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Topologically Semiperfect Rings.

ENRICO GREGORIO (*)

Introduction.

This paper deals with a generalization of the concept of semiperfect-
ness to linearly topologized rings. We define first what projective cov-
ers are and, when this definition has been given, we call «semiperfect»
those linearly topologized rings such that all finitely generated discrete
modules over them have projective covers.

Two lines of research are possible: one in the direction that consid-
ers projective covers as topological modules and the second one when
we prescribe to all projective covers of finitely generated modules to be
discrete.

As an example of the first kind of generalization we can consider the
ring Z of integers endowed with its natural topology v. Thus a finitely
generated discrete module over Z~ is just a finite torsion group and so it
can be decomposed as a direct sum of finite indecomposable p-groups.
If now G is a finite (cyclic) indecomposable p-group, then there exists a
continuous epimorphism f: Jp - G, where Jp is the (compact) group of
p-adic integers. This group has the following projectivity property: for
any epimorphism a: M- N of discrete torsion groups and any continu-
ous morphism ~3: there is a continuous morphism Y: Jp -~ M
with « o Y = p (this could be proved easily by using Pontrjagin duality).
Hence we can regard (Jp , f) as a «projective cover» of G, with respect
to all discrete modules over Zv; if G1, ..., Gn are indecomposable torsion
groups, then the «projective covers of their direct sum is the (topologi-
cal) product of the projective covers of the summands.

It is precisely this concept that we study: we take a right linearly
topologized ring R-r, the category Mod-RT of discrete modules over RT

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura ed Applicata, Via
Belzoni 7, 35131 Padova (Italy).
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and, if M E Mod-R,, we define a r-projective cover of M as a linearly
topologized module P over R’f with a continuous epimorphism from P
onto M with inessential kernel (in a topological sense which we precise
in Section 1) and we want P to have a «projectivity» property like the
one described above, with respect to the category Mod-R,.

It turns out that there exist rings which are not semiperfect, but
admit «projective covers- of discrete finitely generated modules: an ex-
ample was given above, while another one will be in Section 2. We call
such rings t-semiperfect. Of course, semiperfect rings are t-semiperfect
when endowed with the discrete topology. It is true also that t-

semiperfectness is preserved under weakening the topology: if a ring is
t-semiperfect, then it is t-semiperfect when endowed with any (right
linear) topology coarser than the given one. It can also be shown that t-
semiperfectness is preserved under factoring the ring modulo a two-
sided ideal (giving the factor ring the quotient topology). On the other
hand a discrete t-semiperfect ring is nothing else than a semiperfect
ring, as is shown in Theorem 2.11.
A well-behaved class of t-semiperfect rings is the one consisting of

all (right linearly topologized) rings such that the «projective covers-
of discrete finitely generated modules are discrete; for such rings,
which we call d-semiperfect, the theory is very similar to the classical
theory of semiperfect rings: namely we can associate to a d-semiperfect
ring a basic ring which is also d-semiperfect and is, modulo its topologi-
cal Jacobson radical (defined in Section 1) a product of (possibly in-
finitely many) division rings. Moreover the basic ring is similar to the
given ring in the sense that the categories of discrete right modules
over the two rings are equivalent [4]. It follows also that the projective
covers of discrete finitely generated modules over the basic ring are in-
deed projective as abstract modules.

Section 1 of the paper deals with the preliminaries, namely the defi-
nition of a topological radical of a linearly topologized module and of a
topological analogous of the Jacobson radical of a ring. The concept of
inessential submodule of a linearly topologized module is given, and
some of the properties linking radicals and inessential submodules are
proved. It should be noted that this theory is perfectly analogous to the
classical theory (i.e. the discrete case) and that most of the classical re-
sults can be generalized.

In Section 2 we define the concepts of projective cover of a (dis-
crete) module and of t-semiperfect ring. We prove next that a sufficient
condition for a ring to be t-semiperfect is that all simple discrete mod-
ules over it have a projective cover. Thus the discrete finitely generat-
ed modules over a t-semiperfect ring are semisimple modulo the radi-
cal, a generalization of the well known fact holding for semiperfect



267

rings. We end the section by giving an example of a t-semiperfect ring
which is not semiperfect (though we have already given such an exam-
ple, namely the ring of integers with the natural topology).

In Section 3 we study d-semiperfect rings and develop a theory of
the basic ring: the main results are that the basic ring is similar to the
given ring and that it is, modulo the radical, a product of division
rings.

Finally, in Section 4 we prove that every linearly compact ring is t-
semiperfect : the proof of this fact relies on a duality theorem by Menini
and Orsatti [7]. This theorem clarifies the examples we give in the pa-
per : in fact the rings we proved to be t-semiperfect (or their comple-
tion) are linearly compact.

The rings we consider are always associative with 1, and modules
are unital. We shall deal only with linear topologies both on rings and
on modules, that is topologies having a basis of neighbourhoods of zero
(or, briefly, a local basis) consisting of right ideals or submodules re-
spectively. We shall denote by the family of all open submodules
of the topological module MR . While topologies on rings are not as-
sumed to be Hausdorff, all topologies on modules will: this means that
in every topological module the intersection of all open submodules is
zero. However non Hausdorff rings are not very important: we include
them only to state the results in larger generality. Indeed, in Sections 3
and 4 we use rings that are not only Hausdorff, but also complete (it is
clear that we cannot distinguish a topological ring from its Hausdorff
completion only by the discrete modules over it).

The notation Mod-R,~ denotes the category of all discrete modules
over the (right linearly) topologized ring Rz, while LT-R~ is the catego-
ry of all Hausdorff linearly topologized modules over R-r. Analogous no-
tations are used for categories of left modules. We use the convention of
writing module morphisms on the opposite side to the scalars.

