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Extensions of Abelian
by Hyper-(Cyclic or Finite) Groups (II).

Z. Y. Duan(*)

ABSTRACT - If G is a hypercyeclic (or hyperfinite and locally soluble) group and A a
noetherian ZG-module with no nonzero cyclic (or finite) ZG-factors then
Zaicev proved that any extension E of A by G splits conjugately over A. For
G being a hyper-(cyclic or finite) locally soluble group, if A is a periodic artini-
an ZG-module with no nonzero finite ZG-factors, then we have shown that
any extension E of A by G splits conjugately over A, too. Here we consider
the noetherian case and prove the splitting theorem which generalizes that of
Zaicev for G being a hyperfinite and locally soluble group.

In[1], we have proved: if G is a hyper-(cyclic or finite) locally solu-
ble group and if A is a periodic artinian ZG-module with no nonzero fi-
nite ZG-factors, then any extension  of A by G splits conjugately over
A. Now we continue the work and are going to prove the same result
for A being noetherian.

The following lemma generalizes the corresponding one in Zaicev’s
paper [6] and is very important in our later proof.

LEMMA 1. Let H be a normal hyper-(cyclically or finitely) embed-
ded subgroup of a group G, and let A be a nonzero noetherian ZG-mod-
ule. If C,(H) = 0, then there is a subgroup K of H and a nonzero ZG-
submodule B of A such that K is normal in G, Cz(K) = 0, and K induces
in B a cyclic or finite group of automorphisms.

PrOOF. Suppose the lemma is false. Using the noetherian condi-
tion we may assume that the lemma is true in all proper ZG-module A.
We may also assume that G acts faithfully on A.

(*) Indirizzo dell’A.: Department of Mathematics, Southwest Teachers Uni-
versity, Beibei, ChongQing, 630715, P. R. China.



114 Z. Y. Duan

There is a cyclic or finite subgroup F' < H with F being normal in G.
If C4(F) =0 then the lemma is true taking F, A for K, B.

Consider the second possibility C,(F') # 0. We let A; be the ZG-
submodule C4(F') and let H; = Cyx(F'). Then H; is normal in G and
|H/H,| < .

(1) Suppose that the centralizer Ay /A; = C4/4,(H) is nonzero,

ie, Ay # A,. Consider the ZH,-isomorphism A, /Cy,(f) =74, A2(f— 1),
where fe F. Since A; < Cy,(f) and Ay/A, is Hy-trivial, we have that
Ay (f—1) is Hy-trivial for any fe F. It follows that

[Az, Fl= Z Az(f_ 1)
feF

is Hj-trivial and so H induces a finite group of automorphisms on
[A,, F']. Since A, # A, the ZG-submodule [A;, F]1# 0 and Cp4, 7 (H)=0
since C,(H) = 0. Therefore the lemma is true with K=H, B=
= [4,, F1.

(2) Suppose now that A; = A,, ie., Cg/a,(H;) = 0. Then the ZG-
module A/A; and the normal subgroup H, satisfy the hypotheses of the
lemma and so there is a subgroup K; of H; and nonzero ZG-submodule
B /A, of A/A; such that K, is normal in G, Cp ;4 (K;) =0, and K, in-
duces in B;/A; a cyclic or finite group of automorphisms.

Put G, = C;(F); clearly H,=HN Gy, |G/G,| < ».

(a) We consider firstly the case that K,;/Cg (B;/A,) is cyclic.
Let B, =[B,, F] and let K, = C, (B, /A,). Since A; = C4(F), so

[K07 Bly F] = [[KO; Bl]’ F] < [AI’ F] =0
also by K, < K; < H, = Cy(F), we have

[F, Ky, B]1=[[F, K], B{] =[1,B] =0
Thus by the three subgroup lemma,

[B2’ KO] = [[Blr F], KO] = [Bl’ F1 KO] =0
Therefore B, < C4(K,) and we then can view the noetherian ZG-mod-
ule B, as a noetherian Z(G/K,)-module. Applying Lemma 3 in [5] to the
cyclic normal subgroup K;/K, of G/K,, there is an integer m such
that

