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On Integral Currents with Constant Mean Curvature.

FRANK DUZAAR - MARTIN FUCH (*)

1. Introduction.

The present paper continues the analysis of the existence problem
for oriented m-dimensional submanifolds E of Euclidean space Rm+k
with prescribed mean curvature vector H and fixed boundary r = a~
which we started in [DF1, 2]. Our aim here is to give a positive answer
to following question which has not been settled in the general frame-
work of [DF1]:

Suppose that r is compact and the curvature vector is independent
of the base point in i. e. only depending on the oriented m-planes
in Rm+k. Does there exist a (generalized) solutions with compact closure
and boundary r?

In order to get a variational formulation of the problem we make use
of some basic tools from Geometric Measure Theory: assuming that
H E !~m (Rm+k , has the property

and that 1’ is represented by the boundary aTo of some integral m-cur-
rent To with compact support we are then looking for an integral
m-current T with compact support, aT = aTo, and the property

(*) Indirizzo degli AA: F. Duzaar: Mathematisches Institut der Heinrich-
Heine-Univ. Diisseldorf, Universitatsstr. 1, D-4000 Diisseldorf; M. Fuchs: Fa-
chbereich 4, AG6 TH Darmstadt SchloBgartenstraBe 7, D-6100 Darmstadt.
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for all vectorfields X E CJ spt (X) n spt (aTo) _ 0.
For T smooth it is easy to check that (1) is equivalent to the fact that

T has constant mean curvature vector H(T) and following the discus-
sion in [S, 16.5] we say that a current T with (1) and aT = aTo is a gen-
eralized solution of the mean curvature problem. Equation (1) now cor-
responds to the functional

where h is the curvature form associated to H and Vh (T, To ) denotes
the h-volume enclosed by T and To (compare section 2). F(T) makes
sense for all integral currents (of finite mass) and in [DF 1, Theorem
3.1] we showed that F can be minimized even for nonconstant H if one
of the following conditions holds:

all admissible currents have compact support

(2) in some prescribed compact set K

or

Clearly (3) is inadequate for the case of constant curvature hz = h. In
the situation of (2) we proved in [DF 1, Section 6] that a minimizer ~’ is a
solution of (1) provided

and

where xi, - - -, xm+k-, denote the principal curvatures of aK with respect
to the inward normal of aK.

So if we start with a boundary aTo contained in a rather large ball
BR (o) condition (4) implies the bound lhl R-1. In the present paper
we try to prove existence without assuming a smallness condition re-
lating Ihl and the diameter of spt (aTo).

Our approach to the existence of solutions has been inspired by the
work of [B], [BG], and [GMT]: for j E N (sufficiently large) we consider
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the auxiliary problem of minimizing F among all currents T with sup-
port in the ball B~. If Tj denotes a solution whose existence follows
along the lines of [DFl, Theorem 3.1] we then prove the existence of a
bounded sequence of radii rj with the following properties:

for a suitable sequence of m-currents Sj supported on (9Bri *
By adding a properly chosen m-sphere aY~ we may compensate the

h-volume enclosed by Tj and Then Almgren’s Optimal
Isaperimetric Theorem [AF] combined with (5) implies

for the currents Tj L Bri + Sj + which by construction have
compact supports in some compact set independent of j. From this it
follows rather easily that a subsequence converges to the de-
sired solution of (1).

The same technique also applies to the problem of minimizing area
for fixed boundary and constant h-volume Vh (T, To). The details will be
given in section 3.

In section 4 we discuss the variational equations, especially it is
shown that the mass minimizers with a volume constraint are general-
ized surfaces with constant mean curvature vector. A final chapter is
devoted to the study of oriented tangent cones which exist at all points
x E spt (T) - spt (aTo) and moreover minimize area with respect to their
boundaries. This extends some results obtained in [DF2].