1. Radicals.

1.1 DEFINITION. Let MR be a linearly topologized module:
(1) the (Jacobson) t-radical of MR is the intersection of all maxi-

mal open submodules of MR and is denoted by radt (MR );
(2) if X is a submodule of MR , then X is said to be in,essentiaL if,

for all open submodules V of MR , X + V = M implies that V = M; we
shall denote this by X MR .

1.2 REMARKS. (a) If MR is discrete, the notions we have defined
above coincide with the usual ones.
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(b) If we denote by «rad» the classical radical, i.e. the intersec-
tion of all maximal submodules, it is plain that rad (MR )  radt (MR ), for
every linearly topologized module MR . Moreover any inessential sub-
module of an abstract module MR is inessential, no matter what topol-
ogy we endow M with. Sometimes the two notions of radical coincide
(cf. Theorem 1.11).

(c) The definition of inessential submodule could have been given
by using closed submodules instead of open ones, since every proper
closed submodule is contained in a proper open submodule.

(d) Another definition of inessentiality could be as follows: a sub-
module X of a linearly topologized module MR is inessential if and only
if, for every submodule Y of MR , X + Y = M implies that Y is dense in
M. Indeed a submodule Y of MR is dense if and only if Y + V = M for
any open submodule V of MR .

1.3 PROPOSITION. If X is inessential in the linearly topologized
module MR, then the closure X of X in M is also inessential in M.

PROOF. It is well known that X is the intersection of all submod-
ules of M of the form X + V, as V runs through the family of all

open submodules of MR .

1.4 PROPOSITION. The t-radical of the linearly topologized module
MR coincides with the sum of all inessential submodules of MR .

PROOF. Obviously, implies that X is contained in

radt (MR )-
For the converse, let X E radt (MR ) and let V E be an open sub-

module of M with xR + V = M. If V is a proper submodule, then x f V,
hence we can take a submodule W of M which is maximal with respect
to containing V and not containing x. Then W is open (since it contains
V) and is maximal in M: indeed, if W’ &#x3E; W, then and so
W ’ &#x3E; xR + W~ xR + V = M. But x was chosen in radt ($0 and SO X E W,
a contradiction. Hence V is not proper.

Let us recall that a linearly topologized module is said to be topolog-
ically finitely generated (t.f.g. for short) if, for any open submodule V
of M, the factor module MlV is finitely generated [4].

1.5 PROPOSITION. The t-radical of a t.f.g. module is inessen-
tial.
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PROOF. If a module is t. f. g. , then each one of its proper open
submodules is contained in a maximal (open) submodule.

1.6. DEFINITION. Let RT be a right linearly topologized ring: then
radt (Rz ) is a closed two-sided ideal of RT, since it is the intersection of
the annihilators of all simple modules in Mod-R~. We shall use the spe-
cial notation to denote the t-radical of R,~, whereas J(R) will de-
note the usual Jacobson radical of R (i. e. the t-radical of R endowed
with the discrete topology). If Rz is an indiscrete ring, then 
= R.
We shall say that an element t of a right linearly topologized ring R,

is right t-invertible if the right ideal rR is dense in R-r. Note that every
invertible element is also t-invertible; if r is discrete, the two notions
coincide. On the other hand, the following conditions are equivalent:
1) Rz is indiscrete; 2) 0 is t-invertible; 3) every element of R is
t-invertible .

The following property of the t-radical is well known in the discrete
case (e.g. [1, Theorem 15.3]).

1.7 PROPOSITION. If R-r is a right Linearly tapologized ring,
then

is right t-invertible} .

PROOF. If x 0 then there exists an open maximal right ideal
V of RT such that x ft V; thus we can find r E R and y E V with 1 = xr + y,
so that (1 - xr) R = yR  V. Hence 1- xr is not right t-invertible.

Conversely, let and let r E R. Assume that (1- xr) R is
not dense in RT; then there is an open maximal ideal V of Rz with
(1 - xr) R  V. But now xr E J(Rz ) and so xr E V; hence 1 = (1- xr) +
+ xr E V, a contradiction.

If a topological ring RT is both left and right linearly topologized, we
shall call it two-sided linearly topologized. In this case we can define
two t-radicals of we shall prove that these two radicals are in fact

equal (see Corollary 1.10).

1.8 LEMMA. Let Rz be a two-sided linearly topologized ring. Then
Rz has a local basis consisting of two-sided ideals.

PROOF. Let V be an open right ideal of R~ : then V contains
an open left ideal W. It is easy to see now that W c I = AnnR (R / V),
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and this is the largest two-sided ideal of R contained in V. Hence
I is open. 0

The next proposition characterizes the (right) t-radical of a two-sid-
ed linearly topologized ring.

1.9 PROPOSITION. Let R,~ be a two-sided linearly tapotogized ring; if
I is a two-sided ideal of R, we denote by R --~ R /I the canonical pro-
jection. Consider the right t-radical J(R-r) of R,. Then, for all x E R,
x E J(Rz ) if and only if 7r¡(x) E J(R /I), for all open two-sided ideals I
of R,.

PROOF. If X E J(Rz ) and I is an open two-sided ideal of R-r, then, for
every r E R, one has (1- xr) R + 1= R and so 7r¡(1- xr) R = R, where
R = R / I is the factor ring. Hence xr) is right invertible in R and
7r¡ (x) E J(R /~.

Conversely, let r I there exist r E R and open right ideal V of
Rz such that (1- xr) R + V # R. If I is an open two-sided ideal of R-r
with 1  V, it is ( 1- xr) R + V # R and therefore 7r¡(I- R, so
that 7r¡ (x) 0 J(R /~. 0

1.10 COROLLARY. If R, is a two-sided linearly topologized ring,
then the intersection of all open maximal right ideals of Rz coincides
with the intersection of all open left maximal ideals.

