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Extensions of Compact Continuous Maps
into Decomposable Sets.

L. FAINA(*)

SUMMARY - From the known fact that a compact map from a closed subset of a
metric space, with values in a decomposable set can be extended with values
in the same set, here is presented a construction that ensures also the com-
pactness of the image of the extension.

1. Introduction.

Any continuous function which maps a subset A of a metric X into a
totally bounded set of a normed space E can be extended to the whole
space X keeping the values in a totally bounded set [4]. In fact the

range of the extension, the convex hull of a totally bounded subset of a
normed space, is totally bounded.

Purpose of this note is to present a similar result for maps into
E) that uses the concept of decomposable hull instead of that of a

convex hull. It is well known that decomposable sets are absolute re-
tracts [ 1 ]; however knowing that a totally bounded map with values in a
decomposable set can be extended with values in this set, does not im-
ply by itself that the extension will have values in a totally bounded
set. In fact the decomposable hull of a set cannot be totally bounded un-
less it is a singleton [3].

The range of the extension proposed here is a totally bounded sub-
set of the decomposable hull of the original image; apparently it cannot
be characterized in simple terms like convexity.

(*) Indirizzo dell’A.: International School for Advanced Studies (S. I. S. S. A. ),
Strada Costiera 11, 34014 Trieste.
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A special case for X = LI (I, K), where I is an interval and K a
closed subset of mn, has been presented in [2].

I wish to thank Professor Arrigo Cellina who suggested this re-
search and supported it with stimulating conversations.

2. Notations and definitions.

Throughout this paper, (T, IA) denotes a measure space with a 
gebra Y of subsets of T and a positive measure g. Given a g-integrable
function f : T - m, f. p. denote the measure having density f with re-
spect to g. When E is a Banach space with norm M denotes the
vector space of those functions u: T --~ E, which are measurable with
respect to 5 and to the Borel subsets of E, while L1 (T, E) is the Banach
space of those functions such that IIu IIE E L1 (T, m), with norm
IIUII1 = f lIullE ~ (See [8], p. 132).

T

The open unit ball of L1 (T, E) is denoted by Bl. For every
x, y E L1 (T, E), set and d(x, A) = infllx - all, where

aEA

Let v: 5-") mn be a vector measure, whose components have no
atoms. A family is called increasing if A~ c Ap when
« ; ~3. An increasing family is called refining A E ~with respect to the
measure v if Ao = 0, Al = A and v(A~) = av(A) for every « E [o,1]. Let v
be a vector measure absolutely continuous with respect to ,u; then if JA is
nonatomic there exists a family (A.).E[0,1] refining T with respect to (v, p.)
(see [5]). From this point on, we assume p. nonatomic. For the following
concept one can refer to [7].

DEFINITION 1. A set K c M is decomposable if

+ v XT"’-A E K whenever u, v E K, A E 5.

The collection of all nonempty closed decomposable subsets of a sub-
space L of M is denoted by D(L). For any set H c L, the decomposable
hull of H in L is

Clearly, decL (H) represents the smallest decomposable subset of L
which contains H.

It will be useful the following,

PROPOSITION 2. Iffi , f2 , ..., fn E L1 (T, E), and is an in-

creasing facmily refining the measure , f’1 (.J., f2 ’,u, ..., then the
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set

3. Main result.

THEOREM 3. Let A c L1 (T, E) be totally bounded and i: A - A be the
identity. Then there exists a totally bounded set B, with
A c B c dec (A), and a continuous function i: L1 (T, E) -~ B such that
2IA = i.