By(k—1)"N Cg,(k) =0



Extension of abelian ete. - II 115

where k is an element such that K; = K(k).
If By(k — 1) =0, then

0= Bz(k—l)m—(EBl(f 1))(k—1)m EBI«f )k —1)") =

=2 Bi(k—D"(f-1)=2 Bk —1)")(f- D).
feF feF

That is, B; (k — 1) < C,(F') = A,. But this is contrary to
CB!/AI (k) = CBI/AI(K) =0
So we have By(k —1)™ and then the lemma is true by taking B =
=B, (k—1)" and K = K;.
(b) Secondly, we consider the case that K,/Cg (B;/A,) is finite.
Choose in F a least set of elements {x,, ..., x,} satisfying
A, =Cp (F)=Cg (x)) N ... N Cg (x,)

and put By =Cp (@) N ... N Cp (x,_;) if n>1 and B; =B, if n=1.
Then

@ B, # A,

and Cg, (x,) = Cp (&) N ... N Cp (x,) = A;. Consider the ZG,-isomor-
phism

(2) ‘ BZ/AI = BZ/C32 (wn) EZGle(xn - 1) .

Since K; < G,, B; < B;, and K, indices a finite group of automor-
phisms on B;/A;, so K, induces a finite group of automorphism on
B;/A; and hence on B,(x, —1). Since Cg /4, (K;) =0 we also have
Cs,@,-» (K1) = 0.

Let D = B,(x, — 1). Then D is a ZG,-submodule of B, Cp(K;) =0,
and |K; /CKI(D)| < . Let D be the ZG-module generated by D, then
D= 2 Dg is a finite sum of ZG;-submodules Dg, where T is a

transversal to G; in G.
Note that since K, is normal in G, Cp,(K;) = Cp(K;)g =0, and

Cx,(Dg) = g 7' Cx, (D)g. It follows that |Ki/ ] Cx (Dg)| < o and so
ge

K, induces a finite group of automorphisms in D.
Now consider two cases.

(A) D contains an element of finite order.
Then D contains a maximal elementary abelian p-subgroup D, (# 0)
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and we let D, = E D, g. Let S be the K;-socle of the ZG;-submodule

D,, ie., the sum of all irreducible ZG;-submodules (these irreducible
ZGl-submodules are all finite since K; induces a finite group of auto-
morphisms in D). Since D, is a ZG,-submodule and K; is normal in G so
S is a ZG,-submodule and S = E Sg is a ZG-submodule. Now Sg is a

sum of irreducible ZKl-submodules and so S is a sum of irreducible
ZK;-submodules each being contained in some Sg. Since Cp,(Ky)) =0it
follows that C5(K;) = 0. Thus we can take K; and S satisfying the con-
clusion of the lemma.

(B) The group D is torsion-free.

Let T(D) be the torsion part of D. Since D is a noetherian ZG-mod—
ule, T(D) has a finite exponent. Therefore D N T(D) = 0 for some n

and nD is torsion-free.
We put m = |K,/Cg, (D)|, C = C5(K,) and show that

6] [mnD, K;1N C=0.

In fact, if ae[mnD, K;]NC, then ae [mnD , K;1N C, for some
finitely generated K;-admissible subgroup D of D. Since nD N C =
= C,p (K,), D < D, and nD is torsion-free, so nD /(nD N C) is torsion-
free and then nD = (nD N C) ® V, where V is a free abelian subgroup.
Applying Theorem 4.1 in[2], there is in nD a K;-admissible subgroup
W such that (D N C) N W =0 and the factor group nD /[(nD N C) ®
@® W] has a finite exponent, dividing 7. Thus mnD < (nD N C) ® W. It
follows that [mnD, K;]< W and so [mnD, K;1NC=0. Hence a =0
and (3) is proved. _ _

Note now that [mnD, K;]# 0. In fact, if [mnD, K;]1=0, then
mnD < C5(K;) = C. Therefore mnD < C and since D is torsion-free,
D < C. This shows that D is a K;-trivial ZG,-module and since D =
= By (x, — 1) and is G;-isomorphic to B,/A; by (2) we have B, /A, is also
K -trivial. But Cp /4, (K;) =0 and so B, =A; contrary to (1). Thus
[mnD, K] # 0. Since [mnD, K,]is a ZG-submodule and K, induces in it
(as in D) a finite group of automotphisms then it follows from (3) that
the conditions of the lemma are satisfied by K; and [mnD, K,]. The lem-
ma is proved.

