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On Oscillation, Continuation, and Asymptotic
Expansions of Solutions of Linear

Differential Equations.

STEVEN B. BANK (*)

1. Introduction.

There is a classical result due mainly to E. Hille (see [13; p. 345] or
[22; p. 282]) which states that for any second-order linear differential
equation

where P(z) and Q(z) are polynomials, there exist finitely many rays,
arg z = p,, for j = 1, ..., m, (which can be explicitely calculated from the
equation), with the property that for any E &#x3E; 0, all but finitely many ze-
ros of any solution f # 0 must lie in the union of the sectors I arg z -
- 1Jj  E for j = 1, ... , m.

In [1], [6], and [7], an investigation was carried out to determine the
corresponding situation for higher-order equations,

It was first shown in [6] that when the coefficients Rj (z) are polynomi-
als, the situation for n &#x3E; 2 can be far different than that for n = 2, since
equations of order n &#x3E; 2 can have the following property (which we call
the global oscillation property): For any ray, arg z = 1J, and any E &#x3E; 0,
there is a solution f ~ 0 having infinitely many zeros in the sector,

The examples having the global oscillation property
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which were constructed in [6], are,

In [7], a rather complete answer was given to the question of deter-
mining the situation concerning the possible location of the zeros of so-
lutions of (1.2) when n &#x3E; 2 and the are any rational functions, by
proving the following result [7; Theorem 1]:

THEOREM 1. Given the equation (1.2), where n &#x3E; 1 and

Ro (z), - Rn- 1 (z) are any rational functions. Then, one of the following
holds:

(A) For any 0 in (-~, 7r) and any s &#x3E; 0, there exist positive con-
stants 6 and K, with a  min {e, 0 + ~, ~r - 0) , and a solution f 0 0 of (1.2)
such that f is analytic and has infinitely many zeros zi , z2 , ..., with
lim )zm) = +00, on the region defined by I Arg z - 6  d and z &#x3E; K.
m - oo

(B) There exist a positive integer A and real numbers o1, ... , ax ly-
ing in (-x, x] such that for any E &#x3E; 0 and any solution f ~ 0 of (1.2)
which is meromorphic on the plane, all but finitely many zeros of f lie in
the union for k = 1, ... , ~, of the sectors. arg z -  e.

It was also shown in [7] that there is an effective method for decid-
ing which property (A) or (B) in Theorem 1 holds for a given equation
(1.2), and in the case where Property (B) holds, our methods produced
the set {~1, ..., a,}. (These results from [7] are stated in § § 4, 6 below for
the reader’s convenience.) However (see § 11), it is not difficult to con-
struct examples where the set {~1, ..., produced by our method in [7]
contains extraneous elements in the sense that in some E-sector,

 e. no solution f # 0 of (1.2) has infinitely many zeros. One
of the main results of the present paper (Theorem B in § 7), sets forth a
simple method for deciding which (if any) of the numbers ~~ are extra-
neous in the above sense.

In order to explain the method in Theorem B, it is necessary to dis-
cuss how the set {o~l , ..., is produced. It was shown in [7] that for
any equation (1.2) whose coefficients Rj (z) are rational functions, there
exist functions WI, ..., Wn,M1, ...,Mn (which can all be explicitely cal-
culated from the equation) such that: (a) Each W~ (z) is either identical-
ly zero or is an analytic function which possesses an asymptotic expan-
sion as z -") 00 in the slit plane, in terms of decreasing powers of z; (b)
Each is a function of the form z "i (Log z)kj, for some complex num-
ber xj and some nonnegative integer (c) In sectorial regions S of the
plane, the equation possesses a fundamental set of solutions 11 , ..., i fn 9
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of the form,

where for each j, the function is analytic in S and satisfies
1 as in S. (In the present paper, the set of

functions,

will be called the asymptotic set for (1.2), and any corresponding funda-
mental set { fl , ..., fn} satisfying (1.4) will be called a basic ficnd,acmen-
tal set in S for (1.2). ) Roughly speaking, the rays arg z = ~~ in Part (B)
of Theorem 1 which are produced by the method in [7] consist mainly of
two types: (i) The boundary rays of the sectors S (where the represen-
tation (1.4) is valid), and (ii) all rays where the asymptotic behavior (as
z -~ ~ ) of some ratio of distinct elements in the asymptotic set changes
from « large » to « small » . Our result in Theorem B shows that all rays of
Type (ii) are non-extraneous, and only those rays of Type (i) which are
also of Type (ii) are non-extraneous. This is accomplished by first prov-
ing a «continuation» result (Theorem A in § 7) which produces from two
basic fundamental sets in adjoining sectors, a third basic fundamental
set in the union of the two sectors (including the dividing ray). The
proof makes extensive use of the Phragmen-Lindel6f principle.

