifurcating from r. The set is an asymptotically
stable periodic invariant set for (8).), with compact t-section. Moreover,
d(NA, u(t)) tends to zero as À tends to zero, so that NA bifurcates out of
u(t) as it changes stability.

If Vo is a T-periodic Liapunov function for u(t), existing by the con-
verse theorems about asymptotic stability, then is a Lia-

punov function for r. By Remark 1, there exists b° such that M~ is the
largest invariant compact set disjoint from l’, contained in

(Vo o7r~)~([0, b° ]) = 7r(VO-1([0, bo 1». In order to prove the existence of
bifurcating periodic solutions, we show that Vj~ ([0, bol) contains a

periodic solution u~ (t) ~ u(t), so that 7r o u~ is an integral curve of dis-

joint from 1,, contained in 1 ([0, bo ]». This implies that 7r 0 u~ (t) ç
MÀ, so that uk (t) ç NA.

THEOREM 2. Let n be odd and u(t) be a periodic solution for
À E [0, À~). If u(t) is asymptotically stable for A = 0 and negatively
asymptoticalty stable for À &#x3E; 0, then À = 0 is a point of bifurcation
from u(t) for a family of periodic solutions. Moreover, for any
À e (0, À*), either the bifurcating set NA contains a harmonic solution of

or it contains infinitely many subharmonic solutions of EX.

PROOF. By the converse theorems on asymptotic stability [10, ch.
VI], there exist an open set Uo ç U, a T-periodic Liapunov function V E

(R x U° , R), increasing functions a, fi, y E Co (R, R) such that «(0) _
= y(0) = 0 and

where V(t, x) denotes the derivative of V along the solutions of (So). We
denote by Vk the derivative of V along the solutions of (Sk). By the peri-
odicity of V and h, and the continuity of VV and for any bo &#x3E; 0 there
exists ~(bo) E (0, À~), l(bo) E (0, bo) such that for any À E (0, A(&#x26;o)) we
have Vk  0 on the set ([l(bo), bo ]).

Let Ao be the region of attraction of u(t) = 0 with respect to the flow
n0, and Ak be the region of negative attraction of u(t), for À E (0, For
small positive values of À, A~ c V~([0, bo ]). Let Bo = B[0, ro] and Co =
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= B[0, po] satisfy R x Co ç V-1 ([0, bo]) ç R_x Bo. There exists À e (0, À *)
such that N~ U A~ c R x Co for any À e (0, ~). We can take C~ = B[0, pj
such that R x C,, Let us set 7%à : = x) 1: 1 x 1 = p~ , t ~ 01,
and B~ = B[0, 7%à /2]. The bifurcating set NA attracts uniformly the
spherical shell Co%Cà. Let nk be a positive integer such that

(nT, ç for any n &#x3E; Let H). (t, x), t E [0, 1], be a ho-
motopy contracting homeomorphically the shell B0BBk onto Co" C)..
Then, for any the map H~ 1 (1, ~) o ~c~ (nT, ~) o H~ (1, ~) maps

into itself. Since it is homotopic to the identity map, its Lef-
schetz number is the Euler characteristic of The dimension of
the space is odd, so that we have X(Bo "B).) = 2. By Lefschetz fixed
point theorem, this implies the existence of a fixed point yà n E Bo" B)..
Then the point = H). is a tixed point of the map (nT, .).

Let us assume that N~ does not contain harmonie solutions. In this
case Nà contains infinitely many subharmonic solutions. Indeed, let us
take n and m relatively prime and greater than Then, for some inte-
gers r, s, we have rm + sn = 1. If = xk, n, then

contradicting the absence of harmonie solutions.m

COROLLARY 1. Let n be even, Ex autonomous and u(t) a non-triv-
ial periodic solution for À e [0, À~). If u(t) is orbitally asymptoti-
cally stable for À = 0 and orbitally negatively asyrrcptotically stable for
À &#x3E; 0, then X = 0 is a point of bifurcation from u(t) for a family of non-
trivial periodic solutions.

PROOF. Let us set

By a suitable change of variables in as neighbourhood of r [4, Ch. XI],
[5, Section VI.1], we can transform (Sà) into a system of the form

where U is an open subset of R 2n -1, F~ (0, r), G~ (0, r) are T-periodic in 0
and
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for some 0  YJ).  1. Since the change of variables depends only on u(t)
and f, the map À H (.1’l) defines a continuous family of dynamical sys-
tems in R x U. We reparametrize the system in order to get

The continuity of G~ with respect to À, and the inequality (4) for À = 0
ensure that we still have a continuous family of dynamical systems.
The zero solution of (1;~), considered as a periodic system in R 2n - is
asymptotically stable if and only if 1, is orbitally asymptotically stable
with respect to Theorem 2 applied to (1;~) yields the existence of a
family of periodic solutions bifurcating from the zero solution of 
This implies the existence of a family of non-trivial periodic solutions of
Ex bifurcating from r.

The periodic solutions of the above corollary do not have necessarily
the same period as the original one.

