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Multivalued Superposition Operators

J. APPELL - E. DE PASCALE - P. P. ZABREJKO (*)

SUNTO - Dato un aperto limitato D in studiamo l’operatore di sovrapposizione
(di Nemfskij) multivoco NF generato da una funzione multivoca F: s2 xx R ~ 2 . Diamo delle condizioni sufficienti per la continuita e la limitatezza di
NF nello spazio delle funzioni misurabili su 0, tra due spazi ideali X e Y, e
nello spazio C delle funzioni continue su ~2. Inoltre, facciamo un confronto tra
la chiusura F e la convessificazione 7~° della funzione F, da una parte, e la
chiusura NF e la convessificazione del relativo operatore NF , dal-
1’altra.

Let S2 be a bounded domain in the Euclidean space and f some real
function on 0 x R. The superposition operator (or Nemytskij operator)
Nf generated by the function f associates, by definition, with each func-
tion x = x(t) on 0 another function y = y(t) according to the rule

This operator is of fundamental importance in both the theory and ap-
plications of nonlinear analysis, and has been studied between many
function spaces X and Y. In particular, the following three cases are of
interest: X = Y = S is the space of all measurable functions over 0, X
and Y are two ideal spaces over (see below), or X = Y = C is the space
of all continuous functions over S~. A detailed exposition of this theory
may be found in the book [6].

Suppose now that F is a muLtivtxlued real function (multifunction)

(*) Indirizzo degli AA.: J. APPELL: Math. Institut, Universitat Wiirzburg,
Am Hubland, D-8700 Wfrzburg, Germania Federale; E. DE PASCALE: Dip. di
Matematica, Universita della Calabria, 1-87036 Arcavacata (CS), Italia; P. P.
ZABREJKO: Belgosuniversitet, Mat. Fakultet, Pl. Lenina 1, SU-220080 Minsk,
Unione Sovietica.
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on 0 x R. Therefore, applying F to a (single-valued) function x = x(t) on
D, we get a multifunction

on S2. In this case, the muLtivalued superposition aperactor NF genera-
ted by F is defined by

i.e. NF is the set of all selections of F(., x(. ». In contrast to the opera-
tor (1), the multivalued superposition operator (3) has not yet been
studied systematically, although multivalued superposition operators
occur quite frequently in many fields of applied mathematics, such as in
control theory, in the mechanics of hysteresis and relay phenomena, in
convex analysis, in game theory, in dynamical systems without unique-
ness, and in some parts of mathematical economics. It is the purpose of
this paper to give a brief systematic account of some important proper-
ties of the operator (3), such as boundedness and continuity, in the
function spaces mentioned above.

The paper consists of two parts. In the first part, we study the oper-
ator (3) from the viewpoint of boundedness and continuity in the cases
X = Y = S, X and Y are ideal spaces, and X = Y = C. In contrast to the
operator (1), here the case of measurable functions is much easier than
that of continuous functions; this is due to the fact that, loosely speak-
ing, measurabte selections of a measurable multifunction are easily
found, while continuous selections of a continuous multifunction exist
only under additional hypotheses, as Michael’s classical selection theo-
rem shows. In the second part, we shall be concerned with certain clo-
sure and convexificaction procedures for the function F and the corre-
sponding operator NF . These procedures are classical tools in applica-
tions to integral or differential equations with discontinuous data;
roughly speaking, they serve for «511ing the gaps» of a given discontin-
uous non-linearity. For details, we refer to the recent book [14] on dif-
ferential equations with discontinuous right-hand side.