As in the hyperfinite case, we need:
LEMMA 2. Let G be a hyper-(cyclic or finite) group, A a noethe-

rian ZG-module, and B a ZG-submodule of A such that B is of
finite index in A and B has no nonzero finite ZG-factors, then
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B has a complement in A, ie, A=B®C for some finite ZG-
sobmodule C of A.

ProoF. Suppose that B does not have a complement in A. By con-
sidering an appropriate factor-module of A we may assume that for
every ZG-submodule D of B with D # 0, B/D has a complement in
A/D.

Put H = Cz(A/B), then, since G/H is finite and the irreducible ZG-
factors of B are all infinite, we have Cz H) = 0 so we can apply Lemma
1 to the subgroup H and the ZG-module B. So there is a subgroup K
of H and a nonzero ZG-submodule D of B such that K is normal in G,
Cp(K) =10 and K induces on D a cyclic or finite group of automor-
phisms, i.e., K/Cx(D) is cyeclic or finite.

We write A as a sum A = B + A; with BN A; = D and we will con-
sider the ZG-submodule A; as a faithful ZGy;module, where G, =
= G/Cg(A)). It is clear that D is a ZG,-submodule of A, such that D is of
finite index in A; and D has no nonzero finite ZG,-factors. Also D has
no complements in A; for otherwise if A; = D @ C, for some ZG,-sub-
module C; of A, then C; can be viewed as a ZG-submodule of A by G, =
= G/Cg(A;) and then A = B + A; = B® C;, a contradiction.

Since Cp(K) = 0 and D < Ay, so K is not contained in Cg(A4,). Let
Ky=(KCg(A;)/Cg(A,), then Ky=1. Also, it is clear that Cp(Ky) =0
and K, induces on the ZGy-submodule D of A, a cyelic or finite group of
automorphisms. We prove that Cx, (D) = 1. For suppose Cg, (D) # 1 and
let Fy be a nontrivial cyclic or finite normal subgroup of G, contained in
Cxk,(D). If x € Fyy, then D < Cy, (). Since |A,/D| = |A/B| < » and, as
groups, A,;/Cy, () = A, (x — 1), we see that A, (x — 1) is finite. Thus the
ZGy-submodule [A,, F,] is finite. Also

FO < CKQ(D) < KO = (KCG (Al))/CG (Al) < (HCG (Al))/CG (Al) =
= (CG (A/B) CG (A1))/CG (A1) y

thus [A,, Fy] < B, and then [A,, Fy] < D. By D having no nonzero finite
Z.Gy-factors, we have [A;, Fy] = 0 contrary to G, acting faithfully on
A;. So Ck,(D) =1 and hence K, is cyclic or finite.

Now put

Gl = CGO(KO)y K() = <w1 = 1’ x2’ ceey xm)y C’n = CAl (<x19 sy xn)),
n=12 ..,m.

We prove that A,=D+C,, n=1,2,...,m.
It is clear that A; = D + C,. Suppose A; =D + C, we prove A, =
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=D + C,,,. Consider the isomorphism of ZG;-modules
Cn/Cn+l = Cn/CC,, (mn+ 1) EZG, Cn (xn+l - 1) ’

where C,(x,,; — 1) may not be contained in C, if K, is nonabelian.
Since

%, 1€ Ko = (KCg(4,))/Cs(A;) < (HCg(A,)/Cs(Ay) <
< (Cg(A/B)Cg(A))/Ce(4y),

the ZG;-module C,(x,,; — 1) of A, is contained in B and then in D.
Since |Gy/G,| < « it follows from Proposition 2 in[4] that the irre-
ducible ZG,-factors of D are all infinite, hence so are the factors of
Cn/ Cn+l' But

Cn/(CrHl +(DnN Cn)) EZGl(Cn + D)/(Cn+l + D)r

a factor module of the finite module A,/D. Hence C, + D =C,,; + D
and so A; =C,;; + D. Thus A; =C, + D for all » =1,2,...,m. In par-
ticular, put » = m, C,, = Cy, (K,) and A; = D + C4 (Kp). Since Cy, (Ky)
is clearly a ZG-submodule of A; and since D N Cy4, (K) = Cp(K) = 0 we
have A; = D ® Cy, (K), contrary to D having no complements in A, . The
proof is completed.