The characterization of the t-radical of a ring given in 1.7 enables us
to prove easily the result that follows [5]. Recall that a right linearly
compact ring is a right linearly topologized ring Rz such that, for any
downward directed family (1~ )~ E ~ of closed ideals of RT, the canonical
morphism of R into the inverse limit in Mod-R lim is surjective.
If RT is linearly compact, then every continuous epimorphic image of RT
is complete.

1.11 THEOREM. If Rz is a right linearly compact ring, then

J(R-r) = J(R).

PROOF. It is sufficient to prove that c J(R). If r E R is right t-
invertible, then xR is dense in R. But the morphism into xR
is continuous and so xR is complete (in the relative topology), hence
closed. Thus any right t-invertible element of R is right invertible and
we are done. 0
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We conclude the section with some technical results. The first one is
the generalization of Nakayama’s lemma (or, better, Azumaya’s
lemma).
We shall fix a right linearly topologized ring R-r.

1.12 PROPOSITION. Let MR be a linearly topologized module over
R-r. Set J = J(R~ ). If M is t.f.g. and MJ = M, then M = 0.

PROOF. First, let M be discrete, hence finitely generated. Choose a
minimal set F = f xl , ...,~} of generators of MR . Since M = MJ, we
have

with ri e J (i = 1, ..., n). But now the right ideal (1- rn ) R is dense and
AnnR (xn ) is open in R-r, so that AnnR (xn ) + (1 + rn ) R = R . Therefore
we can write for some and 
Hence

contradicting to the minimality of F.
Finally, let M be an arbitrary t. f. g. module. If V is an open submod-

ule of MR and we put M = M / V, we have MJ = (MJ + ~ / V = M and so
M = 0 and so M = 0.

1.13 LEMMA. Let M, N E LT-RT and lett: M ~ N be ac continuous
mor~phism. Let X and Y be submodules of MR .

(ii) If X and Y are inessential in M, then X + Y ~iness M~

(iv) If X is inessential in M, then f (X) N.

(vi) If the module M x N is endowed with the product topology,
then radt (M x N) = radt (M) x radt (N).

PROOF. (i) and (ii) are obvious.

(iii) If V is an open submodule of M, it follows from X + V = M
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(iv) Assume first that f is surj ective and that V is an open sub-
module of N with f (X ) + V = N; then, as it is easy to see, X + f "~ (V) =
= M, so that f -1 (V) = M and V = f(M) = N. For the general case, we can
factorize f through the image and apply (ii)..

(v) Follows from (iv) and Proposition 1.4.

(vi) The inclusion radt (M x N) g radt (M) x radt (N) follows from
(v). The reverse one also follows from (v), since the canonical embed-
ding M - M x N and N- M x N yield radt (M) g radt (M x N) and
radt(N) C radt(M X N).

2. Projective covers

In all this section R-r will denote a fixed right linearly topologized
ring. We shall denote by 13:’ , the filter of open right ideals of RT and
put

with the discrete topology; 1’R is a generator of the category
Mod-R~.

2.1 DEFINITION. Let M E Mod-R~ be a discrete module; a topologi-
cal module P E LT-R, is called M-projective if, for any epimorphism
f: M-~ N with N E Mod-R, and any continuous morphism g: P- N,
there exists a continuous morphism h: P -") M such that gh = f.
We shall say that P E LT-R, is r-projective if it is M-projective for

all M E Mod-R,. It is clear that the completion of a r-projective module
is also r-projective.

2.2 PROPOSITION. Let P E LT-R,. Then if and only
if it is for every set X.

If P is t.f.g., then P is r-projective if and only if it is 
for every I E ~.

PROOF. Lemma 4.7 of [4] (which is a generalization of Proposition
16.12 of [1]) asserts that the class of all modules M E Mod-R~ such that P
is M-proj ective, is closed under epimorphic images and, when P is
t. f. g. , also under direct sums.

2.3 DEFINITION. Let M E cover of M is a pair
(P, p), where P E LT-R, is ar-proj ective module and p: P - M is a con-
tinuous epimorphism, with inessential kernel.
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It is not possible, in general, to prove the uniqueness (up to topolog-
ical isomorphisms) of T-projective covers; in fact, any dense submodule
of a T-projective cover, with the restriction morphism, is also a r-pro-
jective cover. Nevertheless, under certain additional hypotheses,
uniqueness holds. An example is given by the following.

2.4 PROPOSITION. Let M E Mod-R, and let (P, p) and (Q, q) ber-pro-
jective covers of M. If P is discrete, then also Q is discrete and there
exists an such that pf = q.

PROOF. Since Q is r-projective, there exists a continuous mor-
phism f : Q- P with p= q; then ker f is an open submodule of Q. If
ker f ~ 0, there is an open submodule V of Q properly contained in ker f;
moreover Q / ker f = P is r-projective and so there exists a morphism

such that 7rg is the identity on Q / ker f
(7r: Q /V- Q /ker f is the canonical projection). If we put 
with X &#x3E; V, we have

Therefore X + ker f = Q and, from ker f  ker q and

V ~ ker f, it follows that X = Q, a contradiction. Hence kerf = 0 and Q
is discrete. It is now trivial to verify that P = Imf + ker p, so that
Im f = P.

The following two results are technical, but useful in the rest of the
section.

2.5 LEMMA. If M E Mod-R, is finitely generated and (P, p) is a ~-
projective cover of M, then PR has a finitely generated dense submod-
ule. In particular PR is topologically finitely generated.

