RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

L. FAINA

Extensions of compact continuous maps into decomposable sets

Rendiconti del Seminario Matematico della Università di Padova, tome 85 (1991), p. 27-33

http://www.numdam.org/item?id=RSMUP_1991__85__27_0

© Rendiconti del Seminario Matematico della Università di Padova, 1991, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Extensions of Compact Continuous Maps into Decomposable Sets.

L. FAINA(*)

SUMMARY - From the known fact that a compact map from a closed subset of a metric space, with values in a decomposable set can be extended with values in the same set, here is presented a construction that ensures also the compactness of the image of the extension.

1. Introduction.

Any continuous function which maps a subset A of a metric X into a totally bounded set of a normed space E can be extended to the whole space X keeping the values in a totally bounded set [4]. In fact the range of the extension, the convex hull of a totally bounded subset of a normed space, is totally bounded.

Purpose of this note is to present a similar result for maps into $L^1(T,E)$ that uses the concept of decomposable hull instead of that of a convex hull. It is well known that decomposable sets are absolute retracts [1]; however knowing that a totally bounded map with values in a decomposable set can be extended with values in this set, does not imply by itself that the extension will have values in a totally bounded set. In fact the decomposable hull of a set cannot be totally bounded unless it is a singleton [3].

The range of the extension proposed here is a totally bounded subset of the decomposable hull of the original image; apparently it cannot be characterized in simple terms like convexity.

^(*) Indirizzo dell'A.: International School for Advanced Studies (S.I.S.S.A.), Strada Costiera 11, 34014 Trieste.

28 L. Faina

A special case for $X = L_1(I, K)$, where $I \in \Re$ is an interval and K a closed subset of \Re^n , has been presented in [2].

I wish to thank Professor Arrigo Cellina who suggested this research and supported it with stimulating conversations.

2. Notations and definitions.

Throughout this paper, (T,\mathcal{F},μ) denotes a measure space with a σ -algebra \mathcal{F} of subsets of T and a positive measure μ . Given a μ -integrable function $f\colon T\to \mathfrak{R},\ f\cdot \mu$ denote the measure having density f with respect to μ . When E is a Banach space with norm $\|\cdot\|_E$, M denotes the vector space of those functions $u\colon T\to E$, which are measurable with respect to \mathcal{F} and to the Borel subsets of E, while $L_1(T,E)$ is the Banach space of those functions $u\in M$ such that $\|u\|_E\in L_1(T,\mathfrak{R})$, with norm $\|u\|_1=\int\limits_T\|u\|_E\,d\mu$ (See [8], p. 132).

The open unit ball of $L_1(T,E)$ is denoted by B_1 . For every $x,y\in L_1(T,E)$, set $d(x,y)=\|x-y\|$ and $d(x,A)=\inf_{a\in A}\|x-a\|$, where $A\in L_1(T,E)$.

Let $\nu:\mathcal{F}\to\mathfrak{R}^n$ be a vector measure, whose components have no atoms. A family $(A_\alpha)_{\alpha\in[0,1]},\ A_\alpha\in\mathcal{F}$, is called increasing if $A_\alpha\subset A_\beta$ when $\alpha\leqslant\beta$. An increasing family is called refining $A\in\mathcal{F}$ with respect to the measure ν if $A_0=\emptyset,\ A_1=A$ and $\nu(A_\alpha)=\alpha\nu(A)$ for every $\alpha\in[0,1]$. Let ν be a vector measure absolutely continuous with respect to μ ; then if μ is nonatomic there exists a family $(A_\alpha)_{\alpha\in[0,1]}$ refining T with respect to (ν,μ) (see [5]). From this point on, we assume μ nonatomic. For the following concept one can refer to [7].

DEFINITION 1. A set $K \in M$ is decomposable if

$$u \cdot \mathcal{X}_A + v \cdot \mathcal{X}_{T \setminus A} \in K$$
 whenever $u, v \in K$, $A \in \mathcal{F}$.