Our final result (Theorem C in § 13) concerns the precise determina-
tion of the asymptotic behavior of the elements f in a basic fundamental
set. As mentioned earlier, the asymptotic expansions in the slit plane
of the functions Wj in (1.4) can be explicitely calculated by the methods
in [7]. The function appearing in the basic fundamental set (1.4)
obviously satisfies the linear differential equation in u obtained from
(1.2) by the change of dependent variable y = When this
latter equation is divided by exp fWj, we obtain a linear differential
equation in u whose coefficients all possess asymptotic expansions in
terms of decreasing powers of z, as z -") 00 in the slit plane. In Theorem
C, we show that one can choose the to have a generalized asymp-
totic expansion (in known sectors and to any number of terms desired)
in terms of asymptotically decreasing functions of the form 
which can all be calculated in advance from the original equation (1.2).
Thus, for these choices of the functions the asymptotic behavior
of the functions in the basic fundamental set (1.4), is known

precisely.
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Finally, the author would like to acknowledge valuable conver-
sations with his colleague, J. K. Langley.

2. Concepts from the Strodt theory [16].

(a) [16; § 94]: The neighborhood system F(a, b). Let
-n  a  b  n. For each nonnegative real-valued function g on (0, (b -
- a)/2), let V(g) be the union (over all 6 E (0, (b - a)/2)) of all sectors, a +
+ 8  Arg (z - h(a)  b - a, where h(e) = g(6) exp [i(a + b)/2]. The set of
all V(g) (for all choices of g) is denoted F(a, b), and is a filter base which
converges to 00. Each V(g) is a simply-connected region (see [16; § 93]),
and we require the following simple fact which is proved in [6; § 2]:

LEMMA 2.1. Let V be an element of F(a, b), and let e &#x3E; 0 be arbitr-

ary. Then there is a constant Ro (6) &#x3E; 0 such that V contains the set,
&#x26;2013 e, Izl 

(b) [16; § 13]. The relation of asymptotic equivalence. If f(z) is an
analytic function on some element of F(a, b), then f(z) is called
admissibte in F(a, b). If c is a complex number, then the statementf-") c
in F(a, b) means (as is customary) that for any c &#x3E; 0, there exists an ele-
ment V of F(a, b) such that f (z) - c  e for all z E V. The statement
f « 1 in F(a, b), means that in addition to f- 0, all the functions f f --~ 0
in F(a, b), where OJ denotes the 

k 
operator Oif =

= z (Log z) f ’ (z), and where 0), 6~ is the k-th iterate of
The statements f1 « f2 and fl "- f2 in F(a, b) mean respectively

fllf2 « 1 f2 . (As usual, z °‘ and Log z will denote the princi-
pal branches of these functions on |Arg z|  n. ) We will write f, - f2 to
mean fi - cf2 for some nonzero constant c. (We remark that this strong
relation of asymptotic equivalence is designed to ensure that if f « 1 in
F(a, b), then 1 in F(a, b) for all j &#x3E; 1. (See [16; § 28]). ) If f- 
in F(a, b), where c ~ 0 and d ~ 0, then the indicial function of f is the
function,

If g is any admissible function in F(a, b), we will denote by f g, a
primitive of g in an element of F(a, b). We will require the following
two results, (see [7; § 2]:

LEMMA 2.2. in F(a, b), where c # 0 and d &#x3E; 0. If

(ai , b~ is any subinterval of (a, b) on which IF( f, 4;)  0 (respectively,
IF( f, 4;) &#x3E; 0), then for all real a, exp j f « z" (respectively, exp j f » z")
in F(al , bl ).
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LEMMA 2.3. Let a = a + bi be a complex number. Then for any
~ &#x3E; 0, we have za-e« zet and in F( - ~, 7r) -

