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T3-Systems of Finite Simple Groups.

C. DAVID (*)

1. Introduction.

We present here some further evidence in support of the following
conjecture, first formulated by Wiegold in the seventies.

CONJECTURE. Every finite non-abelian simple group has exactly
one T3-system.

Gilman [5] has shown that the conjecture holds for the simple
groups PSL(2, p) with p prime, (indeed it was this result that prompt-
ed the conjecture), while Evans [4] has done it for certain Suzuki

groups. In both cases the action of the automorphism group on the
G-defining subgroups is alternating or symmetric, and this too seems
likely to reflect a general truth.

The Suzuki groups and the P,SL(2, p) are easier to cope with than
the alternating groups, no doubt because of the much greater diversity
of subgroups in alternating groups. Since A5 = PSL(2, 5), Gilman’s re-
sult provides the answer, while A6 is so small that a simple calculation
is sufficient. The aim of this note is to sketch a proof of the following
result.

THEOREM. The alternating group A7 has just one T3-system, and
the action of Aut F3 on the A7 defining subgroups is alternating or
symmetric.

The methods are elementary throughout. I see no way of establish-
ing the conjecture for the general alternating group An .

(*) Indirizzo dell’A.: School of Mathematics, University of Wales, College of
Cardiff, Senghennydd Road, Cardiff CF2 4AG.
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2. T3-systems and a result of Evans.

Let Fn be a free group of finite rank n, and let G be any group. We
say that N is a G-defining subgroup of Fn if N and Fn /N = G. De-
note the set of all G-defining subgroups of Fn by 2(G, n) and notice that
2(G, n) is not empty if and only if G can be generated by n
elements.

For each 7 E Aut Fn and N E.E(G, n) we clearly have = G so
that Na E 2(G, n). In this way we obtain an action of Aut Fn on E(G, n),
the orbits of which are called the Tn-systems of G. ([5] and [3]). -

When we investigate T-systems of a specific group G, it is found to
be rather difficult to work directly with the action of Aut Fn on n).
B. H. Neumann and H. Neumann [7] introduced the notion of gene-
rating G-vectors which enabled them to define an equivalent action of
Aut Fn which is more manageable. The details with respect to T3 are
now given following the argument indicated in [4].

Let G be a 3-generator group. A generating G-vector of length 3 is
defined to be an ordered triple (gl, g2, g3) where (gl, g2, g3) = G. The
set of all generating G-vectors of length 3 is denoted by V(G, 3).

Fix a set of free generators xl, x2, x3 for F3 and let E be the set of
epimorphisms from F3 to G. Define an action of Aut F3 x Aut G on E
by

where p E E and (~, cm) E Aut F3 x Aut G.
We can identify Aut F3 and Aut G with their copies in Aut F3 x Aut G

and speak of the action of Aut F3 or Aut G on E. We clearly have

(2.2) PI and p2 lie in the same Aut G-orbit of E if and only if
ker pi = ker P2 .

Suppose that kerp = N. Then ker p« = N too, and so we can asso-
ciate N with the Aut G-orbit of E that contains p, a E AutG}.
Notice that for all a E Aut F3 we have ker (p(a, 1)) = ker (cr - 1p) = Na.
Hence N~ is associated with the Aut G-orbit of E containing p(a, 1).
Moreover, N e .E(G, 3) if and only if N = ker p for some p E E. There-
fore

(2.3) The action of Aut F3 on.E(G, 3) is equivalent to its action on the
Aut G-orbits of E.
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The map 7r: E -~ V(G, 3) given by

(2.4) p77 = (Xl P, x2 p, is a bijection. Furthermore, 7r enables us to
carry over the action of Aut F3 x Aut G on E to an action on
V(G, 3).

This is given by

The action of Aut F3 x Aut G on V(G, 3) given by (2.5) is equivalent
to its action on E. Therefore the action of Aut F3 on the Aut G-orbits of
V(G, 3) is equivalent to its action on the Aut G-orbits of E. Combining
this last remark with (2.3) gives the following fundamental result.

(2.6) The action of Aut F3 on the Aut G-orbits of V(G, 3) is equivalent
to its action on 1:( G, 3).

Let us now examine in greater detail the actions of Aut F3 and Aut G
on V(G, 3). Here we again identify Aut F3 and Aut G with their copies in
Aut F3 x Aut G.