The collection of all nonempty closed decomposable subsets of a subspace L of M is denoted by D(L). For any set $H \in L$, the decomposable hull of H in L is

$$\operatorname{dec}_L(H) = \bigcap \{ K \in D(L) : H \subset K \}.$$

Clearly, $dec_L(H)$ represents the smallest decomposable subset of L which contains H.

It will be useful the following,

PROPOSITION 2. If $f_1, f_2, ..., f_n \in L_1(T, E)$, and $(A_{\alpha})_{\alpha \in [0,1]}$ is an increasing family refining the measure $f_1 \cdot \mu, f_2 \cdot \mu, ..., f_n \cdot \mu$, then the

set

$$S = \left\{ \sum_{j=1}^{n} f_j \, \mathfrak{X}_{B(\lambda,j)} \right\},\,$$

where $\lambda = (\lambda_1, ..., \lambda_n)$ is such that $\lambda_h \ge 0$, $\sum_{h=1}^n \lambda_h = 1$, and $B(\lambda, j) = A_{l(j)} \setminus A_{l(j-1)}$ with $l(j) = \sum_{h=1}^n \lambda_h$ (l(0) = 0), is compact.

3. Main result.

THEOREM 3. Let $A \subset L_1(T, E)$ be totally bounded and $i: A \to A$ be the identity. Then there exists a totally bounded set B, with $A \subset B \subset \operatorname{dec}(A)$, and a continuous function $\hat{i}: L_1(T, E) \to B$ such that $\hat{i}|_A = i$.

PROOF: Set $X = L_1(T, E)$. It is not restrictive to assume A closed. The proof is divided into several steps.

a) Let $(A_n)_{n\geq 1}$ be the open sets defined by

$$A_{1} = \{x \in X : d(x, A) > 1\}$$

$$A_{2} = \left\{x \in X : \frac{1}{2} < d(x, A) < \frac{3}{2}\right\}$$
.....
$$A_{n} = \left\{x \in X : \frac{1}{2^{n-1}} < d(x, A) < \frac{3}{2^{n-1}}\right\}$$

We have: $X \setminus A = \bigcup_{n>1} A_n$.

Set $\varepsilon_n = 1/2^n$, $n \ge 1$, and let $N_n = \{a_0^n, ..., a_{j_n}^n\}$ be an ε_n -net of A. Let $\pi: X \to A$ be a function such that $d(x, \pi x) = d(x, A)$ (π is any selection of the projection of minimal distance). Put

$$\mathcal{U}_j^n = A_n \cap (\pi^{-1}(a_j^n + \varepsilon_n B_1) + \varepsilon_n B_1).$$

Consider the pairs (n, j); $n \ge 1$, $j = 0, ..., j_n$, in the lexicographic order; the pair (n, j) is identified with a natural h by the relation $h = \sum_{l=1}^{n-1} (j_l + 1) + j + 1$. If h corresponds to the pair (n, j), a^h e u^h will denote respectively a_i^n and u_i^n .

30 L. Faina

Let $\{q^h(x)\}$ be a continuous partition of unity subordinate to $\{\mathcal{U}^h\}$. Set $\theta^0(x) = 0$ and define $\theta^h(x) = \sum_{h=1}^h q^h(x)$.

Denote by $s_k^1(t)$; $k = 0, ..., (j_1 + j_2)$ the elements in the set $N_1 \cup N_2 \cup \{0\}$.

Let $(E_{\lambda})_{\lambda \in [0,1]}$ be an increasing family refining T with respect to the measures generated by the densities $g_{l,m}^1(t) = ||s_l^1(t) - s_m^1(t)||_E$, where $l, m = 0, ..., (j_1 + j_2)$.

Define a continuous function i_1 on A_1 by setting

$$i_1(x) = \sum_h a^h \mathcal{X}_{E_{\theta^h(x)} \setminus E_{\theta^{h-1}(x)}}.$$

b) Let $R_1=\{b_m^1\}_{m=0,\dots,m_1}$ be an ε_3 -net of the totally bounded set $i_1(A_1)$. It is easy to verify that there exists a finite decomposition of $T, E^\beta; \beta=0,\dots,\beta_1$, i.e. $E^\alpha\cap E^\beta\neq\emptyset$ if $\alpha\neq\beta$ and $T=\bigcup_{\beta=0}^{\beta_1}E^\beta$, such that b_m^1 coincides on E^β with an element $y_{m,\beta}^1$ of the set $N_1\cup N_2$.