From the proof of Lemma 2, we have:

LEMMA 3. Let G be a hyper-(cyclic or finite) group, A a noetheri-
an ZG-module, and B a ZG-submodule of A such that, as group, A/B is
a finite p-group for some prime p and the ZG-submodule B contains no
nonzero ZG-factors being finite p-groups. Then B has a complement in
A, i.e., A=B®C for some ZG-submodule C of A.

Dual to Lemma 2, we have:

LEMMA 4. Let G be a hyper-(cyclic or finite) group, A a ZG-mod-
ule, and B a finite ZG-submodule of A such that all irreducible ZG-fac-
tors of A/B are infinite. Then B has a complement on A4, ie,
A =B®C for some ZG-submodule C of A.

ProOOF. By Zorn’s Lemma, A has a ZG-submodule D maximal with
respect to BN D = 0. We show that A = B@® D. Suppose not, then by
replacing A by A/D we may assume that for any nonzero ZG-submod-
ule C of A, BNC #0. We also assume that G acts faithfully on A.

Put H = C;(B), |G/H| < ® so there is a normal subgroup K of G
contained in H such that K is either cyclic or finite. Put H; = Cy (KX).
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Since H, is normal in G and |G/H,| < « it follows from Proposition 2
in [4] that the irreducible ZH,-factors of A/B are infinite. If x € K, then
B < C4(x) and so the irreducible ZH,-factors of A/C4(x) and hence
A(x — 1) are infinite.

We prove that [A, K] N B = 0. If not, then there is a minimal set of

elements z,, ..., x, such that B;=BN 2) A(x; — 1) # 0. Then
n—1 n—1
By =45,|0:® ,21 Ax; — 1)) /( 241 Alx; — 1)) =
n n-1
= (3, 4 -0) | 'S 4c- ) =am

n—1
=zn,Al@; — 1) /(A(xn -nnN 21 Ax; - 1)) .

This shows that A(x, — 1) has a nonzero finite ZH,-factor contrary to
the fact that the irreducible ZH;-factors of A(x — 1) are all infinite.
Thus [4, K] N B =0 and hence [A, K] =0, contrary to G acting faith-
fully on A. So the result is true.

An immediate consequence of Lemma 4 is:

COROLLARY 5. Let G be a hyper-(cyclic or finite) group, and A a
noetherian ZG-module. Then A has a nonzero finite ZG-factor if and
only if A has a nonzero finite ZG-image.

ProoF. We only need to suppose that A has a finite ZG-factor
B/C, then using the noetherian condition we may assume that every ir-
reducible ZG-factor of A/B is infinite. Then applying Lemma 4 to A/C
with the finite ZG-submodule B/C we obtain a finite ZG-image of A.

As before, we have:

LEMMA 6. Let G be a hyper-(cyclic or finite) group, A a ZG-mod-
ule and B a ZG-submodule of A. If as a group B is a finite p-group for
some prime p, and if the factor module A/B contains no nonzero finite
ZG-factors being p-groups, then B has a complement in A, ie,
A =B®C for some ZG-submodule C of A.

COROLLARY 7. Let G be a hyper-(cyclic or finite) group, and
A a noetherian ZG-module. Then A has a nonzero ZG-image being
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a finite p-group for some prime p if and only if A has such a
nonzero ZG- factor.

Before we prove the main splitting theorem, we need to prove the
following three results.