PROOF. The claim follows easily from the fact that ker p is inessen-
tial in P and from Remark 1.2(d).

2.6 LEMMA. Let (P, p) and covers of M, N E
E Mod-R~ respectively. Then (P x Q, (p, q)) is a r-projective cover of
M O N.

PROOF. This is an immediate corollary of the facts that P x Q is r-
projective and that (p, q) is surjective and of Lemma 1.13.

Let us recall that a module G E LT-R, is called a r-generator if, for
every non zero morphism f: M -~ N in Mod-R~, there exists a continuous
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morphism g: G- M such that fg =1= 0 [4, 2.4(iv)]. We can define analo-
gously the notion of a family of r-generators: a family (GÀ)À A of mod-
. ules in LT-R-r is called a family of r-generators if, for every non zero
morphism f: M-N in Mod-Rz, there exist A and a morphism
g: G~ - M with fg 0 0.

2. 7 LEMMA. Let a family of modules in LT-R~. The foL-
lowing conditions are equivalent:

(a) (GA)II eA is a family of r-generators;
(b) G = IT GÀ (with the product topology) is a r-generator;

Jl E A

(c) for every open proper right ideals V and I of RT with I  V,
there and a morphism g: GA --+ R II such that

Img  V/I.

PROOF. (a) =&#x3E; (b) is obvious, recalling that the projections 1t"À:
G - GÀ are continuous.

(b) ~ (a) Let f: M- N be a non zero morphism in Mod-R,~ and let
g: G - M be such For every A E A the inj ection iA: GÀ -") G is
continuous and H = E Im i,~ is dense in G. Then it must be f(giÀ) =1= 0
for some A AEA

(a) ~ (c) is obvious.

(c) =&#x3E; (a) If f: M - N is a non zero morphism in and x E M
is such that 0, put I = AnnR (x) and consider the injective mor-
phism j: R/V- M defined by j(1 + 1) = x. If ker fj = VII, it is and
so there exist A E ~i and a morphism g: GÀ -") R /I such that Im g 0 V /I;
now f ( jg) ~ 0.

2.8 LEMMA. Assume that 8 is a system of representatives of
all simple modules in Mod-R-r and that, for E ®, (P4, pv) is a ’t’-

projective cover of Then 8 is a family of r-generators.

PROOF. If I and V are open right ideals of RT with I ~ V =1= R, there
is an open maximal ideal W of Rz such that V ~ W. If now j: S,~ - R /W
is an isomorphism, then the epimorphism P,~ -~ R / W can be lifted
to a morphism g: PJ-")R/I. Obviously, 

2.9 THEOREM. Let Rz be a right linearly topologized ring. The fol-
lowing conditions are equivalent:

(a) every finitely generated module in Mod-R-r has a r-projective
cover;

(b) every simple module in Mod-R-r has a r-projective cover.
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PROOF. Assume (b) and let M E Mod-R~ be finitely generated.
Then, by Proposition 1.5, = radt (M) is inessential and M =
= M/rad (M) is finitely generated. By Lemma 2.8 there are a finite num-
ber of T-projective covers of simple modules P1, ..., Pn and a continuous
epimorphism

Now f(radt (P)) % radt (M) (1.13(iv)) and so f induces an epimorphism
f P / radt (P) - M / radt (1V~; but

and Pi / radt (Pi ) is simple. Hence M / radt (M) is semisimple and finitely
generated, so, by Lemma 2.6, it has a r-projective cover (Q, q). If we
lift to a morphism q’ : Q- M, then it is clear that
(Q, q’) is a r-projective cover of M.

2.10 DEFINITION. A right linearly topologized ring RT is called t-

semiperfect if it satisfies the conditions of Theorem 2.9; it will be called
d-semiperfect if it is t-semiperfect and, moreover, the r-projective cov-
ers of finitely generated modules in Mod-Rz are discrete (the proof of
2.9 shows that it is sufficient to verify that the r-projective covers of all
simple modules in Mod-Rz are discrete).

Observe that a ring endowed with the discrete topology is d-

semiperfect if and only if it is semiperfect in the usual sense: we shall
use the word semiperfect without prefixes only with this meaning.
More than this is true: namely a discrete ring is t-semiperfect if and on-
ly if it is semiperfect, as we shall see in the next theorem.

2.11 THEOREM. A discrete t-semiperfect ring is d-semiperfect.

PROOF. Let Rd be a discrete t-semiperfect ring: then R/J(R) is

semisimple, say

as is shown in the proof of Theorem 2.9. But then a d-projective cover
of R is the product
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where Pi is a d-projective cover of Si . But it is obvious that R is a d-pro-
jective cover of itself and so P = R is discrete by 2.4, yielding that the
d-projective covers of simple modules are all discrete.

We want now to study the behaviour of a t-semiperfect ring under
weakening the topology and under factoring modulo two-sided ide-
als.

2.12 PROPOSITION. Let Rz be a t-semiperfect ring be a right
linear topology. on R, coarser that ~. Then RQ is t-semiperfect.

PROOF. Let be finitely generated and let (P, ~) be
a r-projective cover of M (it exists because, by hypothesis,

Mod-R-r). Consider on P the topology having as a local basis
the kernels of all continuous morphisms P- N, as N runs through
Mod-Ro and let L be the kernel of this topology. It is clear that the fac-
tor module PQ = P/L, with the quotient topology, is in LT-R(j and,
since Lker p, p induces a continuous epimorphism po : Po - M. It is
immediate to verify that (P7, p7) is a a-projective cover of M.

2.13 REMARK. Let R-r be a d-semiperfect ring and let o be a right
linear topology on R coarser than r. Under this assumptions, RQ is not
necessarily d-semiperfect, as the following example shows.