1. The superposition operator in the spaces S.

Let 0 be a bounded domain in the Euclidean space. By S = S(Q) we
denote the set of all (classes of) Lebesgue-measurable real functions on
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~, equipped with the metric

this set is a complete metric linear space (see e.g. [12]).
Let x R - 2R be some multifunction. (In the following we shall

write 2T (resp. Bd (T), CI (T), Cp (T), Cv (T )) for the system of all (resp.
all bounded, closed, compact, convex) nonempty subsets of a topologi-
cal linear space T.) We call F superpositionally measurable (or sup-
measurabLe, for short) if, for any X E S, the multifunction (2) is measur-
able in the usual sense (see e.g. [8], [9], or [15]); if the multifunction (2)
admits only a measurable (single-valued) selection y, we call F weakly
sup-measurable. (In case of measurable selections y, we require that
(3) holds only for almost all s E S2, of course.) In either case, we may de-
fine the superposition operator (3) in the space S, because we have then

for all X E S.
The problem arises to characterize the (weak) sup-measurability of

a multifunction F in simpler terms. In general, this is a highly nontriv-
ial problem even in the single-valued case (see e.g. [4]); sufficient con-
ditions, however, are easily found. Recall that F is called a

Carathéodory multifunction if F(-, u): Q - 2R is measurable for each
u E R, and F(t, .): R -~ 2R is continuous for (almost) each t E Q. If the con-
tinuity of F(t, ~ ) is replaced by upper (resp. lower) semi-continuity, F is
called an upper (resp. lower) Carathéodory multifunction. One may
show that every Carath6odory multifunction is sup-measurable [9]. In-
terestingly, if F is merely an upper Carath6odory multifunction, F
need not be sup-measurable; a simple example is given in [23]. Never-
theless, if F is upper Carath6odory, then F is weakly sup-measur-
able [10]. Surprisingly, a lower Carath6odory multifunction need even
not be weakly sup-measurable; this shows that also from the viewpoint
of sup-measurability, there is an «unsymmetry» between upper and
lower semi-continuity.

For example [24], let 0 = [0, 1], D a non-measurable subset of 0, and
F: 0 x R - Cp (R) defined by

It is easy to see that F is lower Carath6odory. However, F is not weak-
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ly sup-measurable: in fact, putting x(t) = t into (2) yields

which does not admit a measurable selection!
We point out that conditions for (weak) sup-measurability may be

obtained by combining semi-continuity properties of F in each variable
separately. For example [11], if F( ~ , u): Q - Bd (R) is upper semi-con-
tinuous, and F(t, ~ ): R- Bd (R) is lower semi-continuous, then F is
weakly sup-measurable. (It is in fact easy to see that the above multi-
function F is not upper semi-continuous in t.)

Other sufficient conditions for sup-measurability which are related
to the measurability of F an the product 0 x R may be found
in [27].

Suppose now that F is a weakly sup-measurable multifunction
satisfying

the condition (5) may always be fulfilled by passing, if necessary, to the
«shifted» multifunction F(t, u) = F(t, u) - F(t, 0). By (5), the relation

holds, where

denotes multiplication by the characteristic function of D c S~. Obvious-
ly, if (5) is replaced by the stronger condition

equality holds in (6).
We point out that the superposition operator (3) always satisfies the

following property of disjoint additivity: whenever xl , x2 , ... , xn are
measurable functions with disjoint supports, then

where 0 denotes the (almost everywhere) zero function. This property
is sufficient for most purposes (see e.g. the proof of Theorem 3
below).

We begin now the investigation of the operator (3) in the space S.
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The following useful result on Carath6odory multifunctions was proved
in the single-valued case in [16].

LEMMA 1. Let F: 0 x R- Cp (R) be a Cathéodory multifunction,
and Let v and w be two measurabLe functions on 12. let

Then there exists a measurabte function z such that m E NF (z).

PROOF. First of all, we remark that the function (10) is well de-
fined, since any upper semi-continuous multifunction 0: R- Cp (R)
maps compact sets into compact sets [9]. Moreover, the function m is
obviously measurable, as well as all functions

(0  If we define

then z is measurable, since the relation z(t) &#x3E; h is equivalent to the rela-
tion m(t) &#x3E; mh (t).