For sake of simplicity, we have not stated Theorem 2 in its more
general form. In Theorem 1 the set K~ may vary with À, and xà depend
only continuously on À. Moreover [10, remark, page 104], locally lips-
chitzian differential systems have C’ Liapunov functions when the zero
solution is uniformly asymptotically stable. Since we are concerned
with periodic systems, the asymptotic stability of the zero solution is
sufficient to ensure its uniform asymptotic stability, and the existence
of Liapunov functions of class el. This allows to consider a more general
class of differential systems:

The proof of next theorem can be easily derived from what above and
from Theorem 2, so that we do not report it. 

’

THEOREM 2’. Let ~# be a positive number and U an open subset of
R’; with n odd. Let T E C° ([o, ~#), R), f E ~([O, À#) x R x U, Rn), U E
e eü([O, À*) x R, be such that 0, f is locally lipschitzian in
(t, x) for any À E [0, ~#), u(À, t) is a T(À)-periodic solution of E,~ . If
u(O, t) is asymptotically stable, and u(À, t) is negatively asymptotical-
ly stable for À &#x3E; 0, then À = 0 is a point of bifurcation from u(O, t) for a
family of periodic solutions of E~ .

We say that a periodic solution u(t) of E). is properly subharmonic if,
for some positive integer 1~ &#x3E; 1, u(t) = u(t + kT), and u(t) ;d u(t + hT)
for any integer 0  h  1~. In next proposition we show that if u(t) is
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properly subharmonic, then the bifurcating periodic solutions are prop-
erly subharmonic, too.

COROLLARY 2. Let n be odd and u(t) be a properly subharmonic
solution of E~. If u(t) is asymptotically stable for À = 0 and u(t) is neg-
atively asymptotically stable for À &#x3E; 0, then ~ = 0 is a point of bifurca-
tion for a family of solutions of Ea.

PROOF. By performing a change of variables X = x - u(t), we
transform E~ into a kT-periodic system

The function u(t) is transformed into the zero solution of (5), whose sta-
bility properties are the same as those of u(t). Hence there exists a fam-
ily of periodic solutions w~ (t) bifurcating from the zero solution of (5).
The functions u~ (t) : = + u(t) are periodic solutions of Ex bifurcat-
ing from u(t). To prove that their minimal period cannot be smaller
than kT, let us set,

There exists ~ * e [0, À~) such that the bifurcating set M~ is contained in
the set

For any periodic solution contained in Mà, and for any
h = 1, ...,1~ - 1, we cannot have UÀ (t) (t + hT), since

We conclude this section by considering the system Eà in connection
to its variational system:

By Liapunov theorem [8, page 452], there exist linear periodic change
of variables, depending on À, that transform Eà into

If an eigenvalue of B(~), then exp is a characteristic multi-

plier of (7.~). This allows us to prove the existence of periodic solutions
bifurcating from u(t) when some of the characteristic multipliers leave
simultaneously the unit circle, while the other ones remain inside it.
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COROLLARY 3. Let k be an odd integer. Let (6.0) have n - k char-
acteristic multipliers in the open unit circle. Assume that for À &#x3E; 0,
(6.À) has k characteristic multipliers out of the unit circle. If 0 is

asymptotically stable with respect to (So), then À = 0 is a point of bifur-
cation from u(t) for a family of periodic solutions.

PROOF. Without loss of generality, we assume that u(t) = 0. There
exists À’ E (0, À*) such that, for À E (0, À’), the matrix B(À) has n - k
eigenvalues with negative real part and k eigenvalues with positive re-
al part. Hence there is a unique periodic unstable manifold D~ c R n + 1 of
dimension k + 1 containing u(t). The differential system induced by
(SA) on DA has the form

so that we may consider it as a periodic differential system defined on
an open subset of R k. Since the zero solution is negatively asymptoti-
cally stable with respect to (8.À), there exists a positive definite peri-
odic function V). with positive definite derivative VA along the solutions
of (8.À). Moreover, by the asymptotic stability of 0 with respect to (So),
there exists a Liapunov function, whose restriction Vo to DA is a peri-
odic C1 function. We may use the properties of Vo and Vk to prove the
existence of a periodic solution u~ (t) on DA as in Theorem 2. In [7, Thm.
3.2] it was proved the existence of a family of asymptotically stable
periodic invariant sets Nà ç DA, bifurcating from u(t) as À becomes posi-
tive. Since N~ attracts any solution contained in bo]), for
bo small enough, we have that u~ (t) is contained in This proves the
thesis.

As above, an analogous result holds for autonomous systems. We
recall that a non-trivial periodic solution of an autonomous system has
always 1 as a characteristic multiplier.

COROLLARY 4. be an autonomous systen4 and u(t) a non-
trivial periodic solution of E~, for À E [0, ~# ). Let the characteristic
multiplieur 1 be simple for À &#x3E; 0 and the characteristic multipliers of
u(t) different from 1 be as in Corollary 3. If u(t) is orbitally asymptoti-
cally stable with respect to (Eo), then À = 0 is a bifurcation point from
u(t) for a family of non trivial periodic solutions.

PROOF. It is sufficient to apply Corollary 3 to the transformed sys-
tem of C orollary 1.
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