EXAMPLE. Let J~ be the ring of p-adic integers, for a prime p.
Then Jp is local, hence semiperfect. is the p-adic topology on Jp , it is
clear that a projective cover of is still Jp but endowed with the
p-adic topology, so that (Jp , a) is not d-semiperfect, by 2.4.

2.14 THEOREM. Let RT be a right linearly topologized ring and I be
a two-sided ideal of R~. Denote by R-r/ I the factor ring endowed with the
quotient topology r/I. If RT is t-semiperfect (resp. d-semiperfect) then

t-semiperfect (resp. d-semiperfect).

PROOF. Let M be a discrete finitely generated module over 
we can regard M as a discrete finitely generated module over R, and so
we can take a r-projective cover (P, p) of M.

Consider now the module P = P / PI endowed with the quotient
topology (of course it will be discrete if P is). Since obviously ker p-
PI, p induces a continuous epimorphism of R /I-modules, with
inessential kernel, from P onto M and it is easy to see that P is 
projective object in 
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We shall now give an example of a d-semiperfect ring which
is not semiperfect.

2.15 PROPOSITION. Let RT be the product of the fields with p ele-
ments, as p varies in the set of all primes, with the product topology of
the discrete topologies. Then RT is d-semiperfect but not semiper-
fect.

PROOF. R is not semiperfect because J(R) = 0 and R is not

artinian.
Denote by P the set of all primes and by Fp the field with p ele-

ments. The simple modules in are, up to isomorphisms, those of
the form

for q E P: indeed, if S E Mod-RT is simple, there is a finite subset 0 of P
such that

and so S is a simple module over so that it is isomorphic, under

an R-linear morphism, to Fq, for some q E P.
It is also obvious that SR is r-projective, since we can check this on

finitely generated modules only.

3. D-semiperfect rings.

All ring topologies considered in this section will be right linear and
Hausdorff.
We shall use the notations of [4]: in particular, if M and N are linear-

ly topologized modules over the topological ring RT and A is a ring that
acts on M on the left by continuous morphisms, ChomR (M, N) will de-
note the right A-module of all continuous morphisms from M into N,
endowed with the topology of uniform convergence. In particular
ChomR (M, M) is a right linearly topologized ring. We refer the reader
to [4] for the definition of a r-progenerator, recalling that 7-progenera-
tors play the same role in the theory of equivalences between cate-
gories of discrete modules over topological rings as progenerators in
classical Morita equivalence. We say that two right linearly topologized
rings RT and A~ are simitar if the categories Mod-RT and Mod-A(1 are
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equivalent. The main theorem in [4] establishes then that there exists a
T-progenerator PR such that the functor ChomR (P, - ) is an equivalence
between those two categories; moreover ACT = P) canoni-
cally. 

’

3.1 LEMMA. Let RT be a right linearly tapoLogized ring, PR ar-pro-
generator, ACT = P). The following conditions are equiva-
lent :

(c) Im f is inessential in P.

PROOF. (c) ~ ( b) is clear, since every r-progenerator is t.f.g.

(a) =&#x3E; (b) The open right ideals of ACT are all those of the form
3(V) = f f E ChomR (P, P) I Im f  V), as V runs through the open sub-
modules of PR . Now, if f E it is f E ~(V), for all open maximal
submodules V of PR . In particular f E radt (PR ).

(c) ~ (a) If f 0 J(A,,), then f 0 ~(V), for some open maximal sub-
module V of PR . Therefore and so Im f + V = P. Hence

Im f is not inessential in PR .

In particular, if we put P = P / radt (P) with the quotient topology,
we obtain a ring morphism A - ChomR (P, P), with kernel J(A~ ). We
shall denote by ~: A / J(ACT ) - ChomR (P, P) the induced morphism.

’ 

3.2 PROPOSITION. Let PR be a r-progenerator over the right linearly
topologized ring Rz and set ACT = ChomR (P, P). Then the induced mor-
phism ~: A / J(ACT ) - ChomR (P, P) is continuous with dense image.

PROOF. The ring morphism ~: is injective
by 3.1. A right open ideal of ChomR (P, P) contains an ideal which has
the form ~(V/ radt (P)), where V is an open submodule of PR containing
radt (P). Then and ~ is continuous.
We come now to the density: let g: P - P be a continuous morphism

and let V, as before, be an open submodule of PR containing radt (P).
Consider the canonical projections a: P -~ P and p: P -~ P/V. Since PR
is quasi-projective, there exists a continuous endomorphisms f: P-~ P



279

making commutative the following diagram:

and I

3.3 REMARK. Under the same hypotheses as in 3.2, let us assume
that there is a bijective correspondence between the open submodules
V of PR containing radt (PR ) and the open right ideals of A, containing
J(Aa) in the sense that i§(%J contains J(Aa) if and only if V contains
radt (PR ). Then the morphism ~ is a topological embedding, because, as
one can easily verify, we have

3.4. Let R-r be a (right) d-semiperfect ring. We shall associate to RT
another ring, called the basic ring which is analogous to the usual
basic ring of the theory of semiperfect rings.
We shall obtain this ring by using a particular r-progenerator,

which we shall call the canonical r-progenerator. In particular the ba-
sic ring will be similar to the ring RT (in the sense of [4]) and will be
d-semiperfect.

We need some preliminary lemmas.

3.5 LEMMA. Let Rz be a right linearly topologized ring and let P
and M be objects of LT-R,. Put ChomR (P, M)}.
The following conditions are equivalent:

(a) zp (M) is dense in M;
(b) for any proper open submodule W of MR, there exists a con-

tinuous mor~phism f: P ~ M such that Im f 1W.