We remark that Lemma 1 may also be proved by means of Filip-
pov’s implicit function lemma for multifunctions [13].

We prove now a boundedness and continuity result for the operator
(3) in S. Recall that a set N c S is bounded if and only if, for any se-
quence (Yn)n in N and any sequence (an)n in R with an - 0, the sequence

converges to 6 in S.

THEOREM 1. Let x R- Cp (R) be a Carathéodory multificnc-
tion. Then the superposition operator (3) generated by F is bounded in
the space S.

PROOF. Let M c S be a bounded set, (xn )n an arbitrary sequence in
M, and a sequence of positive real numbers such that - 0. We
have to show that any sequence Y.,, E NF (xn ) satisfies

for 0  where
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Given e &#x3E; 0, we may choose he &#x3E; 0 such that uniformly in
n e N, since M is bounded in S. Put

and observe that for all By Lemma 1, the
function

is well defined and measurable; moreover ( ~n ~ = mE (t) for any
Denote by Dn the set of all for which

F(t, xn (t)) =1= F(t, xn (t»; by construction, the set Dn has measure at most
e. On the other hand, for any we have Yn (t) E F(t, 
hence

Since c &#x3E; 0 is arbitrary, this proves (12).

THEOREM 2. Let F: 0 Cp (R) be a Carathéodory rrzuttifunc-
tion. Then the superposition operator (3) generacted by F is continuous
in the space S.

PROOF. Let x * E S and (xn )n be a sequence in S which converges
in measure (i. e. in the metric (4)) to x *. Without loss of generality,
we may assume that (xn )n converges almost everywhere on to
x * . Since F is Carath6odory, we have then also 
= F(t, F(t, x * (t)) = Y* (t) for almost all t E Q. Denotingby UE (M)
the z-neighbourhood of a set M, by Egorov’s theorem we may find
a set with such that

for and n large enough. But this implies that also

In fact, given YEN F (xn), by (16) we may choose a measurable
selection z of F(t, x *(t)) with I y(t) - z(t)) % z on and get
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This proves the first inclusion in (17); the second inclusion is

proved similarly.

2. The superposition operator in ideal spaces.

Recall [29] that an ideal space is a Banach space X of measurable
functions over such that the relations x E S, y E X and Ix(t)1 ~ ly(t)1 al-
most everywhere on Q imply that also x E X and Classical ex-

amples of ideal spaces are the Lebesgue space the Orlicz

space LM (see e.g. [18]), the Lorentz space A, , and the Marcinkiewicz
space M, (see e.g. [20]).

An ideal space X is called regular [29], if

for each (PD as in (7)), i.e. every function X E X has absolutely
continuous norm. Another important class of ideal spaces is that of split
spaces [5]; this means that there exists a sequence a(n) of natural num-
bers with the following property: whenever (xn )n is a sequence of dis-
joint functions in X with norm 1, one can construct disjoint func-
tions xn,1, ... , Xn, a(n) such that Xn = + ... + Xn, a(n) and the function

I has norm for each choice of

natural numbers 1 ~ s(n)  a (n). For instance, every Orlicz space LM is
a split space, as may be seen by putting

in particular, in the Lebesgue space one may choose
= 2n~.
We point out that the notions of regular spaces and split spaces are

independent; for example, the Orlicz space LM is regular if and only if
the corresponding Young function M satisfies a 42 condition [18].

Another concept from the theory of ideal spaces will be used below.
Given an ideal space X, we denote by X’ the associate space of all mea-
surable functions y for which the norm



220

makes sense and it is finite; here

as usual. For example, the associate space to the Orlicz space LM is the
Orlicz space L~ = LM - , generated by the Young function

(see e.g. [1], [28]). The associate space X’ is a closed (in general, strict)
subspace of the usual dual space X*; one may show that X’ = X* if and
only if X is regular.

