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On a Class of Second Order

Integrodifferential Equations.

DANIELA SFORZA (*)

ABSTRACT - We consider an abstract second order integrodifferential equation in
a general Banach space:

where A: D(A) c X - X generates an analytic semigroup, 77 &#x3E; 0 and B E R, and
k, h: [0, + m[- R are both Laplace transformable functions. Under suitable
assumptions on the kernels and h, we construct the resolvent operator for
problem (*), in order to represent its solutions by the variation of constants
formula. Then, we state some results about the existence and uniqueness of
the strict and strong solutions. Finally, we give a concrete example of (*).

0. Introduction.

This paper is concerned with a class of parabolic integrodifferential
equations of the second order in the Banach space X

(*) Indirizzo dell’A. : Dipartimento di Matematica, Via Buonarroti 2, 56127
Pisa, Italy. 
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where A: D(A) c X -~ X is a linear operator, which generates an ana-
lytic semigroup, r~ ~ 0 and ~3 are real constants and the kernels k and h
are two real functions defined on the interval [0, + oo[.

Problem (0.1) arises, for example, in the study of the motion of vi-
scoelastic materials (see [11] and references therein).

In the applications one is often concerned with the corresponding

problem with infinite delay (that is, with J replaced This is the
o -m

same as problem (0.1) with the addition of a non-homogeneous term,
provided the history of u up to time t = 0 is known; otherwise, it needs
a separate treatment.

Several papers have been devoted to the problem (0.1) with n = 0
and 1~ = 0 (see [1, 2]) and to the nonlinear case (see [3, 4, 10, 11, 13]).
We first observe that the «type» of the problem (parabolic or hyper-

bolic) may change if 77 is greater or equal to 0. In fact, if 17 &#x3E; 0 we will
show in this paper that problem (0.1) is parabolic. In the case that 77 = 0
the problem is, in general, hyperbolic, except in some special cases as,
for example, when k(t) = t -" , « E ]o, 1 [. From now on we assume 77 &#x3E; 0;
the case 77 = 0 will be treated in a forthcoming paper.

In this paper we use Laplace transform methods for studying (0.1),
extending what was done in [8, 12] for first order equations. We con-
struct the resolvent operator for (0.1) in order to represent the solution
of (0.1) by the variation of constants formula.

To this aim, we assume that the kernels and h are both Laplace
transformable functions and, in addition, that the Laplace transforms

and A (A) can be analytically extended to a suitable sector S in the
complex plane, containing the positive real semiaxis, in such a way that
the extensions and verify the estimate

with IA, 6 E ]0, 1] and M &#x3E; 0. Under these assumptions on A, 77, k, h, we
can define the resolvent operator for (0.1) by the formula

where y is a suitable path contained in the sector S, and

is (formally) the Laplace transform of the resolvent operator.
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To study the regularity properties of the operator R(t), we make a
careful preliminary study of the operator F(x). In addition, we prove
some estimates about R(t), which are useful in studying the asymptotic
behaviour of the solutions of linear and nonlinear problems.

Then, thanks to the properties of R(t), it is possible to write the sol-
ution of (o.1 ) by the formula

It is well known that problem (0.1) can be recast as a first order equa-
tion, and then known results can be applied to get the existence of the
resolvent operator R(t) and formula (0.5) (see [8, 12]). However, we ha-
ve preferred to derive them directly to make the paper as self-contai-
ned as possible, and because we are interested on the regularity of first
and second derivatives of the solutions.

In fact, in the case that the initial conditions x and y are sufficiently
regular, we prove that (0.5) gives the strict solution of (0.1), while if x
and y are less regular, the function u, defined by (0.5), can be conside-
red as the strong solution of (0.1).

Finally, to clarify this problem, we give a concrete example. We
consider the problem

Under suitable assumptions on the initial conditions uo and vo , we pro-
ve that (0.6) has a unique strict (or strong) solution, which moreover
goes to 0 exponentially as t ~ + ~ .

Our work is organized as follows. In Section 1 we list some

assumptions, which will remain valid throughout the paper. Moreover,
we define the resolvent operator and we give some of its regularity
properties. Section 2 is devoted to the study of the existence and
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uniqueness of the strict and strong solutions of (0.1). Finally, in

Section 3 we present a concrete example of (0.1).
We now give some notations, which we will use in the following.