PROOF. (a) =&#x3E; (b) Let X E MBW; by the density of Ep (M) in M, it
follows that (x + W) m zp (M) ~ ~ and so there exist f l , ... , fn E
E ChomR (P, M) and yl , ... , yn E P such that

In particular W for at least one i.
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(b) =&#x3E; (a) The closure of Ep (M) in M is the intersection of all open
submodules of MR containing Condition (b) just says that no
proper open submodule of M has this property.

is a right linearly topologized ring and M is a topological right
module over R,, then we denote by t~ (M) the submodule of MR

This is the usual pretorsion radical associated to the topology r.

3.6 LEMMA. Let (MÀ)À eA be a family of discrete right modules over
the right linearly topologized ring Rz and let

with the product topology. For each open submodule V of M, t, (V) is
dense in V.

PROOF. If F is a subset of ~1 and x E M, we denote by XF the ele-
ment of M such that

where 7rÀ: is the projection.
A local basis of M is given by the submodules of the form

as F runs through the finite subsets of A; equivalently, it is

If V is an open submodule then V ~ for some finite subset F
of A. Now, if F C G C A, it is x G E in(5j % v and So X _ x G = E V, for
all x E V. If G is in turn finite, the element has only a finite num-
ber of non zero components and so E t, (V).

Let us denote by the directed set of all finite subsets of A con-
taining F: it is obvious that, for all x E V, we have

For the rest of the section, R~ will denote a d-semiperfect right
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linearly topologized ring, (54 )4 ~ e will be a system of representatives
of all non isomorphic simple modules in Mod-RT and, for each 6 E 8,
(P.~ , ~,~ ) will be a r-projective cover of 54 (obviously P,, is discrete).

3.7 THEOREM. The module, , endowed with the product

topology of the discrete topologies, is a r-progenerator.

PROOF. We shall keep the notations introduced in the proof of
3.6.

(1) IIR is t.f.g. since every P4 is finitely generated (2.5).

(2) IIR is a 7:-generators by 2.7 and 2.8.

(3) We now prove that IIR is r-projective. Let g: M -") N be an epi-
morphism in Mod-R~ and f: 1T- M be a continuous morphism. Then
there exists a finite subset F of 8 such that c ker f: in particular

= 0, for all X E II. Moreover f induces a morphism f: PF =

Now PF is r-projective and so there is h: Pym - M with gh = f. If, for
Y) E F, j,: P,~ -~ PF is the inclusion and we identify PF with a submodule
of IIR in the obvious way, we can define by

Hence, if it is

and it is clear that h’ is continuous.

(4) We want now to prove that IIR is (topologically) quasi-projec-
tive. Let V D V2(F) be an open submodule of IIR (with F c e finite) and
assume we are given a continuous morphism f: 1T- 1T/V. The projection
x: 1I- 1I/V induces

and so, by (3), there exists such that f = 7th.
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Define h6: 1T- P4 in the following way:

where 7r,9: is the canonical projection.
It can be easily verified that h = (h~ ),~ E e is a continuous endomor-

phism of IIR and that xh = f.
(5) IIR is a selfgenerator. In fact, let W ~ V be open submodules of

IIR, with W ~ V. If X E VBW, put V’ = W + xR. Then V’ / W is finitely
generated and so there exists a maximal submodule Z of V’ containing
W. Assume that V’ /Z = S,9; since is dense in V’ by 3.6, we have

and

Consider X = tz (V’ ) but endowed with the discrete topology: then
X E Mod-RT and there is a morphism f: P,~ -") X such that

Imf1: so that Imf1:Z and therefore regarding
now X as a submodule of IIR . The composition h of the morphisms

is clearly continuous and Im h = imf 4- W .
Lemma 3.5 now gives us that ..En (V) is dense in V. m

3.8 DEFINITION. The module IIR defined in Theorem 3.7 is called
the canonical r-progenerator of R~. The ring Ba = ChomR (II, II) is called
the basic ring of R~.

It must be noted that, since II is complete, the basic ring Ba is also
complete.

The property of being d-semiperfect is invariant under similarity of
linearly topologized rings [4]; an invariant of the class of similarity is
the basic ring.

3.9 THEOREM. Let RT and Ac¡ be right linearly topologized rings.
(a) If Rz and Ac¡ are similar and RT is d-semiperfect, then AQ is d-

semiperfect and both rings have topologically isomorphic basic rings.
(b) If Rz and Ac¡ are d-semiperfect with topologically isomorphic

basic rings, then they are similar.
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PROOF. (a) Let TR E LT-Rz be a r-progenerator with

a generic finitely generated module in Mod-A, is then one of the form
N = ChomR (T, M), where M is a finitely generated module in Mod-R ;
if now (Q, q) is a r-projective cover of M, with Q discrete, consider the
pair (Q * = ChomR (T, Q), q * = ChomR (T, q)). It is clear that

Q * E Mod-A, is a-projective and that q * is surjective. Moreover

Any submodule of Q * has the X } , where X
is a submodule of QR . Assume now that s(X) + kerq* = Q*. If X E Q,
there exist fi E ChomR (T, Q) and yi E T (i = l, ..., n) with

By hypothesis there are gi E E ker q * such that fi = gi + hi, for
i =1, ... , n. Hence

and thus X + ker q = Q, whence X = Q and 3(Z) = Q~.
It is now obvious that the canonical r-progenerator and the canoni-

cal a-progenerator correspond to each other: if IIR is the former, the lat-
ter is just

and that is topologically isomorphic to Chomk (1T,m.
Part (b) is now clear since, by 3.7, a d-semiperfect ring is similar to

its basic ring.