Suppose now that F: 13 x R ~ 2R is a given sup-measurable multi-
function, and the superposition operator NF generated by F acts be-
tween two ideal spaces X and Y. It is easy to see that certain properties
of the images F(t, u) of the function F carry over to the images NF (x) of
the corresponding operator NF . For instance, if
then also if then also
X - Bd (Y) (since Loo is imbedded in Y); if F: Q x R Cl (R), then also
NF : X - C1 (Y) (since Y is embedded in S). In order to apply the main
principles of the theory of multivalued operators, however, one has to
require more properties of the operator NF , the most important ones
being boundedness and continuity. It turns out that boundedness of NF
is guaranteed by some properties of the «source space» X, while conti-
nuity of NF follows from properties of the «target spaces Y.

THEOREM 3. Let F: 0 x R- Cp (R) be a weakly sup-measurable
multifunction, and suppose that the superposition operator (3) gener-
ated by F satisfies NF : X - Cl (Y), where X is a split space. Then NF is
bounded between X and Y.

PROOF. Suppose that NF is unbounded on the unit ball of X, with-
out loss of generality. Then there exist two sequences (xn )n and (yn )n
such that and where

a(n) is the numerical sequence occuring in the definition of a split
space, and R = E By modifying the supports of the
functions

xng if necessary, one may assume that the functions Xn are mutually
disjoint (see [2] or [5]). Since X is split, we may write xn in the form
xn = xn,1 + ... + xn, a(n) . By (9) we find functions yn, j E NF (xn,j )
( j = 1, ... , a(n» and zn E NF (0) such that 

’
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For at least one index s(n) E ~ 1, ... , ~ (n) ~ we have then
erwise But then the function x ,~ =

belongs to X (since X is a split space), and the function y ,~ =

, does not belong to Y (since ), contradict-

ing the hypothesis

We remark that Theorem 3 was proved for the single-valued super-
position operator ( 1 ) in [5].

THEOREM 4. Let F: 0 x R2013&#x3E; Cp(R) be a CaratUodory multifunc-
tion, and suppose that the superposition operator (3) generated by F
satisfies NF : X - Cl (Y), where Y is regular. Then NF is continuous be-
tween X and Y.

PROOF. Suppose that NF is discontinuous at Xo E X. Then there .
exists a sequence in X such that ~~-~o~2’~ and

Let By Lemma 1, there exists a measur-
able function z such that

hence m E Y. Since we have

and hence the family of sets PD F(t, Xn (t)) tends to zero, uniformly in
n E N, as mes D - 0. Moreover, the sequence is compact in mea-
sure, by Theorem 2. By a classical compactness criterion in regular ide-
al spaces ([29], see also [3], [7]), the sequence (NF (Yn ))n is also compact
in the norm of Y, a contradiction.

We remark that Theorem 4 was proved for the single-valued super-
position operator (1) in [19], see also [4].

Observe that in both theorems of this section the acting condition
NF : X -~ 2Y was assumed a priori, and the properties of the operator
NF were then deduced from properties of either the space X or the
space Y. The problem of characterizing the acting condition

NF : X - 2y, in terms of the generating multifunction F, is much hard-
er. In fact, there are some partial results only for very specific classes
of spaces and functions. For instance, in the book [17] the authors make
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the following obvious remark: if a multifunction F satisfies the growth
estimate

then the corresponding superposition operator (3) acts between the
Lebesgue spaces Lp and p, q  Moreover, the authors claim
in [17] (without proof) that, if F is (upper) Carath6odory, then NF is
(upper semi-) continuous between Lp and Lq .

Throughout this section, by the acting of the operator NF between
two spaces X and Y we meant that NF (x) c Y for all x E X. One could
also study conditions for the weak acting of NF , i. e. NF (x) n Y =* 0 for
all x E X. If X and Y are ideal spaces and we define two (single-valued)
operators NF and Ni on X by

then the acting (resp. the weak acting) of NF between X and Y means,
roughly speaking, that the operator NF (resp. the operator maps
X into Y. It would be interesting to characterize the classes of multi-
functions F, for which

where the (single-valued) functions F + and F - are defined by

Generally speaking, the possibility of «interchanging» set-theoretic
or topological procedures of the multifunction F, on the one hand, and
of the corresponding operator NF , on the other, are important in vari-
ous applications. Two such procedures will be described in the last sec-
tions (see formulas (23) and (33) below).