2. Notations.

Suppose that m ~ 2,1~ ? 1 are integers and let H: - Rm+k
denote a nontrivial linear mapping with the additional property

for all ..., vm ERm+k . Associated with H is the nontrivial curvature
form

h is contained in the space Am+I Let
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Having fixed vo , ..., vm E vi - vj = aij, such that

we define

Let us now briefly recall some notations from Geometric Measure The-
ory-the standard references are [F] and [8]: a current T E Wn (Rm+k),
n E N, is said to be an integer multiplicity rectifiable n-current if

where M is an Hn-measurable countably n-rectifiable subset of

,

denotes a locally Hn-integrable function, and

is a Hn-measurable function such that

for Hn-almost all x E M where (x), ..., denotes an orthonormal
basis for the approximate tangent space Tx M (compare [S, 27.1]). If in
addition the boundary aT is an integer multiplicity rectifiable (n - 1)-
current, then T is in the class of all integral n-currents.
We abbreviate

In : = {T E 6on T is an integral current, + M(aT)  ~ }.

DEFINITION. For S, T E 1m with aS = aT we define the h-volume en-
closed by S and T as the quantity

The existence of Q E Im+1 with boundary S - T follows directly from
the Deforrnation Theorem (see [F, 4.2.9, 4.2.10]) and since Q is repre-
sentable by integration and of finite mass the expression Q(h) makes
sense. Now if Q’ E Im,l denotes a second current with boundary S - T,
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then Q - Q’ is closed and according to [F, 4.2.10] we may write

with L E Im+2. Now consider a sequence Co such that Y)n = 1

since

where c &#x3E; 0 denotes a suitable constant independent of n.
From this we deduce that Vh (S, T) is well defined. For later purpos-

es we state an optimal mass estimate for mass minimizing currents
Q:

ISOPERIMETRIC THEOREM. ([AF]) Suppose Q ~ lm,l minimizes
mass respect to the boundary 3Q. .

where

denotes the isoperimetric constant. Equality holds if and only if Q is
an (m + I)-ball in Rm+k.

Finally we introduce certain oriented (m + l)-balls in lm+,:

Clearly we have

and
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3. Existence results.

If all currents under consideration have supports in a fixed compact
set K c Rm+k then the existence of minimizers of the functional

in suitable subclasses of 1m (To given) can be proved very easily, we re-
fer the reader to [DF1, Theorem 3.1]. We pass now to derive existence
theorems in a more general situation.

THEOREM 3.1. Assume that To E 1m has compact support and
let

for a given R &#x3E; 0. Then the problem

admits a solution with compact support.

Concerning the related problem of minimizing mass subject to a vol-
ume constraint we have

THEOREM 3.2. Assume that To E 1m has compact support and
let

for a given number C E R. Then the problem

has ac solution with compact support.

REMARK. In section 4 we discuss conditions under which the above
minimizers are solutions of the constant curvature equation.

PROOF OF THEOREM 3.2. We first observe that e contains a

current So with compact support, for example
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provided we choose t &#x3E; 0, x E {-1,1} to satisfy

that is x = sign (c) and
For j &#x3E; 1 such that

where B~ : _ {Z E Rm+k : Izl  j }, the problem

admits a solution Tj whose existence follows along the lines of the proof
of [DFI, Theorem 3.1 ] by considering a minimizing sequence. Clear-
ly

Let Qj denote a mass minimizing current for the boundary Tj - To. As
we shall prove below there exist numbers 0  p  a  00 such that

and a sequence p ~ of radii such that the slices

coincide and that the common value denoted by is an inte-

ger multiplicity current satisfying

Now let Then

and

but T * does not necessarily belong to In order to compensate the
change of volume we choose tj &#x3E; 0, x; E {-1, 1} to satisfy
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From (1), (4) we infer the bound (Qj* E denotes a mass minimizer
for the boundary Tj - 

so that

for some real number ~* &#x3E; ~. Therefore the currents

are in ej (provided j &#x3E; a*) and have supports in the ball B~* .
The minimality of Tj implies:

where we have used the optimal version of the Isoperimetric Theo-
rem.