A d-semiperfect ring will be called basic if it is (topologically iso-
morphic to) the basic ring of a d-semiperfect ring.

3.10 COROLLARY. Let Ba e a d-semiperfect ring and let ~B be its
canonical B-progenerator. Then BB is basic if and only if BB = EB as

topological right B-modules.

PROOF. Assume that Ba is the basic ring of Rz and IIR is the canoni-
cal r-progenerator. Then, as in the proof of 3.9, it is ~ = ChomR (II, 
= Bp.
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Conversely, if then the basic ring of Bp is 
= B~ , n

We want to see now when the basic ring of a d-semiperfect ring is
discrete: in this case it is obvious that the basic ring will be semiper-
fect. These rings can then be easily characterized by using the theory
developed so far.

3.11 THEOREM. Let RT be a right linearly topologized d-semiperfect
ring. The following conditions are equivaclent:

(a) the basic ring of RT is discrete;
(b) Rz is similar to a discrete ring, i. e. Mod-R,~ is equivalent to

Mod-A, where A is a discrete ring;
(c) there is in Mod-R-r only a finite number of non isomorphic

simple modules.

If these conditions are satisfied, then the basic ring of RT is

semiperfect.

PROOF. (a)=&#x3E;(b) is obvious by Theorem 2.7.

(b) ~ (c) A is semiperfect, so that in Mod-A and hence also in
Mod-R-r there is only a finite number of nonisomorphic simple mod-
ules.

(c)=&#x3E;(a) If (c) holds, then the canonical r-progenerator is dis-
crete.

We shall now see that the canonical r-progenerator of the d-

semiperfect ring R,~ satisfies the hypothesis of 3.3. We shall denote by
(S,~ ),~ E 8 a system of representative of all non isomorphic simple modules
in Mod-R-r and by (P8,P8) a (discrete) r-projective cover of S8, for
V E Q.

3.12 LEMMA. If . is the canonical r-progenerator of R’n
then

PROOF. Set . . It is clear that

If we put Xg = = we have to prove that given an
open maximal submodule V of II, then V contains X. Let F be a finite
subset of 8 such that passing to the quotients modulo 
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yields an isomorphism

and V/%XF) corresponds to a maximal submodule
by 1.13,

and so

whence

3.13 LEMMA. Let IIR be the canonical r-progenerator of RT and let
B,~ = ChomR (II, II) be the basic ring. If V is an open submodule of IIR
such that ~(V) ~ J(Ba ), then V D radt (IIR ).

PROOF. Assume that V does not contain radt (IIR ) and that F is a fi-
nite subset of e such that --w(F) C V. Then V ~_’’C~(F) + radt (II) and, fac-
toring modulo --w(F) we obtain a submodule V of

which does not contain radt (P). Since (P~ )4 ~ 8 is a family of r-generators
(2.8), there exist a suitable 9 E 0 and a morphism f: P4 - P such that
Im f  radt (P) but Im f 1: V n radt (P). If we now consider the projec-
tion7c,,: II - P4 and the embedding jF: P - II, we get a continuous mor-
phism g = jF with and so that

g E J(Bp ) but g ft 

3.14 THEOREM. Let Bf3 be a right linearly topologized basic d-
semiperfect ring. Then Ba/J(Ba ), with the quotient topology, is topolog-
ically isomorphic to a product of division rings (each one endowed, of
course, with the discrete topology).

PROOF. By 3.2, 3.3 and 3.13 we have that is topologically
embedded as a dense subring in ChomR (E, E), where EB is the canonical
¡9-progenerator It now follows from 3.12 that

is complete, being (with obvious meaning of
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the symbols). Hence

is topologically isomorphic to a product of division rings.

4. Linearly compact rings.

4.1. In this section we shall prove the following result: Every lin-
early compact ring is t-semiperfect and some of its consequences.

This should not be a surprising result, at least if one recalls that ev-
ery linearly compact discrete ring is semiperfect. Moreover, every lin-
early compact ring admits a duality theory, which generalizes Morita
duality (see [2] and [3]). We will use, in this particular case, the duality
defined by Menini and Orsatti in [7]. In what follows we denote by RT a
fixed right linearly compact ring.

4.2. It is well known that the category Mod-R-r has injective hulls:
indeed, if M E Mod-Rz, its injective hull is

where E(M) is the injective hull of M as an abstract R-module.
If, as usual, (S,~ )~ E e is a system to representative of the simple mod-

ules in Mod-Rz then
I I

is the minimal injective cogenerator of Mod-RT.
Set C = End (WR ) and endow it with the (left linear) W topology y,

with a local basis consisting of the annihilators in C of the finite subsets
of W; CY is called the cobasic ring of R-r [3, Section 7].

4.3 LEMMA. The canonical ring 7norphis7n R - End (cW) is an iso-
morphism, r is finer than the W-topology on R and cW is an injective
cogenerator, with essential socle, of Cy-Mod.

PROOF. See [3, Corollary 2.12].

4.4 REMARK. It is not difficult to show that the W-topology on R is
equivalent to T, in the sense that the two topologies have the same
closed right ideals (see [3, 1.5 and 1.6]).
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4.5. Consider the category M(WR) consisting of all modules in

LT-RT which are topologically isomorphic to a submodule of a product
WR of copies of the discrete module WR. An equivalent characterization
is the following: a module M E L T -R-r belongs to if and only if the
topology on M coincides with the weak topology of a family of continu-
ous morphisms MR - WR.