3. The superposition operator in the space C.

In this section we assume that 0 is a compact set without isolated
points in the Euclidean space. We are going to study the superposition
operator (3) in the Banach space C = of all continuous functions on
S~ with the usual norm

In analogy to the concepts introduced in the first section, we call a mul-
tifunction F: D x R ~ 2R superpositionally continuous (or sup-contin-
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uous, for short) if, for any X E C, the multifunction (2) is continuous
(i.e. both upper semi-continuous and lower semi-continuous); if the
multifunction (2) admits only a continuous (single-valued) selection y,
we call F weakly sup-continuous. In either case, we may define the su-
perposition operator (3) in the space C, because we have then
C n NF (r) # 0 for all x E C. Simple sufficient conditions for (weak) sup-
continuity are given in the following.

LEMMA 2. Every continuous muLtifunction 
sup-continuous. Every lower semi-continuous multifunction F: Q x
x R - Cv (R) n Cl (R) is weakly sup-continuous.

PROOF. The first assertion follows from the fact the superposition
of two continuous multifunctions with compact values is again continu-
ous. The second assertion follows from the fact the lower semi-continu-

ity of F implies that of the multifunction (2), and from Michael’s selec-
tion theorem [21], [22].

We point out that the first part of Lemma 2 admits a converse.
Indeed, if (tn , un ) E 0 x R converges to (to , uo ), then, by the classical
Tietze-Uryson lemma, we may find a continuous function x on such
that and x(to ) = uo . Consequently, if F: Q x R - Cp (R) is

sup-continuous, we have

which shows that F is continuous.
The second part of Lemma 2, however, is not invertible. To see this,

consider the multifunction F: R - Cv (R) n Cp (R) defined by

Then F is certainly weakly sup-continuous (since, for any x E X, the
function y(t) = 0 is a continuous selection of Y(t) = F(x(t))), but not
lower semi-continuous. This example shows, in addition, that weak
sup-continuity does not imply sup-continuity. The Lower semi-continu-
ity of F is crucial in the second statement of Lemma 2, in order to apply
Michael’s theorem. It is easy to see that the upper semi-continuity of F
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does not imply its weak sup-continuity. For example, y the multifunc-
tion

is upper semi-continuous on R, but maps the continuous function
x(t) = t into the multifunction Y(t) = F(t) which does not admit a contin-
uous selection.

The following two theorems show that the continuity of the multi-
function F does not only imply the sup-continuity of F, but also ensures
the boundedness and continuity of the corresponding operator NF .
Since the proofs are completely obvious, we drop them.

THEOREM 5. Let F: 0 x I~-~ Cp (R) be continuous. Then the super-
position operator (3) generated by F is bounded in the space C.

THEOREM 6. Let F: 0 x R - Cl (R) be continuous. Then the super-
position operator (3) generated by F is continuous in the space C.

4. The closure of the superposition operator.

Let 0 be again a bounded domain in Euclidean space, and let
F: 0 x R- Cl (R) be a weakly sup-measurable multifunction. Suppose
that the superposition operator NF generated by F acts between two
ideal spaces X and Y. For fixed to denote by

the closure of the function F(to , .): R ~ CI (R). The multifunction F is
then also weakly sup-measurable and generates a superposition opera-
tor NF according to the definition (3). On the other hand, we may con-
sider the closure of the operator NF : X- Cl (Y) i. e.

The following theorem shows that this is essentially the same, since the
closure of the superposition operator coincides with the superposition
operator of the closure.
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THEOREM 7. Let _F: D x R- Cl (R) be a weakly suro-measurable
multifunction. With F given by (21) and NF given by (22), the

equality

holds, where NF is considered as an operator between X and Y.