Let f_1 be a function mapping each x belonging to $i_1(A_1)$ into an element of R_1 , whose distance from x is less than ϵ_3 . Define the open sets

$$\nabla^{1}_{j,m} = \mathcal{U}^{1}_{j} \cap (f_{1}^{-1}(b_{m}^{1}) + \varepsilon_{4}B_{1}), \quad j = 0, ..., j_{1}; m = 0, ..., m_{1}$$

$$\nabla^{n}_{i,0} = \mathcal{U}^{n}_{i}, \quad j = 0, ..., j_{n}; n \ge 2.$$

Consider the triples (n,j,m); $n \ge 1, j = 0, ..., j_n, m = 0, ..., m_n$ (set $m_n = 0$ if $n \ne 1$), in the lexicografic order; the triple (n,j,m) is identified with a natural h by the relation $h = \sum_{l=1}^{n-1} (j_l + 1)(m_l + 1) + (j+1) \cdot (m+1)$. Denote with h_n the index corresponding to the triple (n,j_n,m_n) . If h corresponds with the triple (n,j,m); y_β^h , a^h , ∇^h will denote respectively $y_{n,\beta}^n$, a_j^n and $\nabla^n_{j,m}$.

Let $\{q^h(x)\}$ be a continuos partition of unity subordinate to $\{\mathfrak{V}^h\}$. Set $\gamma^0(x) = 0$ and define $\gamma^h(x) = \sum_{l=1}^h q^l(x)$.

Denote by $s_k^2; k=0,...,k_2^{l-1}$ the elements in the set $N_1 \cup N_2 \cup N_3 \cup \{0\}$.

Let $(E_{\lambda}^{\beta})_{\lambda \in [0,1]}$ be an increasing family refining E^{β} with respect to the measures generated by the densities $g_{l,m}^2(t) = \|s_l^2(t) - s_m^2(t)\|_E$;

 $l, m = 0, ..., k_2$. Define a continuous function i_2 on $A_1 \cup A_2$ by setting

$$i_2(x) = \sum_{\beta} \left(\sum_{h=1}^{h_1} y_{\beta}^h \, \mathfrak{X}_{E^{\beta_{h(x)}} \setminus E^{\beta_{h-1}}(x)} + \sum_{h=h_1+1}^{+\infty} a^h \, \mathfrak{X}_{E^{\beta_{h(x)}} \setminus E^{\beta_{h-1}}(x)} \right).$$

Further, from the definition of $\{b_m^1\}$, for every $x \in A_1 \setminus \overline{A}_2$, we have

$$||i_1(x) - i_2(x)||_1 \le ||i_1(x) - b_{\overline{m}}^1|| + ||b_{\overline{m}}^1 - i_2(x)|| \le 4\varepsilon_3 = \varepsilon_1.$$

c) Let us proceed by induction. Suppose that we have defined continuous functions i_j on $\bigcup_{l \leqslant i} A_l$ such that

(@)
$$||i_{j-1}(x)-i_j(x)||_1 \le \varepsilon_{j-1}$$
 on $(\bigcup_{l\le i-1}A_l) \setminus \overline{A}_j$ for $j=2,\ldots,n$.

Then there exists i_{n+1} such that (@) holds for j=n+1. In fact, let $R_n=\{b_m^n\}_{m=0,\dots,m_n}$ be an ε_{n+2} -net of the totally bounded set $i_n(\bigcup_{m\le n}A_m)$. Then, there exists a finite decomposition of T, $(E^\beta)_{\beta=0,\dots,\beta_n}$, such that b_m^n coincides on each E^β with an element $y_{m,\beta}^n$ of the set $\bigcup_{j=1}^n N_j$.