(c) [18; p. 244]. Logarithmic Fields. A function of the form cz",
for complex c ~ 0 and real a, is called a logarithmic monomial of rank ze-
ro. The set of all logarithmic monomials of rank zero will be denoted 00.
A logarithmic differential field of rank zero over F(a, b) is a set 1, of
functions, each defined and admissible in F(a, b), with the following
properties: (i) 1~ is a differential field (where, as usual, we identify two
elements of r if they agree on an element of F(a, b)); (ii) 1’ contains #o ;
(iii) for every element f in r except zero, there exists M in To such that
f- M over F(a, b). (The simplest example of such a field is the set of
rational combinations of the elements of ~o . ) Iff --- cz" over F(a, b), we
will denote a by If f = 0, we will set 

Now let be a polynomial in v of degree n &#x3E; 1

whose coefficients belong to a logarithmic differential field of rank zero
in F(ac, b). A logarithmic monomial M = cz" of rank zero is called a criti-
cal monomial of G if there exists an admissible function h - M in

F(a, b) for which G(z, h(z)) is not- G(z, M(z)) in F(ac, b). The multiplici-
ty of M is the smallest positive integer j such that M is not a critical
monomial of There is an algorithm (see [5; § 261) which

produces the sequence (counting multiplicity) of critical monomials of
G(z, v). (By [5; § 29], the sequence has n - d members, where d is the
smallest 1~ &#x3E; 0 for which fk ~ 0. ) The algorithm is based on a Newton
polygon method (e.g., [12; p.105]). (One simply finds the values of a
which have the following properties: When v = cz" is inserted into the
individual terms in G, at least two such terms have the same and
this value of ~o is at least as large as the other terms produce. The con-
stant c is then determined by requiring that the terms with the largest
~o cancel.) The crititical monomials of G give the first terms of the
asymptotic expansions of the roots of G. This is shown by the following
fact:

LEMMA 2.4. Let i be a polynomial in v of degree

n ;1, whose coefficients fo , ... , fn are elements of a logarithmic differ-
ential field of rank zero over F(a, b). Then

(a) There exists an extension logarithmic differential field of
rank zero over F(a, b), in which G(z, v) factors completely.

(b) If M is a simple critical monomial of G(z, v), then there exists a
unique admissible function h(z) in F(a, b) having the following two
properties: (i) h ~- M in F(a, b), and (ii) G(z, h(z)) » 0. In addition, the
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function h(z) belongs to a logarithmic differential field of rank zero over
F(a, b).

PROOF. Part (a) is proved in [18; Theorem II, p. 244]. Part (b) fol-
lows easily from [18; §§ 24, 26] and from Part (a).

When f0 # 0 in G(z, v), the polynomial G(z, v) possesses one or more
special critical monomials, M = cz ", called principal monomials
(see [16; § 67]) which arise as follows: When v = cz" is inserted into the
individual terms of G(z, v), the power ~o ( fo ) is at least as large as the ~o
produced by the other terms. The principal monomials are the critical
monomials which are of minimal rate of growth in 
(see [16; § 67]). We will require the following facts which are proved in
[5; §§ 3, 31(c)]:

LEMMA 2.5. Let M be a simple critical monomial of a polynomial
G(z, v) whose coefficients belong to a logarithmic differential field of
rank zero over F(a, b), and assume G(z, M(z)) 0 0. Let G1 (z, w) =
= G(z, M(z) + w). Then G1 (z, w) possesses a unique principal monomial
Ml. In addition, M1 is simple, and M1 « M in F(- 7r, ;r).

3. Preliminaries.

Given an equation (1.2) where the are functions which belong
to a logarithmic differential field of rank zero over F(a, b), we first
rewrite the equation in terms of the operator 0 which is defined by 0w =
= zw’. (It is easy to prove by induction that for each m = 1, 2, ...,

where 0i is the j-th iterate of the operator 0, and where the are inte-

gers with bmm = 1. In fact, as polynomials in x,

When written in terms of 6, let (1.2) have the form

(Of course, the belong to the same field as the By dividing
equation (3.3) through by z’ where d is the maximum of for j =
= 0, ..., n, we may assume that for each j, we have either Bj « 1 or 1
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in F(a, b), and there exists an integer p ~ 0 such that By « 1 for j &#x3E; p,
while Bp is --- to a nonzero constant (denoted Bp (00 ). The integer p is
called the critical degree of the equation (1.2). The equation,

is called the critical equation of (1.2). Clearly, F * («) is a polynomial in
a, of degree p, having constant coefficients. Let the distinct roots of
F** a) be ao, ... , ar, with ak having multiplicity mk . (Thus, 2: mk = p.)
Let Mi , ... , Mp be the p distinct functions of the form z "k (Log z)j for
0 ~ 1~ ; r, and integers j satisfying 0 -- i --- Mk - 1 - We call the set