Suppose throughout that (gl, g2, g3) is a typical element of V(G, 3).
By (2.4) there exists p E E with (g1, g2, 93) = pn = (X1P, x2 p, The
action of Aut G on V(G, 3) is now easily given explicitly; by (2.5) we
have (91, 9’2~ 93) (1, «) = p7r(l, a) _ X3 pa) = (9’i a, g2 a, 93 a)-
Moreover since (gl, g2, 93) = G we have (91, g2, 93) = (gl «, g2 a, 93 «). if
and only if « = 1. Hence

(2.7) The action of Aut G on V(G, 3) is given by «: (91, g2, 93) -
- (gl a, g2 a, 93 a) for all a E Aut G and all (gl, g2, V(G, 3).

We next consider the action of Aut F3 on V(G, 3). For all e Aut F3
we have (gl, g2 ~ (~ 1) 1) _ ~-1 p~ _ (Xl’7P9 X37P) from

(2.5). Suppose that

where Wl (Xl, X2, X3) is a word in (Xl, X2, X3). Now
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where c E Aut F3 and wl, w2, w3 are given by (2.8). Therefore

(2.9) The action of Aut F3 on V(G, 3) is given by

We continue, using the following result, a convenient reference for
which is [6] Chapter 3.

(2.10) Aut F3 is generated by the automor~phisms given below, where
1  i, k ~ 3, k and unmentioned generators of F3 are

fixed.

These are called the elementary automorphisms of F3. Their effect
on (91, g2, g3) E V(G, 3) is to interchange any two entries, invert any
entry or multiply any entry by any other on the left or right. This is
seen with the aid of (2.9).

As Aut F3 is generated by elementary automorphisms, the above re-
mark has an important consequence, namely

(2.11 ) Two elements of V(G, 3) lie in the same Aut F3-orbit if and
only if one can be transformed into the other by a finite se-
quence of the following operations:
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We say that two elements of V(G, 3) are equivalent if they lie in the
same Aut F3-orbit.

An important property of A7 in our context is that it has spread 2 in
the sense of Brenner and Wiegold ([1] and [2]). This means that for any
pair x, y of non-trivial elements of A7 , there is a third element z such
that (x, z) = (y, z) = A7 . The connection with T3-systems is the follow-
ing simple but important result of Evans [i].

(2.12) Let G be any group of spread 2. Then all redundant generat-
ing triple are equivalent.

A redundant generating triple (g1, g2, g3) is one where one of g1, g2, g3
can be omitted and the remaining two elements still generate the
group. Thus our strategy will be to show that every generating triple
for A7 is equivalent to a redundant triple.

3. T3-systems of A7-

The 2520 elements of A7 are classified into distinct types of permuta-
tions. We shall use the representation of these permutations as prod-
ucts of disjoint cycles, omitting cycles of length one. If an element is a
product of disjoint cycles of lengths rl, r2, ..., rk where r1 &#x3E; 1 the we

say it is of type r1, r2, ..., rk . The table below gives the number of ele-
ments of each type in A7 and also in each of the maximal subgroups of
A7 which are isomorphic to P,SL(2,’l).

There are 15 maximal subgroups of A7 which are isomorphic to
P,SL(2, 7). Each element of type 7 of A7 is in one and only one of these
maximal subgroups. This property is also true for each element of type
4, 2 of A7 .

In order to show that every generating G-vector (gi, g2, g3), is

equivalent to a redundant vector we systematically look at all possible
cases.
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CASE 1. If one of the elements of the triple is of type 7, say gl then
as we remarked above, it is one and only one of the P,SL(2, 7) contained
in A7; call this group B.

If g2 E B then g1, g2&#x3E; c B while if then g2 ) = A7 as B is a
maximal subgroup. The same holds for g3.

As (gl, g2, 93) is a generating set for A7, one of g2, 93 is not an ele-
ment of B and will generate A7 with gl . Thus any generating triple con-
taining an element of type 7 is equivalent to a redundant triple.

CASE 2. Suppose that g, is of type 5, without loss of generality,
(12345) say. If (gl, g2) is transitive over the set {1, 2, 3, 4, 5, 6, 71 then
~1~2)= Ay.

So we look at the cases when (gl, 92) and ~gl, g3) are non transitive
but of course, g2 and 93 between them must move 6 and 7. We need to
consider two cases.

i) gl = (12345), g2 = ( ... ) (67), 93 = ( ... 6) ( ... ) (7). Then 693 = i with
i#6 and i#7 and so = 7 and = i.