Consider now the analogous category the left C-module

ChomR (M, W) with the topology of pointwise convergence, belongs to
moreover, if f: M - N is a morphism in the transposed

morphism

is a morphism in 
Thus, making analogous definitions on the category we have

a pair of functors

If M e1B(WR), then we can consider the evaluation morphism
M - ÐIÐ2(M) defined = x, where for X E M and

~ E ChomR (M, W); of course, we can do similarly for N E 
This is a particular case of a setting investigated by Menini and Or-

satti. From their Theorem 5.3 in [7] we get the following

4.6 THEOREM. Let Rz be a right linearly compact ring, WR be the
minimal injective cogenerator of Mod-Rz and C r = End (WR ) be the
cobasic ring of Rz. Then the pair of functors

is a duality. For M E and N E the evaluation morphisms
and are topological isomor-

phisms.

We have also an important property of the modules WR and cW,
which is stated in Lemma 6.4 of [7], descending from the fact that they
are cogenerators of Mod-R,~ and Cy-Mod respectively.

4.7 PROPOSITION. If the discrete module KR is a cogenerator of
Mod-R-r then, for any M E LT-R-r and x E M, x 0 0, there exists a contin-
uous mor~phism ~: MR ~ KR such that ~(x) ~ 0.
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4.8. Let S E Mod-Rz be a simple module. Then T = D2 (S) is a simple
C-module in C.-Mod, by Proposition 4.7; by applying Lemma 4.3, we
get that its injective hull E = Er (T) is a direct summand of cW and
there exists an idempotent e E R = End (CW) such that E = We. Set
P = eR with the relative topology of r and pw = D2 (E) = Home (E, W):
then P and pw are isomorphic as abstract modules and pw has a topol-
ogy coarser than and equivalent to the topology of P (see Remark 4.4),
so that Pw and P have the same closed submodules. From the inclusion

T- E, we get a continuous morphism p: P’l’- S which is non-zero,
hence surjective.

4.9 PROPOSITION. (P,p) is a r-projective cover of S.

PROOF. First, p is continuous, since it is continuous as a morphism
pw -") S. Then it is almost obvious that PR is r-projective, as every mor-
phism of R into any M E Mod-RT is continuous with respect to r.
We have to prove that ker p is inessential. So, let V be a closed sub-

module of P such that V + kerp = P and assume, by contradiction, that
V~P.

By 4.7, V is closed also in pw e 1B(WR ); then, by giving P’IV the
quotient topology, there exists a non-zero continuous morphism of

W . Composing this to the canonical projection yields a non-
zero continuous morphism PR -~ WR which is zero on V. Now we recall
that pw = D1 (E) and that WE is a topological isomorphism (Theorem
4.6), so that any continuous morphism PH -") WR has the form (x) WE =
= x, for some x E E.

Consider V 1= ~ x E Elx(V) = 0 } : this is a non-zero submodule of cE
and so it contains some non-zero element t E T, which is the (essential)
socle of E; denote by i: T- E the inclusion.

Now, for any ~ E pw = Chomc (E, W) there are a E V and p E ker p
Thus

since (t) a = t(«) = 0, as t E V 1, and (t) (3 = 0 as (t) (3 = (t) i(3 and

This is a contradiction, because it implies that t = 0. Hence
V = P..

4.10 THEOREM. Every Linearly compact ring is t-semiperfect.

PROOF. Apply Proposition 4.9 and Theorem 2.9.
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The discussion above has another consequence; we want to state
it, for convenience, as a separate result.

4.11 PROPOSITION. With the notations as in 4.2 and 4.8, let
S E Mod-Rz be a sample modules. Then there exists a,7-projective cover of
SR of the form eR, where e is an idempotent of R such that We, as left
C-module, is the injective hull of D2 (S) E Cy-Mod.

4.12. The last part of this section is dedicated to the study of d-
semiperfect linearly compact rings. Before starting, we need a result
due to Warner [8]: if Rz is a right linearly compact ring, then, among
the linearly compact topologies equivalent to r (see Remark 4.4), there
is a finest one, which we denote by ~*; ~* is a linearly compact ring
topology.

If WR is, as usual, the minimal injective cogenerator of Mod-RT and
C y = End (CW) is the cobasic ring, then a local basis for,7* consists of the
annihilators of the linearly compact submodules of the discrete module
cW [6, Theorem 1.6].

4.13 THEOREM. a d-semiperfect linearly compact ring, then
r = r*.

PROOF. If S is a simple module in Rr then it has, up to isomor-
phisms, a unique z-projective cover of the form eR, for some idempo-
tent e E R (see Proposition 2.4 and Proposition 4.11); the relative topol-
ogy 7 on this eR is discrete by hypothesis.

Consider a linearly compact submodule X of cW (the notations are
as in 4.12).

Then X has finitely generated and essential socle, say

where the Ti are simple submodules of cW. Thus

is a direct summand of cW and so there exist idempotents el , ..., en E R
with

like in 4.11, eiR is a T-projective cover of W) and so it is dis-



290

crete. Now

is open in RT. Thus r* 3 T and we are done. 0

4.14 REMARK. The condition z = ~* in the previous theorem is not
sufficient for the d-semiperfectness of R ~. In fact, consider a commuta-
tive local ring A which admits a linearly compact topology ~, but is not
linearly compact in the discrete topology d. We can assume that
o = o*.

Then ACT is the a-projective cover of the unique simple module and it
is not discrete.
A ring as above can be constructed as follows (the example is due to

A. Orsatti): let F be a field and consider the product vector F-space
M = F X where X is an infinite set. Set A = F M, where the addition
is defined component-wise and the product is y) = x~3 + ya).
Then A is a commutative local ring and M = 0 O M is the maximal ideal
of A; it is not linearly compact in the discrete topology, since its socle is
not finitely generated, but the topology having as a local basis the sub-
modules of M which are open in the product topology of the discrete
topology on F is obviously linearly compact.
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