Let f_n be a function that maps each x belonging to $i_n (\bigcup_{l \le n} A_l)$ into an element of R_n , whose distance from x is less than ε_{n+2} . Then, define the open sets

$$\nabla_{h,m}^{k} = \mathcal{U}_{h}^{k} \cap (f_{n}^{-1}(b_{m}^{n}) + \varepsilon_{n+3}B_{1}); h = 0, ..., j_{k}; m = 0, ..., m_{n}; k = 0, ..., n-1,
\nabla_{h,0}^{k} = \mathcal{U}_{h}^{k}, \quad h = 0, ..., j_{k}; k \geqslant n.$$

Let $\{q^h(x)\}$ be a continuous partition of unity subordinate to $\{\mathfrak{V}^h\}$. Denote by $s_k^n; k=0,...,k_n$ the elements in the set $\bigcup_{j=1}^{n+2} N_j \cup \{0\}$. Let

 $(E_{\lambda}^{\beta})_{\lambda \in [0,1]}$ be an increasing family refining E^{β} with respect to the measures generated by the densities, $g_{l,m}^n(t) = \|s_l^n(t) - s_m^n(t)\|_E$; $l, m = 0, \ldots, k_n$.

Then, define a continuous function i_{n+1} on $\bigcup_{j=1}^{n-1} A_j$, by setting

$$i_{n+1}(x) = \sum_{\beta} \Biggl(\sum_{h=1}^{h_n} y_{\beta}^h \, \mathcal{X}_{E^{\beta_{h(x)}} \smallsetminus E^{\beta_{h-1}}(x)} + \sum_{h=h_n+1}^{+\infty} a^h \, \mathcal{X}_{E^{\beta_{h(x)}} \smallsetminus E^{\beta_{h-1}}(x)} \Biggr).$$

32 L. Faina

Further, from the definition of $\{b_m^n\}$, for every $x \in \bigcup_{j=1}^n A_j \setminus \overline{A_{n+1}}$, we have

$$||i_n(x) - i_{n+1}(x)||_1 \le ||i_n(x) - b_{\overline{m}}||_1 + ||b_{\overline{m}}| - i_{n+1}(x)||_1 \le 4\varepsilon_{n+2} = \varepsilon_n.$$

d) Define a function $\hat{i}: X \to X$ by setting, for every $x \in A_n$,

$$\hat{i}(x) = \lim_{m > n} i_m(x)$$

and $\hat{i}(x) = i(x)$ for every $x \in A$. Since the image of each i_m is contained in $\operatorname{dec} A$, then also $\hat{i}(X) \subset \operatorname{dec} A$.

From the relation

$$||i_p(x) - i_q(x)||_1 \le \sum_{j=p}^{q+1} \varepsilon_j, \quad p < q, \quad x \in \bigcup_{h=1}^p A_h \setminus \overline{A}_{p+1}$$

it is easy to verify that \hat{i} is continuous on $X \setminus A$. Let us check the continuity on A. Fix $\varepsilon > 0$ and $a \in A$; there exists a $\delta > 0$, $\delta < \varepsilon$, such that if $b \in A$ with $||a - b||_1 < \delta$ then $||\hat{i}(a) - \hat{i}(b)||_1 < \varepsilon/4$. Now, if $x \in X \setminus A$ and $||x - a||_1 < \delta/4$, then x belongs to some $\mathcal{U}_{j_0}^n$, with n sufficently large. Indeed, $d(\pi x, a_{j_0}^n) < \varepsilon_n + \varepsilon_n = \varepsilon_{n-1}$.

 $\begin{array}{l} \operatorname{deed}, \ d(\pi x, a_{j_0}^n) < \varepsilon_n + \varepsilon_n = \varepsilon_{n-1}. \\ \operatorname{Therefore}, \ \ \operatorname{if} \ \ q_j^n(x) \neq 0, \ \ d(a, a_j^n) < d(a, x) + d(x, \pi x) + d(\pi x, a_j^n) < \\ < 3d(a, x) < \delta, \ \ \operatorname{and} \ \ \operatorname{so} \ \ \|\hat{i}(a) - \hat{i}(a_i^n)\|_1 < \varepsilon/4; \ \ \operatorname{then} \ \ \|i_n(x) - i(a_{j_0}^n)\|_1 \leqslant \\ \leqslant \sup_{\{j: \ q_j^n(x) \neq 0\}} \|i(a_j^n) - i(a_{j_0}^n)\|_1 \leqslant \varepsilon/2, \ \ \operatorname{and} \ \ \operatorname{so} \ \ d(i_n(x), \hat{i}(a)) \leqslant d(i_n(x), i(a_{j_0}^n)) + \\ \end{cases}$