LEmMMA 8. Let G be a hyper-(cyclic or finite) group, B a ZG-mod-
ule, and A a noetherian ZG-submodule of B such that all irreducible
ZG-factors of A are infinite. If B/A is torsion-free and G-trivial, then
B = A @ B, for some ZG-submodule B; of B.

PRrROOF. Suppose that A has no complements in B. Since A is
noetherian, we may assume that for each nonzero ZG-submodule C of
A, A/C has a complement in B/C.

In B, we choose a ZG-submodule M maximal with respect to
ANM=0. We show that if S is any ZG-submodule such that
B=A+S then M <8S.

Since B/A = (A® M)/A =zo M, we have M is a G-trivial ZG-mod-
ule and hence all of its irreducible ZG-factors are finite. Also

AJ(ANS) =75(A+8)/S=B/S=(M+8)/S =26M/(MNS).

Since A is noetherian and having no nonzero finite ZG-factors, we must
have M=MNS, ie, M < 8.

Consider the factor-module B/M. Every nonzero ZG-submodule of
B/M has nonzero intersection with (A @® M)/M. In particular,
(A ® M)/M has no complements in B/M. If V/M is a nonzero ZG-sub-
module of (A @ M)/M then V=C® M, where C=A NV is nonzero
and so B/C=A/C@® S,;/C for some ZG-submodule S; of B. As above,
M<S and so (ADM)NS;=(ANS)OM=COM =V. Thus S,/V
is a complement to (A M)/V in B/V.

By passing to the factor-module B/M we may assume that M =1 so
that: (a) A has no complements in B but for any nonzero ZG-submodule
C of A, A/C has a complement in B/C; (b) if N is a nonzero ZG-submod-
ule of B then ANN = 0.

We may assume that A is torsion-free. For otherwise, we may let
A[p] be the nonzero ZG-submodule generated by all the elements of
order p, where p is a prime. By (a), B/A[p] = A/Alp] @ B,/Alp].
Since B, /A[p](=z;B/A) is torsion-free, pB; = 0, then, by (b), 0 = A N
N pB; < A[p] N B,. That is, B, has elements of order p?, contrary to
B;/A[p] being torsion-free. So A is torsion-free and then B is torsion-
free. Since A has no nonzero finite ZG-factors, we have C4(G) = 0. By
Lemma 1, G has a normal subgroup K and A has a nonzero ZG-submod-
ule A, such that C, (K)=0 and K/Cx(4,) is cyclic or finite. By (a),
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B/A; = A/A; ® B, /A,. Consider the ZG-module B; and we prove that
B, = A, @ B, for some ZG-submodule B, (and hence we get B=A ® B,
as required).

Suppose B, # A; @ B, for any ZG-submodule B, and suppose that G
acts faithfully on B, ie., Cg(B;)=1. It is clear that we still have that K
is normal in G, Cy, (K) =0, and K/Ck(4,) is cyclic or finite. If Cx (4,) #
# 1, then, since Cx(A;) = K N Cz(A,) is a normal subgroup of G, Cx(A,)
contains a nontrivial cyclic or finite subgroup F being normal in G. Let
F={(f, ....f,) and let G; = Cg(F), then |G/G,| < . By Proposition 2
in [4], the irreducible ZG,-factors of A; are infinite. Since B, /A, is G-
trivial, it is also Gi-trivial. By B;/Cp (f}) =z6,B:1(f; — 1) S A; and A, <
< Cpg, (f;), we must have B, (f; — 1) = 0, for all <. That is, 1 = F < C¢ (B)),
contrary to G acting faithfully on B,. So Cx(4,) =1 and so K is a non-
trivial cyclic or finite normal subgroup of G. Let K = (k,, ..., k;). Being
similar with the above, we have B, /Cp (k;) =2¢,B, (k; — 1) < A, for all
i, where G, = Cg(K). Thus B, /(A, + Cp, (k;)) must be zero for all i. That
is, By=A;+Cg,(k;) for any 7. Let C,=Cg ({ky, ..., k), m=1,...,t.
Then we have B, = A; + C;. Suppose that B, = A, + C,,; we prove that
By =A;+ Cpys-

Consider the ZGy-modules

Cm/Cm+1 = Cm/CCm(km+1) EZGsz(anl -1).