Let X be a complex Banach space. If Y is another Banach space, we de-
note by 2(X; Y) the Banach space of all linear bounded operators
T: X ~ Y, endowed with the norm We set

If I we denote by
c2 ([to , t1 ]; X)) the space of all continuous u: [to , tl ] - X (resp. conti-
nuously differentiable, twice continuously differentiable). If +00,
C([to , t1];X) is endowed with the norm
Given « E ]0, 1[ and is the subspace of

consisting of the «-Holder continuous functions u, that is

It is endowed with the norm

(resp. space of all (resp. twice) continuously dif-
ferentiable functions u such that u’ (resp. u") belongs to C" ([to , t1 ]; X).
Finally, we denote by a([e, T]; X), 0  e  T ~ +00, the space of all

analytical functions on [e, T ] with values in X.

1. Existence and regularity properties of the resolvent operator.

Throughout this paper X is a complex Banach space with 
In this section we shall construct the resolvent operator for the inte-
grodifferential equation

where A: D(A) c X ~ X is a linear operator satisfying:
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Assumption (1.2) means that A generates an analytic semigroup in X.
Since A is a closed operator, D(A) is a Banach space, endowed with the
graph norm

Let q &#x3E; 0, ~3 E R and k, h: [0, + oo[ --+ R be two locally integrable and
absolutely Laplace transformable functions, whose Laplace transforms
1~ (~) and h(x) can be analytically extended to the sector Seo, o in such a
way that the extensions (denoted again by k(À) and satisfy

with ,u, 8 E ]0, 1] and M2 &#x3E; 0. To define the resolvent operator for pro-
blem (1.1), we need a careful preliminary study of the operator

which is formally the Laplace transform of the resolvent. To this aim,
we fix once and for all a maximal analytic extension of 1~ (~) (resp. ~(’))~
which we still call 1~ (~) (resp. ~(’)), and denote by Ai (resp. A2) its do-
main of definition. We set

where

Using a simple perturbation argument, it is not difficult to see that

po (F) is an open set. The function À - F(~), defined by (1.4), is analytic
in po (F) with values in 2(X; D(A)). Moreover, the following lemma can
be proved as in [9], Lemma 1.3.

LEMMA 1.1. If Ào E C is an isolated removable singularity of F(. )
(as a function po (F) to 2(X; D(A))), then Ào does not belong to
A1 n A2 and lim F(À) is not invertible.

k - k0

We now define an analytic extension of F(.) on the set

(1.7) is an isolated removable singularity

setting, for any
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PROPOSITION 1.2. Assume (1.2), (1.3) and 77 &#x3E; 0. Then, there exists
ro &#x3E; 0 such that

and the following inequalities hold for any

with constants not depending on ~ . Moreover

PROOF. Consider the operator Since B satisfies (1.2)
with the same angle 6o and w = 0, we have that for any A E Soo,o the ope-
rator A2 - = B) is invertible and

Therefore, by (1.6) and A = B + ~, we may write

Taking into account (1.3) and ( 1.13), it is easy to show that there exist
ro &#x3E; 0 such that for any

From this and ( 1.14) it follows that the ope-
is invertible and (1.9) holds. Moreover, thanks also to

the equality

(1.8) and (1.12) hold.
Since

(1.10) easily follows, provided one chooses ro large enough. Finally
( 1.15), (1.9) and (1.10) yield ( 1.11 ).
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Now, it is possible to define the resolvent operator for the problem
( 1.1 ), as the following proposition shows.

PROPOSITION 1.3. Let y be the path y = y+ u -you y- , where

are oriented counterclockwise. Then the operator

is well defined and satisfies the following properties,:

(1.17) R(.) is analytic in ]0, with values in 2(X);

(1.18) for any t &#x3E; 0, X E X, R(t) x E D(A) and AR(-) is continuous in
]0, + oo[ with values in 2(X);

with M6 &#x3E; 0 ac constant not depending on t;

where * denotes the convolution:

R(.) is Laplace transformable and

PROOF. ( 1.16)-( 1.17) easily follow by the estimate (1.9). Thanks to

( 1.11 ) for any is well defined. Since A is a
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closed operator, belongs to D(A), and