Recalling the mass bounds (1), (3) as well as

we may assume (after passing to a subsequence)

for some S e e with spt (S) c B,.. By construction we have for all U ~ C
with compact support and j large enough (depending on U)

hence

by the lower semicontinuity of the mass.
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If U E ~ is arbitrary we let Ur denote the projection of U onto the
ball Br, that is Ur : = f# U where f : Rm+~ ~ Br is the nearest point re-
traction from onto Br. We then define t &#x3E; 0 and x E {- 1, I} to
satisfy

Then I Obviously M( Ur)  M( U) and

which gives the minimizing property of D

It remains to prove the existence of suitable slices (Qj, I - 1, rj ) satis-
fying (3). Following the ideas of [B] and [BG] we first show

LEMMA 3.1. Suppose that jo  jl are integers where jo has to

satisfy

where A : = M(To) + M(So). For j &#x3E; jo define the set A as the set of all
t E [ jo, jl I with M(Qj L aBt) = 0 and M(Tj L aBt) = 0 such that the
slices Qj, |·|, t+ ), Qj, |·|, t- ) represent the same integer multiplici-
ty current (Q~ , ~ ~ ~, t) of finite mass. Then the following statements
hold:

(ii) For arbitrary fi  t2  t3 in A we have

PROOF OF LEMMA 3.1. Since Qj and Tj have finite mass we clearly
have

for 21-almost all t. The remaining claims in (i) follow from general slic-
ing theory (e.g. [S, 28]).
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Now, we introduce the currents

and get

Hence = aTo. This gives E with boundary aTo. On the other
hand we have

so that we have to consider the currents

with (m + 1 )-balls satisfying

Observing

we deduce

and in conclusion
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From this we infer

so that 2~ is in the class The resulting inequality

can easily be rewritten as

with

and we arrive at

Using the Isoperimetric Theorem, we easily check that

which implies

and

Combining (5), (6), (7) we then have

Inequality (8) corresponds to the estimate [B, (7)] and as demonstrated
there we arrive at (ii) of our Lemma. D
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The existence of numbers p and a and of a sequence of radii

rj E (p, ~] with the property (2) follows from (ii) of Lemma 3.1 along the
lines of step 1 in [BG]. For the reader’s convenience we give a brief out-
line of the arguments.

Define jo E N according to Lemma 3.1, jl E N will be fixed at the end
of the proof and suppose that j is arbitrary. In the sequel we will
ommit the index j. We introduce the following quantities:

In order to define sequences { pn~, by induction we let for a given
Pn  an

and apply Lemma 3.1. Hence there exist numbers

such that = 0 = M(Q L aBti) for i = 1, 2, 3 and such that
the (Rm+k) are integer multiplicity currents of fi-
nite mass. Quoting [S, 28.5 (i)] we can further arrange

Next we define
and choose

Moreover we define

Then, from (9) we infer that
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and Lemma 3.1, (ii) implies

with a constant c(m) ;1 depending only on m. Combining (10), (11) and
observing 4"~o ~ ~ ~ (3/4)n ao we arrive at (q : = 1 + 1/m)

provided we choose j, : = j So , To) such that

Clearly this implies

and by construction we have ln  (3/4)n lo - 0, hence pn T r, an ! r for
some radius r E [ jo , j1], and we also conclude that

which clearly implies the desired property (2). D

PROOF OF THEOREM 3.1. For j E N we now let

Since we assume So E CR,T,, for some So E 1m and since spt (To) is com-
pact, e.g. spt (To) c Br for some r &#x3E; 0, we deduce

for j &#x3E; r by projecting So onto the ball Br. Again, let Tj denote an F-
minimizer in ej (compare [DFl, Theorem 3.1]) and define Sj precisely as
in the proof of Theorem 3.2. (In order to justify this step we have to
check that the argument in Lemma 3.1 can be extended to the situation
here: fix some j E N and observe that (8) is true under the assumption
M(T~ )  If M_(T~ ) ~ then clearly M(T~ ) ~ R, hence

Tj E IS E Im : spt (S) c BJ n and in conclusion so that
we again arrive at and the proof of Lemma 3.1 can be
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completed as before.) Then it is easy to check that

Note that S~ does not necessarily belong to ej but the limit S of a subse-
quence is in From (12) we infer

for U with compact support and by pushing an arbitrary current
UEER, T,, onto a large ball Bt and letting get the F-minimizing
property of S. 0

4. Variational Equations.

In this section we briefly discuss conditions under which the mini-
mizers constructed in Theorem 3.1, 3.2 induce varifolds of bounded
first variation. The resulting variational equations show that the mini-
mizers represent generalized surfaces of constant mean curvature.