PROOF: Set X = £1 (T, E). It is not restrictive to assume A closed.
The proof is divided into several steps.

a) Let (An)n,l be the open sets defined by

We have: X%A = U An.
n;l

Set En = 1/2n, n * 1, and let Nn = f ao , ..., be an of A. Let
7r: X -") A be a function such that d(x, = d(x, A) (7r is any selection of
the projection of minimal distance). Put

Consider the pairs (n, j ); n &#x3E; 1, j = 0, ... , jn, in the lexicographic or-
der ; the pair (n, j ) is identified with a natural h by the relation

If h corresponds to the pair (n, j), a h e will

denote respectively aj’ and 
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Let be a continuous partition of unity subordinate to 

Set e° (x) = 0 and define i

Denote the elements in the set

N1 U N2 U {0}.
Let be an increasing family refining T with respect to the

measures generated by the densities where

l, m = 0, ..., (il +j2)- 
Define a continuous function il on Al by setting

b) Let be an of the totally bounded set
It is easy to verify that there exists a finite decomposition

B,

that b1m coincides on E’ with an element y§i, , of the set jvi w N2.
Let fl be a function mapping each x belonging to into an ele-

ment of R1, whose distance from x is less than Define the open
sets

Consider the triples (~~m);~~l~=0~...~~m=0,...,m~ (set
mn = 0 1), in the lexicografic order; the triple (n, j, m) is identi-

fied with a natural h by the relation

+( j + 1). (m + 1). Denote with hn the index corresponding to the triple
(n, jn , mn). If h corresponds with the triple (n, j, m); will de-
note respectiveley a~ and . 

h}.Let be a continuos partition of unity subordinate to 

Set -to (x) = 0 and define ;
G=1

Denote by sk k = 0, ..., k2 the elements in the set

N1 U N2 U N3 U {0}.
Let be an increasing family refining E/3 with respect to the

measures generated by the densities gi m (t) = IIsf (t) - s~ (t) ~ 
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l,m=0,...,k2. Define a continuous function i2 on AIuA2 by set-

ting

Further, from the definition of f bm ~ , for every
have

c) Let us proceed by induction. Suppose that we have defined con-
tinuous functions on U Al such that~ 

1--i

- 

Then there exists in+ such that (@) holds for j = n + 1. In fact, let
be an E:n+ 2-net of the totally bounded set

Then, there exists a finite decomposition of T,

(EB)B=0,...,Bn, such that bm coincides on each E/1 with an element 

of the set

Let fn be a function that maps each x belonging to in (U into an
1--n

element of Rn, whose distance from x is less than E:n+2. Then, define the
open sets

Let be a continuous partition of unity subordinate to 

Denote by sr; k = 0, ..., kn the elements in the set

be an increasing family refining E~ with respect to the mea-
sures generated by the densities,

Then, define a continuous function’
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Further, from the definition of { bm ~, for every
have

n

d) Define a function i: X -") X by setting, for every X e An,

n

and i(x) = i(x) for every x E A. Since the image of each im is contained in
dec A, then also c dec A.

From the relation

it is easy to verify that i is continuous on XBA. Let us check the conti-
nuity on A. Fix e &#x3E; 0 and a E A; there exists 0, a  e, such that if
b ~ A with Ila - bill  a then  e/4. Now, if X E XBA and
lix belongs to some with n sufficently large. In-

Because of the relation

we have, -  e, for every x E X with d(x, a)  ~4.
It is left to show that i(X ) is totally bounded. Fix e &#x3E; 0. Since i is

continuous, and A is compact, there exists ~ &#x3E; 0 such that i(A +
+ 8B1) c i(A) + (6/2) Bi. Since A is totally bounded, then i(A + 8B1) can be
covered by a finite number of balls of radius s. Choose m so that

= 1, ... , m} cover X ~ [A + while has empty intersection
m

with it. Since each ii (U m is totally bounded, and (* ) holds, we

have that whenever j satisfies E:j  e/2, an (E:/2)-net of
m

is also
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Hence we have found a finite e-net for the set ~(~0. A

As an application of theorem 3, the following result give in particu-
lar a new proof of a result of Fryszkowski [6].

THEOREM 4. Let K be any closed, decomposable subset of L1 (T, E),
and let continuous with totally bounded. Then F has
a fixed point in K.

PROOF. Set A = F(K). Following the notations of theorem 3, define
the function F: L1 (T, E) -~ L1 (T, E) by F(x) = F(i(x)). n

For every x e Li (T, E), F(x) c F(B) c A; in particular F maps co (A)
into itself.

n 
Let x * be a fixed point of F. Then ~*=F(~*))eA, hence,

F(x * ) = F(x * ). A
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