Since B, /A, is G-trivial, C,, (k,,+1 — 1) < A; and so C,, (k41 — 1) has no
nonzero finite ZG,-factors; hence the irreducible ZGs-factors of
Cp/Cp+y are all infinite. But

Cn/(Cps1 + (A1 N Cy)) =246,(Cy, + A)/(Cry 1 + Ay,

a factor module of the G,-trivial ZG,-module B;/A,. Hence A, + C,, =
=A; + Cy,,.Thatis, B, = A; + C,,,,. Therefore B, = A, + C,, for all m.
Put m = m, then C, = Cp (K) and B; = A; + Cp (K), which implies that
Cp, (K) # 0. Hence, by (b) and B/A; = A/A, @ B, /A,, we have C, (K) =
=A; NCp (K)=ANCg(K)=0, a contradiction. So B, = A; ® B, for
some ZG-submodule B, and hence the lemma is proved.

COROLLARY 9. Let G be a hyper-(cyclic or finite) group, B a ZG-
module, and A a noetherian ZG-submodule of B such that all irre-
ducible ZG-factors of A are infinite. If B/A is an infinite cyclic group,
the B = A ® B, for some ZG-submodule B; of B.

ProoF. Let G, = Cg(B/A), then |G/G,| <2 and B/A is torsion-
free and Gi-trivial. By Lemma 8, B = A @ B, for some G,-trivial ZG;-
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submodule B; of B. For geG@G, if B,g # B;, then B,g is G-trivial
and

0 # B,g/(B, N B1g) =z¢,(B, + B19)/B; < B/B, =45,A.

That is, A has a nonzero G;-trivial ZG,-factor and then a nonzero finite
irreducible ZG-factor, which will imply that A has a nonzero finite ir-
reducible ZG-factor, a contradiction. So b, 9 = B, for all g € G. That is,
B, is a ZG-submodule of B. The result is proved.

LEMMA 10. Let E be an extension of the abelian group A by a hy-
per-(cyclic or finite) group G such that A is a noetherian ZG-module
and all irreducible ZG-factors of A are infinite. Then if C/A is a normal
subgroup of E/A and C < Cz(A), then C = A X N, where N is a normal
subgroup of E and is contained in every supplement to A in E.

ProoF. Let N be a normal subgroup of £ contained in C' and maxi-
mal subject to N N A = 1. By considering the factor group E/N we may
suppose that N = 1. Then E satisfies the following condition: if S is
normal in E, S<C, and S # 1, then SN A # 1. We show that this im-
plies that A = C.

Suppose that A # C. Since E/A is hyper-(cyclic or finite), there is a
nontrivial finite subgroup K/A < C/A such that K is normal in £ or an
infinite cyelic subgroup L/A < C/A such that L is normal in E.

For K, by the hypothesis of the lemma, K < Cz(A) and so K is a fi-
nite extension of its central subgroup A. Hence K’ is finite (Theorem
10.14 in[3]). It follows that A N K’ is finite and so ANK' =1 by A
having no nonzero finite ZG-factors. By the condition above, we have
K' =1 and so K is abelian. Apply Lemma 2 to the Z(E/K)-module K
and its submodule A, then A = A X K, for some normal subgroup K, of
E, contrary to the condition above.

For L, by the hypothesis of the lemma, L < Cz(A) and so L is a
cyclic extension of its central subgroup A. Thus L is abelian. By Corol-
lary 9, L = A X L, for some normal subgroup L, of E, contrary to the
condition above.

Thus we have proved that C =A X N, where N is normal in E.

Now let E, be a supplement to A in £ so that E = AE,, C=A(CN
NE,) and CN E, is normal in AE,. We have

N(CNE)/CNE)<C/CNE)=ACNE)/(CNE,).

Since N is hyper-(cyclically of finitely) embedded in E and the
irreducible ZG-factors of A are all finite, we must have N(C N E,)/
(CNE)=1,ie, NCNE, =C=E,. Hence N < E; as required.
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Now we prove the main result of this paper.