This means that = ( ... 67i ... ) ( ... ) and hence (91, is transi-
tive and so must be A7.

ii) gl = (12345), and let g2 move 6 but not 7 and 93 move 7 but not 6.
Then will move 6 and 7 and then (gl, is again transitive
and so is A7.

Thus if the generating triple contains an element of type 5 it is equiva-
lent to a redundant triple.

The further cases, with gl, g2 and 93 taking all possible types, are
shown in the following table, which indicates the length of the calcula-
tion required.

We investigate the cases 3, 4, 5, 6 and 7, using the following
consideration.

i) There is a need for transitivity over {1,2,3,4,5,6,7}.

ii) Any triple equivalent to a triple with an element of type 7 or of
type 5 is no problem.

iii) Two elements generating a transitive subgroup of A7 , in which
one is of type 3 will generate A7 ([7], p. 34).

iv) Two elements generating a transitive subgroup of A7 and each of
type 4, 2 in different PSL(2, 7) subgroups will generated A7 .
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The investigation leads to the conclusion that if the generating
triple contains an element of type 4, 2 it is equivalent to a redundant
triple.

We provide here a proof of some of Case 3 to demonstrate the
methods used. The complete proofs of the assertions made here involve
a great deal of simple but tedious calculation.

CASE 3. Let gl, g2 and g3 be each of type 4,2 and each in a differ-
ent PSL(2, 7)-subgroup of A7. As an example we consider the following
case.

If {~1~2} is transitive over {1,2,3,4,5,6,7} there is no problem.
We also find for the remaining elements g2 that gl g2 or g1 g2 1 or gl g 2 is
of type 7 or type 5 except for g2 = (2537) (16) or (1567)(23) and their
inverses.

If (gl, g3) is transitive over {1,2,3,4,5,6,7} there is no problem.
We also find for the remaining elements g3 that g1g3 or is of type 7
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or type 5 expect for g3 = (3657) (12) or (3567)(14) or (3576)(24) and their
inverses.

For these elements or their inverses, g2 g3 or g2 g3 1 is of type 7 or
type 5.

We see that for the selected g1 and the subgroups concerned, all the
triples are equivalent to redundant triples. This is found to be true
whichever of the 14 maximal subgroups are chosen to contain elements
g2 and g3. Thus any generating triple containing three elements of type
4, 2 each in a different PSL(2, 7) maximal subgroup is equivalent to a
redundant triple.

We now consider the case with gl, g2 each of type 4, 2 and each in a
different PsL(2, 7)-subgroup of A7 with g3 any element of type 3. We
consider the following case.

g3 = any element of type 3 in A7 ,

When we consider the products of gl g2 and gl g3 we find problems
only occur when g2 = (2537) (16) or (1567)(23) and 93 = (124) or (345) or
(346) or (347) or (456) or (457).

For these elements we find that either an equivalent triple can be
obtained with one element, a product of gl, g2 and which is of type 7
or of type 5, or the triple is not a generating triple.
We again see that for the selected gl and the subgroups concerned,

all the triples are equivalent to redundant triples. This is found to be
true whichever of the maximal subgroups are chosen to contain ele-
ment g2. Thus any generating triple containing two elements of type
4, 2 each in a different P,SL(2, 7) maximal subgroup with the third ele-
ment of type 3 is equivalent to a redundant triple.

Case 3, when completed, and then cases 4, 5, 6 and 7 all lead to the
same conclusion that the generating triples concerned are all equiva-
lent to a redundant triple.

The information obtained from cases 1 to 7 is used in the other cases
in the order as shown in the table and with each case leading to a redun-
dant triple.

The final conclusion is that all the generating G-vectors are equiva-
lent to redundant vectors and consequently A7 has only one T3-sys-
tem.
A further result of Evans [4] can now be used to complete the

proof.
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(3.1) Let G be a non-abelian finite simple group with d(G) = k. Sup-
pose that G = ~ g1, g2, ... , gk ~ where gk = 1. Then AutFk+1 1 acts as
a symmetric or atternating group on at least one of its orbits on

+ 1).

The alternating group A7 may be generated by ~ gl , g2 ~ where gl is an
element of type 7 and g2 is an element of type 2, 2 which is not in the
P,SL(2, 7) maximal sub-group containing gl . For example we have A7 =
= ((1234567), (12) (45)). We conclude that the action of Aut F3 on the A7
defining subgroups is alternating or symmetric.
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