THEOREM 4.1. Sugrpose that To E Im has compact support and
define

where T E Im is mass minimizing for the boundary aTo. Moreover,
assume

and let T denote the F-minimizing current in ê!R,To introduced in Theo-
rem 3.1. Then we have (T = e, T’7, IAT: = 

for all

COROLLARY 4.1. Let

for some ball B, (x) an oriented m-dimensional submanifold o~ class
C1 with mean curvature vector H(7J). Then is dense
in spt (P - spt (aTo ). Moreover, there exists a positive number 6
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such that

for some ball Bp (x) implies x E lil.

REMARK. If T = for a smooth oriented m-dimensional manifold 2:
then (2) immediatly implies that the mean curvature vector H(x) of E at
x is given by the quantity H(T(x)). On the other hand equation (2)
shows that the varifold V = v(M, 0) associated with the minimizing cur-
rent T is of bounded first variation. Hence we may adopt the terminol-
ogy of [S,16.5] by the way generalizing the classical concept of mean
curvature: from this point of view equation (2) tells us that the current
T is in a suitable generalized sense a solution of the problem of finding
an oriented m-dimensional manifold with fixed boundary aTo and pre-
scribed constant mean curvature form.

PROOF OF THEOREM 4.1. Combining (1) and the choice of R it is easy
to check (using the Isoperimetric Theorem) that T is an interior mini-
mizer, i. e.

we refer the reader to [DF1, Theorem 6.1]; in this case (2) follows di-
rectly along the lines of [DF1, Theorem 4.1]. 0

Corollary 4.1 is a consequence of the Allard Regularity Theorem,
compare [AW] or [DF1, Theorem 5.1].

THEOREM 4.2. Assume that the hypothesis of Theorem 3.2 hold and
let T = r(M, 8, Tj denote the mass minimizing current constructed in
Theorem 3.2. Then there exists ac real rcumber tA such that the current T
is of constant mean curvature p.H on spt(aToJ, i.e.

for all

COROLLARY 4.2. The Allard Regularity Theorem holds for points
in spt (7~ - spt (aTo).

PROOF OF THEOREM 4.2. We first assume that there exists a vector-
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field such that

and

We clearly have

and (using the first variation formula for the h-volume obtained in
[DF1, section 4])

Observing that g(O, 0) = c we deduce the existence of a curve a(s) such
that a(0) = 0 and g(s, a(s)) = c. This implies

and by the first variation formula for the mass we arrive at

In view of
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and

we find

which proves equation (3) with ,
Now, if

for all
have

In this case we proceed as follows: with X and ~ as above we let

denote the change of volume. As usual the volume change is compen-
sated by adding a suitable m-sphere aYp,x where p = p(t), x = x(t)
satisfy 

’

Hence ~ (~’) 7" + aYp,x is an admissible current and for t &#x3E; 0 we
deduce 

’

Observing that

and
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we arrive at (recall m &#x3E; 2)

and (4) turns into

Since X was arbitrary we have proved (3) with u = 0. D

5. Existence of area minimizing tangent cones.

We here show that the minimizers defined in Theorem 3.1 and The-
orem 3.2 have tangent cones which minimize mass with respect to their
boundaries. This extends some of the result obtained in [DF2].

THEOREM 5.1. Assume that the hypothesis of Theorem 4.1 or Theo-
rem 4.2 hold. In the situation of Theorem 4.2 we suppose in addition
that

Let x E spt (7J - spt (aT) and a sequence Ài 10 be given. Then there
is a subsequence of {ai} such that

where C is integer multiplicity. We have:

in the sense of
Radon measures.

(ii) C is a cone, i. e. C = C for all t &#x3E; 0.

(iii) C is locally area minimizing, i. e. we have

for any open set U C Rm+k and any X E 1m with spt (X) c U and
ax = o.

REMARK 1. Here we use the notation
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REMARK 2. Assertion 1 of Theorem 5.1 especially includes the fact
that the m-dimensional density

exists for all 

REMARK 3. After the proof of Theorem 5.1 we will discuss natural
conditions guaranteing the validity of

for the minimizing current T defined in Theorems 3.2, 3.4.