THEOREM. Let G be a hyper-(cyclic or finite) locally soluble group
and A a noetherian ZG-module. If A has no nonzero finite ZG-images,
then the extension E of A by G splits conjugately over A and A has no
nonzero finite ZG-factors.

Proor. By Corollary 5, A has no nonzero finite ZG-factors.

Suppose the theorem is false, then using the fact that A is a noethe-
rian ZG-module we may assume that: A has conjugate complements in
E modulo any nontrivial E-invariant subgroup of A.

Since A has no nonzero finite ZG-factors, C4 (£) = 1. By Lemma 1,
E/A has a normal subgroup K/A and A has a nontrivial E-invariant
subgroup A, such that C, (K)=1 and K/Cx(4,) is cyclic or finite.

(1) If K/Cx(Ay) is finite, then we may choose K and A, such that
K/Cg(A,) is minimal and so K/Cg(A,) is a chief factor of E. (For if L is
normal in £ and Cx(A4,) < L < K then if C4, (L) = 1 we have L, A, con-
trary to minimality of |K/Cx(A,)| and if C, (L) # 1 then K, Cy, (L) is
contrary to minimality of |K/Ck(A,)|. ) Hence K/Cx(A,) has order p*
for some prime p and integer k = 1. From Cy (K) =1 it follows that
Ay[pl=1 and so A§ # 1.

By the assumption on A, we have E splits conjugately over A modu-
lo AV = 1.

Let El be a complement to A in E modulo Ay = 1: E = AE,, AN
N El AO # 1 putEo = AOEI,KO =KnN Eo,andCO = CKo(AO) By Lem-
ma 10, Co = Ay X N, where N is normal in E, and is contained in E,.
Consider the factor group E, = E,/N and the subgroups K,, A,.
Since

I_{o/zo = Ko/ao = K,/Cy = K/Cx(Ay),

we have |K,/A,| =p*. Corresponding to C,(K)=1 we have
Cz,(Ky) =1 and also Ay N E, = 4. It follows, by applying Lemma 6
in [6] to Eo and its subgroups K, A, that Eo splits over Ay: Ey = AyE»,
A4, N E, = 1. The complete preimage E, of E, in E, gives E, = AyE, and
AyNE; =1.Sothat Eyis a complement to Ain E. Let S;, S, be any two
complements to A in E. Then, since E splits conjugately over A modulo
A(’,’ We have Sl and S, are conjugate modulo AO”" and we may assume
that A() Sl A(? Sg Put Eo = AOSI A{)Sg, K() KN Eo, and Co =
= Cg,(Ap). By Lemma 10, Cy = Ay X N, where N is normal in E, and is
contained in every supplement to A, in Ej; in particular, N < S, N S,.

Consider the factor group Eo = Ey/N and its subgroups Ko, 4,. Since
Ko/Ay = K/Ck(Ay), so Ky /A, is a group of order p*, and also Cz, (K,) =
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= 1by C4,(K) = 1. From AV S, = Al S, it follows that S; and S; are com-
plements to A, in E'o which coincide modulo AO Applying Lemma 6
in [6] to the group E'O and its subgroups Ko, Ay, we have the conjugacy
of the complements: Sf = S,, a € A,. Since S; = S; /N, S, = S; /N, and N
is normal in E it follows that S{ = S,, i.e., E splits conjugately over A,
a contradiction.
(2) Now we may suppose that K/Cx(4,) is cyeclic.

In this case, we let A, = [A4,, K] < Ay, then, by C4, (K) = 1, we have
A, # 1. Thus E splits conjugately over A modulo 4,, ie., £ = AE,;, AN
ﬂEl =A1.LetK1 KﬂE’l and Cl CK (Ao) Itlsc]earthatAl < Cl <
< Ck,(A;) < Cg, (A4,). By Lemma 10, C; = A; X N for some normal sub-
group N of E;. Since K, /C; = K/Cx(A,), we have K; = C,(x) for some
ze K. Let M = N(x), then K, = C;(x) = A; M. Since

[A1 N M, K]=[A4; N M, Cx(Ag)(w)] = [A N M, ] =
=[A4NM,@E]<[A,zIN[M,2]<ANN=1,

we have Ay N M < C4 (K) = 1. Thus K, = A; M, i.e., M is a complement
to A1 in K].