~M1, ..., M~ ~, the Logarithmic set for (1.2).
When (1.2) is written in the form (3.3), we form the algebraic poly-

nomial in v,

which we will call the full factorization polyomial for (1.2). Clearly,
the coefficients of H(z, v) belong to the same logarithmic differential
field as do the coefficients of (1.2). If p is the critical degree of (1.2), it is
shown in [14; Lemma 6.1], that H(z, v) possesses precisely n - p critical
monomials N1, ...,A~-p, (counting multiplicity) satisfying &#x3E; -1.

We will call the set {Nl , ..., Nn-p 1, the exponential set for (1.1). If Tj is
the set of zeros on (a, b) of the function ~) (see (2.1)), then the
union of the sets Tj for j = 1, ..., n - p, will be called the transition set
for (1.2) on (a, b).

4. A result from [7].

THEOREM 2. Let % * 1, and let Ro , R1, ..., Rn-, belong to a loga-
rithmic differential field of rank zero over F(a, b). Let A(w) be the n-th
order linear differential operator,

Let p be the critical degree of A(w) = 0, and let f Ml , ..., Mp~ be the log-
arithmic set for this equation. Let rl  r2  ... rt be the transition set for

= 0, and set ro = a and b. (If the transition set is empty, set
t = 0.) Then, in each of F(ro , rl ), F(rI, r2), ..., F(rt , separately, the
following conclusion holds: For each j, with 11 j ~ ~, there exists an
admissible solution 1Jj (z) of = 0, satisfying 1Jj- M~ .
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REMARK. In view of Theorem 2, we made the following definition
in [7]:

DEFINITION 4.1. Under the hypothesis and notation of Theorem 2, if
{Y1, ..., is a set of admissible functions in some F(c, d), such that Yj is
a solution of A(w) = 0 and satisfies "pj-Mj in F(c, d) for j = 1, ..., ~ro, then
we will call {~G1, ..., ~p ~ a complete Logacrithmic set of solutions of A(w) =
= 0 in F(c, d). (Thus Theorem 2 asserts the existence of complete loga-
rithmic sets of solutions in each of separate-
ly.)

5. Concepts and notation from [14] and [7].

Let,

be an n-th order linear differential operator whose coefficients

Bo , ..., Bn belong to a logarithmic differential field % of rank zero over
F(a, b) and assume B.,, 0 0. (As in § 3, 0w = zw’ . ) Let W belong to an
extension logarithmic differential field xi of rank zero over F(a, b), and
assume W » z -’ in F(a, b). Set h = exp f W, and let be the operator
defined by A(v) = 0(hv)lh. Then has coefficients belonging to XI,
and we denote,

Let H(u) and K(u) denote respectively, the full factorization polynomi-
als for D(w) and ~1(v), so that,

In [14; § 10], the following concept is introduced: W is said to have
transform type (m, q) with respect to H (briefly, trt (W, H) = (m, q)) if A
has critical degree m, and if q is the minimum multiplicity of all critical
monomials M of K(u) which satisfy z -1 « M « W in F(a, b). (If there
are no such M, then we set q = 0. ) The following results are proved in
[14; § 10]:

LEMMA 5.1. With the above notation, assume W ~- N in F(a, b)
where N is a critical monomial of H(u) of multiplicity d, satisfying
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and assume that trt (W, H) = (m, q). Then:

(a) K(u) has precisely d - m critical monomials L satisfying
z - « L « W, counting multiplicity.

( b) We have m + q , d.

(c) If q = 0, then m = d.

(d) If (m, q) = (0, d), and we set,

then G(u) possesses a unique principal monomial V. In addition, V has
the following properties: (i) V is a simple critical monomial of G; (ii)
V « W; (iii) There is a unique function g satisfying g ~- V in F(a, b) and
G(~)=0; (iv) If U = W + g, then U --W in F(a, b), and 
= (mI , ql) where q,  d.