PROOF OF THEOREM 5.1. From [DF2] we deduce that Theorem 5.1 is
valid for F-minimizing currents T as described in Theorem 4.1. Now
suppose that we are in the case of Theorem 4.2. We may assume
that

and fix r &#x3E; 0. Then

This follows from the facts that = 0 on B, (0) (recall 0 E spt 
and

The existence of 0’ ([AT, 0) can be deduced from Theorem 4.2 and
[S, 17.8]. According to (1) and the compactness theorem for integer
multiplicity currents [S, 27.3] we can select a subsequence of Tj (again
denoted by which converges in 6D .. (Rm+k) to an integer multiplicity
current C with aC = 0.

In order to prove the minimizing property of C we proceed similarly
as in [S, Proof of 34.5] and [DF2]: given a compact set K c and a
smooth function ~: -~ [0, 1] with compact support and with p --- 1 in
a neighborhood of K we define for 0 ~ t  1

Quoting [S, 31,2] we may write
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for suitable integer multiplicity currents Rj and By elementary slic-
ing theory we can find 0  a  1 and an integer multiplicity current Pj
such that

with

and in addition we may also assume that

From (2) and (3) we deduce

where

and

Next let X E Wm denote a given integer multiplicity current sat-
isfying aX_= 0 and spt (X ) c K. Abbreviating we have

spt c Wa and

and

Suppose now that there exists a sequence of positive numbers ej ! 0
with the property

From (8) we then deduce
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which gives after passing to the limit t t a

Here we have used

and

Remembering (5) we then deduce from (9)

therefore by (6) and the lower semicontinuity of the mass

which proves the minimizing property of C.
So it remains to prove the desired inequality (8) for which we have

to make use of the minimizing property of T. For simplicity we
abbreviate

From our hypothesis we get the existence of a vectorfield
Y E Co spt (Y) n spt (aTo) = 0 such that

Defining we want to calculate sj such

is valid. Clearly (10) is equivalent to the equation



100

The function

has the properties f(o) = 0, f ’ (0) = a &#x3E; 0, especially we 0 such
that f ’ &#x3E; a/2 on [- ~, ~ ] which implies

On the other hand it is easy to check that

holds for some absolute constant 0  A  00 so that we may as-

sume

Hence there exists a unique s~ E [- 8, 8] with and one easily
proves that

The currents U~ : = !7g now satisfy (11), hence

and we are now in the position to prove (8):

and since

i

we arrive at

for some A &#x3E; 0 and all j » 1. Recalling (12) we have established
(8).
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In order to be precise it remains to justify the identity

which is valid provided we can arrange

for j » 1. To this purpose we first observe that spt (Z; ) c {0} so
that the assumption

for all j &#x3E; 1 would imply 
’

contradicting our assumption. Hence there exists jl ;1 with the

property

for and we may find an open set V c Rlk - spt (aTo ),
V n A; Wo = 0 such that IH(T(z)I &#x3E; 0 lay-a. e. on V. Hence there
exists a C1-vectorfield Y * supported in V with the property

and we may replace Y by Y* if necessary. This implies that (13) is
satisfied.

Finally, the remaining assertions from Theorem 5. l, i.e. that C is an
oriented cone and that IATJ - lAc in the sense of Radon measures, follows
as in [S, Proof of 34.5, 19.3]. This completes the proof of Theorem
5.1. D

PROPOSITION 5.1. Suppose that the hypothesis of Theorem 3.2
hold and let T denote a solutions of

introduced in Theorem 3.2. Moreover, assume aTo = for some
00 E N and a compact, oriented (m -1)-dimensional submanifold
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Then we have

if one of the following conditions holds:

(i) To (Hi) = (aTo)(i) 0 0 for at least one i E f 1, ..., m + k}, where
wi is defined by

REMARK. Condition (ii) says that To and the cone over aTo
enclose an h-volume different from c.

PROOF. (i) From dwi = Hi we infer

hence

where the last identity follows from the fact (remember that T =

This gives

which clearly proves (14).

(ii) Using

we first observe
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Since

for any S E 1m and

our assumption (ii) implies

from which (14) easily follows. D
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