Then (1.18) follows again by (1.11). Concerning (1.19), for t ~ 1, due to
( 1. 9), we have

For t E ]0, 1] we set At = t4, and we have

from which, again by (1.9), it follows

which proves the first inequality of (1.19). The proof of the other ine-
quality is analogous. (1.20)-(1.22) follows from (1.19). To prove (1.23),
it is sufficient to show that (1.23) holds for X e D(A), and then to use
(1.19). If x E D(A), thanks to (1.12), we have

from which by (1.22) it follows lim AR(t) x = 0. Finally, by (1.19) R(.)
t- o+

is Laplace transformable, and (1.24) is an easy consequence of the Cau-
chy integral formula (see also [8], Proposition 4.2).
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Now, we want to study the properties of the operators

PROPOSITION 1.4. For any x E X, and t &#x3E; 0 we have that

( 1.29) R ’ (t) x E D(A) and AR ’ (~) is continuous in ]0, +-[with values
in 2(X);

(1.30) R(.) is analytic in ]0, +~[ with values in 2(X; D(A));

urith M7 &#x3E; 0 a constant not depending on t; for any x E X and t &#x3E; 0

PROOF. Thanks to ( 1.11 ) for any I is well

defined. Since A is a closed operator,
and

belongs to D(A),
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Then (1.29) follows again from (1.11). (1.30) easily follows from the esti-
mate (1.11) and (1.17). The proof of (1.31) is analogous to that of (1.19).
As both members of (1.32) are continuous in ]0, + 00[, to prove (1.32) it
is sufficient to show that their Laplace transforms coincide, that is by
(1.24), that

Thanks to (1.15) and (1.6), (1.38) holds, and so we get (1.32). Concer-
ning (1.33), taking the norm into (1.32), by (1.19)-(1.21) we have

from which, due to (1.23), it follows (1.33). By (1.37) and ( 1.12) it follo-
ws for x E D(A)

and so, because ofAr E D(A), (1.33) yields (1.34). Finally, by differen-
tiating (1.32) we have (1.35), and from this, taking into account respec-
tively (1.34), (1.23), (1.31) and (1.21), it follows (1.36).

Now, we want to emphasize the regularity properties of the fun-
ction depending on the regularity of x.

PROPOSITION 1.5. i) For any x eZ, the function belongs
to C([O, + 00[; X);

- 

it) for eD(A), the function t -4 R(t) x belongs to C([O, +

iii) for any the function t H R(t) x be-
longs to

PROOF. i) follows from ( 1.1’l) and ( 1. 22) . i), (1.23), (1.17), (1.18) and
(1.33) yield ii). Finally, iii) follows from ii), (1.29), (1.34) and
(1.36).

We conclude this section with some estimates, which are useful in
studying the asymptotic behaviour of the solutions of linear and nonli-
near problems. If we denote by o-(F) the complementary set CBp(F),
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and we define

then the following proposition holds:

PROPOSITION 1.6. For 0, there exists a constant &#x3E; 0
such that the following estimate holds for t &#x3E; 0:

where we mean

PROOF. We shall prove only

because the other inequalities may be obtained in a similar way.
We assume that WF + e  - ro (the other case can be handled in a

standard way). Then it is possible to deform the path y, in formula
(1.16), into a new path ~ so defined

with , we may apply (1.9), and we have
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that is,

from which the conclusion follows.

2. Existence and uniqueness of the strict and strong solutions.

In this section we want to solve the Cauchy problem

in a strict and a strong sense, where 7~ f3, A, k and h satisfy the assum-
ptions of Section 1. A function u: [0, + oo[ ~ X is said to be a strict sol-
ution of (2.1) if ~eC~([0,+oo[;D(A))nC~([0,+oo[;X) and satisfies
(2.1 ). We will call a strong solution of (2.1 ) a function U E C 1 ([0, 7J; X~,
T &#x3E; 0, such that there exists a sequence

with the following properties:

We begin with a uniqueness result and a representation formula.