(REMARK. Conclusions (a)-(c) are proved in [14; Lemma 10.3]. The
conclusion (d) follows from [14; Lemmas 10.5, 8.5] and from Lemma 2.4
above. )

In view of Parts (b) and (d) of Lemma 5.1, we introduced the follow-
ing notations in [7]:

DEFINITION 5.2. With the above notation, let N be a critical mono-
mial of H(u) of multiplicity d, satisfying and let trt (N, H) =
= (m, q). By Part (b), we have q ~ d. If q  d, set N * = N. If q = d, then
by Part ( b), we have m = 0. We set N * = U, where U is the function in
Lemma 5.1, Part (d) which is constructed by taking W equal to N.
Hence, in all cases, we have,

(REMARK. The *-operation to form N * depends upon the polknomi-
al H(u), and we will indicate this, where necessary, by saying that it is
relative to H(u).)

DEFINITION 5.3. Let and H(u) be as in (5.1) and (5.3), and let
N » z -1 be a critical monomial of H(u) of multiplicity d. A finite se-
quence (Vo , Vi , ..., Vr), where r is a nonnegative integer, and where the
Vi are elements of an extension logarithmic differential field of x, of
rank zero over F(a, b), will be called an N-sequence for 0 if and only if
the following conditions are satisfied: (i) Vo = N *; (ii) If r ,1, then
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there is a critical monomial Mi of

satisfying z -1 « Ml « Vo, such that VI = M~ (where the *-operation is
relative to Ki), and in general, for 1;1~ ~ r, there is a critical monomial
Mk of

satisfying,

where the *-operation in (5.8) is relative to Kk. The set of all N-se-
quences for 0 will be denoted 0). If V I = (V 0, ..., Vr) is an 
quence for D, let Ao = 0, Ko = H, and for 1  k  r + 1, set

The equation, Ar+l (v) = 0, will be called the terminact equation for V #,
and its critical degree will be called the terminal index for V #, and will
be denoted t(V *). We will say that V # is active if t(V #) &#x3E; 0, and we de-
note the set of all active N-sequences for D by (N, 0).

6. Further results from [7].

LEMMA 6.1. Let where the By belong to a

J=V

logarithmic differential field of rank zero over F(a, b), and assume
B,, 0 0. Let N » z -1 be a critical monomial of multiplicity d of the full
factorization polynomial for 0. Then,

THEOREM 3. Given the equation (1.2) where n &#x3E; 1 and where the func-
tions Ro (z), ..., Rn- 1 (z) belong to a logarithmic differential field of rank ze-
ro over F(a, b). When written in terms of the operator 0 (where
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0w = zw’) let (1.2) have the form D(w) = 0, where I

Let p be the critical degree of (1.2), and let N1,..., Ns be the
distinct elements (if any) of the exponential set (see § 3) for (1.2). Let
E1 denote the transition set for (1.2) on (a, b). For each k = 1, ..., s, and
each active Nk-sequence, V #, for D, let E(V ~ denote the transition set
for the terminal equation for V # (see § 5) on (a, b). Let E = {r1, ..., rq 1,
where r,  r2  ...  rq, denote the union of E1 and all the sets E(V*) as
V # ranges over the sets W 1 (Nk, D) for k = 1, ..., s. Let (c, d) denote any
of the intervals a r 2)&#x3E; ..., rq), (rq, b), &#x3E; (where we take
(c, d) = (a, b) if E is empty). Then the following hold:

(A) The equation (1.2) possesses a complete logarithmic set of so-
lutions {~1, ..., in F(c, d).

(B) If 1~ E { 1, ..., s~, and V * = (V 0, ..., V r) is an element of
then the equation (1.2) possesses (t(V ~ admissible solu-

tions, his, ... , ht(v*), in F(c, d) of the form

where ..., is a complete logarithmic set of solutions of the ter-
minal equation for V # in F(c, d).

(C) The total number of solutions represented in Parts (A) and
(B) is precisely n, and these n solutions form a fundamental set of solu-
tions for (1.2) in some element of F(c, d).