PROOF. Fix Xo E X, and let yo E NF (xo ). By (22), we may find two
sequences (xn )n and (yn )n such that yn E NF (xn ), xo , and yo .
Since the spaces X and Y are imbedded in S, and each sequence which
converges in measure admits an almost everywhere convergent subse-
quence, we have

for t E 0 BN, where mes N = 0. But for to E Uo = xo(to), and Uk =

= xnk (to ) we get then and hence

yo E NF , by (21). 
_

Conversely, let yo E NF (xo ), i. e. yo (to ) E F(to , Xo (to )) for to E 
with mes N = 0. Define a sequence of multifunctions ~k : S~ -~ Cl (1I~2 )
by

By Sainte-Beuve’s selection theorem [25], [26], we may find two se-
quences (Xk)k in X and (yk )k in Y, respectively, such that

(Xk (t), Yk (t)) E ~k (t), i. e. Yk E NF (Xk ) and

The estimates (25) imply, in particular, that xo in X and yo in
Y. This means that for Zk = yo - yk we have -~ 0 and yo E NF (xk ) +
+ zk , hence yo E NF (xo ), by (22).

We remark that Theorem 7 was proved in the case X = Lp and Y =
= Lq in [17]. The problem of describing the closure of the superposition
operator (3) in the space C is somewhat more delicate. Let 0 be a com-
pact set in Euclidean space, and x R- CI(R) be a continuous mul-
tifunction, Moreover, we assume that F is quasi-concave in the sense
that

for t E ~, u1, U2 E R, and 0 --- ~ ---- 1. Choosing uo = ul in (26) one sees that
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every quasi-concave multifunction takes convex values; the converse is
not true. For example, the convex-valued multifunction F(u) =
= [0, f(u)] is quasi-concave only if the function f is concave on R.

Before proving an analogue to Theorem 7 in the space C, we recall
some facts about lower semi-continuous multifunctions. If 0 and 1F are
two lower semi-continuous multifunctions, the intersection # n 1F need
not be again lower semi-continuous, as simple examples show (see
e.g. [9]). A multifunction Y is called quasi-open at a point to if, roughly
speaking, each interior point wo of 1F(to) admits a neigbourhood W
which is contained in for each t sufficiently close to to . For exam-
ple, every closed ball 1F(t) = f w: I w - c(t)  r} in lZm defines a quasi-
open multifunction, provided the centre c = c(t) varies continuously
with t. The proof of the following lemma may be found in [9].

LEMMA 3. If is lower semi-continuous and
is then 0 n T is lower semi-continuous.

We are now in a position to give a certain analogue to Theorem 7 in
the space C.

THEOREM 8. Let F: 0 x R- Cl (R) n Cv (R) be a continuous quasi-
concave multifunction. With F given by (21) and NF given by (22), the
equality (23) holds, where NF is considered as an operator in C.

PROOF. The inclusion is proved in rather the
same way as in Theorem 7. To prove the converse inclusion, fix

yo E NF , and let (J)k denote again the multifunction (24). By the quasi-
concavity of the multifunction F we have Qk : Q - Cl (R2 ) n Cv (R2). To
apply now Michael’s theorem in the same way as we applied Sainte-
Beuve’s theorem in the proof of Theorem 7, it suffices to show that the
multifunction Ok is lower semi-continuous. By Lemma 3, it suffices in
turn to prove that the multifunction 0(t) = {(U, v): v E F(t, u) ~ is lower
semi-continuous. To this end, fix to E 0, and let W c R2 be open with
4i(to) n W # 0. In particular, we have then Vo E F(to, uo) for some

Since F(~, uo ) is lower semi-continuous, we may find a
neighbourhood of to such that F(t, uo) n V =A 0 for t E 00, where V
denotes the second projection of W on R. For t E Do and v E F(t, uo ) n V
we have then (uo , v) E x V c W, hence 0(t) n W ~ 0..