 $d(i(a_{j_0}^n), \hat{i}(a)) < \varepsilon/2 + \varepsilon/4.$

Because of the relation

$$\|\hat{i}(x) - i_n(x)\|_1 < \sum_{j=n}^{\infty} \varepsilon_j \le \varepsilon_n < \frac{\delta}{4} < \frac{\varepsilon}{4},$$

for every
$$x \in \bigcup_{h=1}^{n} A_h \setminus \overline{A}_{n+1}$$
,

we have, $\|\hat{i}(x) - i(a)\|_1 < \varepsilon$, for every $x \in X$ with $d(x, a) < \delta/4$.

It is left to show that $\hat{i}(X)$ is totally bounded. Fix $\varepsilon > 0$. Since \hat{i} is continuous, and A is compact, there exists $\delta > 0$ such that $\hat{i}(A + \delta B_1) \subset i(A) + (\varepsilon/2)B_1$. Since A is totally bounded, then $\hat{i}(A + \delta B_1)$ can be covered by a finite number of balls of radius ε . Choose m so that $\{A_j: j=1,\ldots,m\}$ cover $X \setminus [A+\delta B_1]$ while A_{m+1} has empty intersection with it. Since each $i_j (\bigcup_{l=1}^m A_l), j \ge m$ is totally bounded, and (*) holds, we have that whenever j satisfies $\varepsilon_j < \varepsilon/2$, an $(\varepsilon/2)$ -net of $i_j (\bigcup_{l=1}^m A_l)$ is also an ε -net of $\hat{i}(\bigcup_{l=1}^m A_l)$.

Hence we have found a finite ε -net for the set $\hat{i}(X)$. \triangle As an application of theorem 3, the following result give in particular a new proof of a result of Fryszkowski[6].

THEOREM 4. Let K be any closed, decomposable subset of $L_1(T, E)$, and let $F: K \to K$ be continuous with F(K) totally bounded. Then F has a fixed point in K.

PROOF. Set $A = \overline{F(K)}$. Following the notations of theorem 3, define the function $\hat{F}: L_1(T, E) \to L_1(T, E)$ by $\hat{F}(x) = F(\hat{i}(x))$.

For every $x \in L_1(T, E)$, $\hat{F}(x) \subset F(B) \subset A$; in particular \hat{F} maps $\overline{co}(A)$ into itself.

Let x^* be a fixed point of \hat{F} . Then $x^* = F(\hat{i}(x^*)) \in A$, hence, $\hat{F}(x^*) = F(x^*)$.

REFERENCES

- [1] A. BRESSAN G. COLOMBO, Extensions and selections of maps with decomposable values, Studia Math. vol. 90 (1988), pp. 69-86.
- [2] A. CELLINA, A fixed point theorem for subsets of L_1 , in «Multifunction and Integrands» edited by G. Salinetti, Lecture Notes in Math. 1091, Springer-Verlag, Berlin (1984), pp. 129-137.
- [3] A. CELLINA C. MARICONDA, Bull. Pol. Aca. Sc. 37 (1989), pp. 151-156.
- [4] J. DUGUNDJI, «Topology», Allyn and Bacon, Boston, (1956).
- [5] A. FRYSWKOWSKI, Continuous selections for a class of non-convex multivalued maps, Studia Math., 76 (1983), pp. 163-174.
- [6] A. FRYSZKOWSKI, A generalisation of Cellina fixed point theorem, Studia Math., 78 (1984), pp. 213-217.
- [7] F. HIAI H. UMEGAKI, Integrals, conditional expectations and martingales of multivalued functions, J. Multivar. Anal., 7 (1971), pp. 149-182.
- [8] K. Yosida, «Functional Analysis», Third Edition, Springer-Verlag, Berlin (1971).

Manoscritto pervenuto in redazione il 17 gennaio 1990.