In view of Theorem 3, we make the following definitions:

DEFINITION 6.2. Assume the hypothesis and notation of Theorem 3.
Let be the logarithmic set for (1.2). {1, ...,s} and
V~= (Vo , ..., Vr) is an element let (Pl, ..., be the

logarithmic set for the terminal equation for V #. The set of n functions
consisting of Ml , ... , Mp and the functions,

as k ranges over { 1, ..., s} and V # ranges over (Di (Nk , 0), will be called
the asymptotic set for (1.2). (We note that the functions Mj and Pj are
all functions of the form so that the asymptotic
set {Hl , ..., Hn) consists of functions which are admissible in F(a, b). Of
course, they need not be solutions of (1.2).) If (c, d) is a subset of (ac, b),
and if { f1, ..., fn~ is a fundamental set of solutions of (1.2), each admis-
sible in F(c, d) and satisfying 1 in F(c, d) for 1  j ; n (where
{Hl , ..., Hn) is the asymptotic set for (1.2)), then we will call { fl , ..., fn}
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a basic fundamental set for (1.2) in F(c, d). Thus, Theorem 3 asserts the
existence of a basic fundamental set for (1.2) in each of the neighbour-
hood systems F(a, rl), F(rl , r2 ), ... , F(rq , b), separately.

DEFINITION 6.3. Assume the hypothesis and notation of Theorem 3.
For each q = 1, ..., s, and any V # _ (Vo , ..., Vr) belonging to (Nq,Q),
where r &#x3E; 1, let Kk (u) be given by (5.7) for 1  1~ ~ r. For each k =
= 1, denote the set of critical monomials M of Kk (u) satis-
fying M « Vk-l. We define ~k (V ~ to be the union of the sets of
zeros on (a, b) of all the functions, IF(M, 1» for M e 5k (V#), and IF(M -
- M1, p) for distinct elements M and M1 in ffk (V#). Finally, we let A de-
note the union of the sets of zeros on (a, b) of all the functions 
- where 1  k  j  s. With the set E as defined in the statement
of Theorem 3, we now define the oscillation set on (a, b) of equation
(1.2) to be the union of the sets E, A, and all the sets as V # _
= (Vo, ..., Vr) ranges over 1, ..., s, and k ranges over
f 1, ..., r) . (The oscillation set is clearly finite.)

THEOREM 4. Given the equation (1.2), where % * 1, and where the
functions Ro (z), ..., R,,- (z) belong to a logarithmic differential field of
rank zero over F(a, b). Let Nl , ..., Ng be the distinct elements (if any) of
the exponential set for (1.2), and let (1.2) have the form = 0,

where when (1.2) is written in terms of 6w = zw’ .
Then: j=O

(A) Assume that (1.2) satisfies at least one of the following two
conditions: (i) The critical equation for (1.1) possesses two distinct
roots having the same real part; (ii) For some 1~,1  1~  s, there is an
element V # in 6D, (Nk , Q) such that the terminal equation for V # has the
property that its critical equation possesses two distinct roots having
the same real part. Then (1.2) has the following property: For any ~ in
(a, b) and any e &#x3E; 0, there exist positive constants 6 and K, and a solu-
tion f ~ 0 of (1.2) such that,

and such that f is analytic and has infinitely many zeros zl , z2 , ..., with
lim ( _ +00~ on the region defined by,

(B) Assume that (1.2) satisfies neither of the conditions (i) and (ii)
in Part (A). Let the oscillation set for (1.2) on (a, b) consist of the points
rl  r2  ...  rq, and set ro = a and b. (If the oscillation set is
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empty, then set q = 0.) Then, for each j, 0 ~j ~ q, the following three
conclusions hold:

(a) If ..., Hn} is the asymptotic set for (1.2), then there is a
permutation ( qi , ... , qn} of ~ 1, ... , n} (depending on j ) such that

(b) A basic fundamental set for (1.2) exists in rj, 1).
(c) If f ~ 0 is a solution of (1.2) which is admissible in F(a, b), then

there is an element of rj,,) on which f has no zeros.