The condition (26), which we needed as a technical assumption in or-
der to guarantee the convexity of the values of the multifunctions (24),
is of course very restrictive. It is very likely that Theorem 8 is true also
without the assumption (26).
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Theorems 7 and 8 show that equality (23) holds if we consider the
operator (3) either between two ideal spaces X and Y, or in the space C.
These two cases have to be distinguished carefully, since (23) may fail
if (3) acts, say, from the space C into an ideal space Y. Consider, for ex-
ample, the multifunction

over S~ = [0, 1]. Obviously, the multifunction (21) has the form

If we consider the operator (3) from L1 into L1, then, by Theorem 7, the
sets NF (0) and NF (0) are equal; they coincide with the closed unit ball in
the space Loo. However, if we consider (3) from C into L1, say, then

is strictly smaller then Np (0). In fact, any y E NF(O) may be rep-
resented in the form

where x is continuous on 0, and z has a small L1-norm. Of course, not
every function y in the unit ball of Loo is of this form (or may be approxi-
mated by functions of this form).

5. The convexification of the superposition operator.

Another way to extend a given multifunction F consists in the
following.

Let F: S2 x R- be weakly sup-measurable, and suppose that
the superposition operator NF generated by F acts between two ideal
spaces X and Y, where Y is regular. For fixed to ED, denote by

the convexification of the function F(to , .): R - CI(R). Similarly, de-
note by

the convexification of the operator NF : X - Cl (Y). For example, if we
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define a multifunction F: R ~ Cp (R) by

then the closure F is given by

while the convexification F ° is given by (20). At first glance, one might
think that the convexification coincides with the closed con-
vex hull of the closure F(to , uo ). The following example shows that this
is false. Consider the multifunction F: R ~ Cp (R) n Cv (R) defined by

Then F(0) = {0}, hence coF(0) _ {0}, but F° (0) _ R. In general, the
following holds.

LEMMA 4. For any multifunction the in-
clusion

is true. Moreover, if F is upper semi-continuous act uo , then equality
holds in (31).

PROOF. Without loss of generality, let uo = 0. Denote by M(E, e)
the set of all v E F(u) + h for e. Then

and hence (31) holds. Now let F be upper semi-continuous at 0, and
suppose that there is a z E FD (0) such that z 0 Choose an open
interval V D coF(O) with V. Since F is upper semi-continuous at 0,
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we may find an e&#x3E;0 such that . Consequently,

a contradiction.
The following theorem is parallel to Theorem 7. m

THEOREM 9. Let F: 0 x R- CI(R) be a sup-measurable
multifunction. With FO given by (29) acnd NF’ given by (30), the

equality

holds, where NF is considered as an operator between X and Y.

PROOF. One inclusion in (33) follows from the fact that, by
Theorem 7,

for any Xo E X. Conversely, to prove the inclusion

observe that both sets in (35) are bounded, closed, and convex
subsets of Y, and hence (35) is equivalent to showing that, for
each w E Y’,

by the classical Hahn-Banach theorem (observe that Y’ = Y*, since
we assumed Y to be regular, see (18)). To show (36) for fixed

w E Y’ = Y*, it is in turn sufficient to find a function Zo E N9 (xo)
such that

and
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If zo is any measurable selection of the multifunction Zo , then zo

belongs to and satisfies (37), and so we are done.

We remark that Theorem 9 was proved in the case X = Lp and Y =
= Lq in [17].

THEOREM 10. be rx continuous

quasi-concave muLtifunction. With FD given by (29) and NF given by
(30), the equaLity (33) holds, where NF is considered as an operator in
C.

PROOF. The proof follows essentially the same line as that of Theo-
rem 9. Observe, in particular, that the continuity of F implies the lower
semi-continuity of the multifunction (38), and thus we may again apply
Michael’s theorem.
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