Suppose that M, is also a complement to A, in K; with N < M,; we
show that M and M, are conjugate by an element of A,. We can write
T =a,% with ay EAI and Xy € Mo. Since

Ay =4y, K] =[Ay, Cxk(Ay) ()] = [Ag, ()] = [Ao, '],
so a; = [ag !, # "] for some a, e Ay, and therefore
@ = a2 =[ag !, @ 11w = ag(ag™)* "y = (ag™")* " @y = x(@ ") ar,
ie, wy=2a%. Since N < M, and N =< C; = Cg, (4,), we have
M%(N(x)® = N(x™) = N(xo) < M, .
As Cx(Ay) = ACk,(Ay) and K = K, Ck(Ay), so
AM, = A(A1 M,) = AK, = ACg, (Ay) K, = Cx(Ap) K, =
=K=K%=(AM)*=AM™

also ANMy=A;NMy=1 and ANM =1 implies that ANM%» =1.
Thus My=M%.

We now prove that A has conjugate complements in E and that the
complements are of the form L = Ng, (M), where Ey, = AyE; and M is,
as above, a complement to A; in K, containing N.

If g e E,, then since N and K, are both normal in E; and the sub-
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group MY is a complement to A, in K; containing N, thus M,= M % for
some g € Aj and so gag ' € Ng, (M) = L, hence E = AE, = AL. We show
that L is a complement to A in E. That is, we need to prove that
ANL=1.

Since L<Ey=AyE, and ANE, =4, so

ANL=ANENL)=ANE)NL=(ANAE)NL=
=A0(AﬂE1)ﬂL=A0AlﬂL=AoﬂL;

also A, is normal in E and L = Ng (M), hence [A)NL, M] <A, N M.
Since

ANM=4NENM=ANE)NM=A,NM=1,

s0 AN L < C4(M). Therefore, by K =AM and C, (K) =1, we have
ANL<Cy(M)=Cy(K)=1 Thatis, AN L = 1and so L is a comple-
ment to A in E.

Now let S be any complement to A in E. Thus S and L are conjugate
modulo A; and we may assume that A,;L =A,S. Therefore, we
have

E,=E,NE=E,NAL = (E,NA)L = (4, E, N AL =
=AOL =A0A1L =A0AIS=AOS.

Since K] =A1M < AIL =A1S, SO Kl =A1M1, Al N Ml = 1, where
M;=K;NS; thus M and M, are complements to 4; in K;. We show
that N < M,. By K, < A, S and C; = Cg, (4,) < K; we have C; =C; N
ﬂAIS = AI(CI N S),thuSCI = Al X Nl,WhereNl = Cl NS < Mlanle
is normal in A,S = E|, since C; = Cg, (4,) is normal in Ay E; = E,. In
particular, N, is normal in E, < E, and, since E, /A, is hyper-(cyclic or
finite), N, is hyper-(cyclically or finitely) embedded in ;. Consider the
product NN,. If NN, # N, then, by C; =4, X N=A4; X N;, NN; N
N A; # 1 and so A, contains a nontrivial cyclic or finite subgroup normal
inE,.ByA; <Aand E,;/A, = E/A = G, we have A has a nonzero cyclic
or finite ZG-module and hence contains a nonzero finite ZG-factor, a
contradition. Thus NN; = N;, N<N, and so N < M,.

This shows that M and M, are conjugate by anelement g, € 4, ie.,
M®%=M,, and hence L% = Ng (M)*= Ng(M*)= Ng (M,). From
K,=A;M and M is normal in L it follows that K, is normal in A, L.
Therefore, by A;L = A; S, we have K, is normal in A, S, and so M, =
= K, N S is normal in S and S < Ny, (M,). By L* = Ng,(M,), we have
S < L% and so

L*=ASNL*»=(ANL*)S=S8S.
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That is, S and L are conjugate in E, ie., E splits conjugately over A, a
contradiction again.
Thus, we have finished the proof of the theorem.
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