THEOREM 2.1. If x, Y E D(A) and u is a strong solution of (2.1),
then
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PROOF. We first assume that

is a strict solution of (2.1). For every t::-:- 0 the function s s) u(s)
is twice continuously differentiable in [0, t], and we have, thanks to
(1.35), (1.32) and (2.1) respectively:

Integrating both members of the previous identity between 0 and t, we
get

We now observe that

Substituting (2.5)-(2.8) into (2.4), we have

from which, taking into account (1.32), we find (2.3).
Assume now that E C 1 ([o, is a strong solution of (2.1), and
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let be a sequence satisfying
(2.2). Set for any then &#x3E;

Letting n ~ + ~ and
using estimates (1.19), (1.20) and (1.31), we get (2.3), and the proof is
complete.

Now, we show that, if the initial conditions x and y are sufficiently
regular, then formula (2.3) gives the strict solution of (2.1).

THEOREM 2.2. Let x, y E D(A) be such that

Then the function u given by (2.3) is the unique strict solution of (2.1),
and belongs to

PROOF. The uniqueness obviously follows from Theorem 2.1. Con-
cerning the existence, by (1.17)-(1.20), (1.22). (1.23), (1.29) and Propo-
sition 1.5, i) u belongs to

and Moreover, by (2.3) we have

By adding to this equation (1.32) calculated in we get
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from which, by (1.23), (1.33), (2.9) and (1.19)-(1.21) we have
so that By differentiating

(2.3) and using (1.35), one gets

Letting t - 0+ and using (1.33), (1.23) and (1.21), we have &#x3E;

and so that Moreover, thanks to (1.29) and (1.18)
and we have also by (1.32) calculated in Ay

Then, by (1.23), (2.9) and (1.19)-(1.21)

To show that satisfies (2.1), we differentiate
(2.11 ) and we have

from which, using (1.35) calculated in y, we get

By adding and subtracting

in the previous equality and taking into account (2.11 ) and (2.10), we
find that (2.1) holds and U E C2 ([0, +_[;X).

Finally, the last statement follows from (1.30), and so the proof is
complete.

In a forthcoming paper we will introduce a class of subspaces of X,
which will enable us to give conditions on x and y, which guarantee the
H61der regularity of the strict solution up to t = 0.

In the case that x and y belong only to D(A) the function u defined
by (2.3) is the strong solution of problem (2.1), as the following theorem
shows.
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THEOREM 2.3. ?/ E D(A) then the function u given by (2.3) is
the unique strong solution of (2.1) in [0, TI, 7’&#x3E;0, and belongs to
a([e, TI; X) for each E ~ ]0, T[.

PROOF. The uniqueness follows from Theorem 2.1. Concerning the
existence, since a? and y belong to D(A) there are two sequences
{~ }, c D(A 2) such that x, y, as ~-~ + 00 (thanks to as-
sumption (1.2), it is not difficult to show that D(A 2) is dense in D(A)).
Since + f3Axn E D(A), by Theorem 2.2 for each n there exists a uni-
que strict solution ~ of the problem

given by By (1.19),
(1.31) and (1.20), un converges to u in . Moreover, by
(2.11 ) we get and so, by
(1.31), (1.19) and (1.21) u( converges in as The-
refore, u is differentiable in as

and we have u’ From (2.13) it fol-
lows that the last condition of (2.2) holds. Finally, in virtue of (1.17) u
belongs to for and so the theorem is

proved.

3. An example.

Let us consider the integrodifferential Cauchy-Dirichlet problem:

This problem can be written in the abstract form (2.1), if we take
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X = C([O, 77]) and A is the operator so defined

It is well known that A satisfies (1.2), while assumption (1.3) holds for
= t-1/2 and h » 0. Therefore, all the results of Sections 1 and 2 hold

for problem (3.1). If uo, Vo E C2 ([0, 7c]), with

and then, thanks to Theorem
2.2, problem (3.1 ) has a unique strict solution given by

where R(t) is the resolvent operator for (3.1). In the case that uo , vo be-
long to C([0, x]) and verify (3.2), then, by Theorem 2.3 formula (3.3) gi-
ves the unique strong solution of problem (3.1).

In addition, taking into account that the spectrum of the operator A
is given by the sequence {-n 2, we have that

Thanks to this formula, it is easy to see that WF  0; by numerical calcu-
lations we have (OF = - 0.9567. Therefore, by estimate (1.41) the strict
and strong solutions, given by (3.3), go to 0 exponentially as

t-~+~.
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