REMARK. Part (A) and Section (c) of Part (B) constitute the original
Theorem 4 proved in [7]. However, the other two parts are established
in the proof of Theorem 4. In view of Theorem 4, we make the following
definition:

DEFINITION 6.4. Assume the hypothesis and notation of Part (B) of
Theorem 4, and let {ql , ..., qn} be as in (6.7). Then we will call the n-tu-
ple (H ql , H q2’ ..., Hqn), the ordered asymptotic system for (1.2) in

rj+l) 

REMARK. In the case considered in Theorem 1 of § 1, namely where
the coefficients of (1.2) are rational functions, then in Theorem 4,
we can take a = -7r and b = 7r. It is shown in [7], that the set { ~1, ... , 7AI
in Part (B) of Theorem 1, can be taken to be {rl , ..., where

rl  r2  ...  rq are the points of the oscillation set for (1.2) on ( - ~, ~c),
and where 7r. The next section is devoted to determining which
(if any) of these points is extraneous in the sense described in § 1.

7. Statement of main results of present paper.

THEOREM A (Continuation). Assume the hypothesis and notation of
Part (B) of Theorem 4. Then for any j with 1 ~ j ~ q, there exists a ba-
sic fundamental set for (1.2) in F(rj-,, 

THEOREM B (Oscillation). Assume the hypothesis and notation of
Part (B) of Theorem 4. Let j E {1, ..., q~, and let (Hql , ..., Hqn) and
(Ht1, ..., H 4&#x26;) be respectively, the ordered asymptotic systems for (1.2)
in and in rj). Then:

(a) If (Hql’ ... , (Ht1, ... , Ht.), then there exists 6 &#x3E; 0 with
the property that for any solution f:;= 0 of (1.2) which is admissible in
F(a, b), there is a constant R = R( f ) &#x3E; 0 such that f has no zeros on the



14

set,

(b) If ..., Hq,) =1= (Ht1, ..., H.), then there exists a solution f # 0
of (1.2) such that for any ~&#x3E;0, f possesses infinitely many zeros
ZI , Z2, ... satisfying as m -") 00, and lying in Arg z -
- rj |  d.

The proofs of these results will be given in § § 9, 10.

8. Preliminary results for Theorem A and B.

We will require two preliminary results. The first is a combination
of several Phragmen-Lindel6f principles whose proofs can be found in
[19; pp. 176-180].

LEMMA 8.1. Letf(z) be analytic and of finite order of growth in a
closed sectorial region of the form a  argz % I z ~ K. Then, there
exists &#x3E; 0 such that for any real numbers c and d, with «  c  
and d - c  s, for which the limits,

exist and are finite, the following conclusions hold: Li = L2, and
in c  arg z  d.

LEMMA 8.2. Given the equation (1.2) where the coefficients Rj (z)
belong to a logarithmic differential field of rank zero over F(a, b), and
let f 0 0 be a solution of (1.2) which is admissible in F(a, b). Then, for
any real numbers c and d, with a  c  d  b, there exists K &#x3E; 0 such
that f is analytic and of finite order in the closed sectorial region de-
fined by, c  arg z ~ d, K.

PROOF OF 8.2. The proof of the lemma parallels very closely the
proof of the corresponding result for analytic solutions of first-order al-
gebraic differential equations in sectors, which was given in [2]. For
this reason, we will simply sketch the proof. As in [2], the first step is
to prove a local version of the result, namely:

LEMMA 8.3. Assume the hypothesis and notation of Lemma 8.2.
Then for any ~ E (a, b), there exist positive real numbers 8(A) and 
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such that f is analytic and of finite order on the set,

Once we establish Lemma 8.3, the original result Lemma 8.2 easily
follows by a compactness argument for the interval [c, d]. To prove
Lemma 8.3, we use Lemma 2.1, the definition of a logarithmic differen-
tial field of rank zero, and a little geometry, to assert that if ~ E (ac, b),
there is a set of the form (8.2) (where 8(,~) is of the form 7r/(4m) for some
integer m : 2), which is contained in a sector,

for some R &#x3E; 0, and such that on (8.3), the solution f and all coefficients
of (1.2) are analytic, and we have IRj (z)1 ~ for some ~3 &#x3E; 0 and

each j = 0,1, ..., n -1. We now follow [2], and map the sector (8.3) con-
formally onto the unit disk It  1 by the sequence of mappings,

The original solution f(z) becomes an analytic function g(t) on ~t~  1,
and a routine calculation shows that g(t) satisfies a linear differential
equation,

where the coefficients are analytic on the unit disk and all satisfy
an estimate of the form Kl (1- ~ t ~ )-°‘ for constants K1 &#x3E; 0 and
a &#x3E; 0. As in [2; p. 149], we invoke the Valiron-Wiman theory [20; Theo-
rem II, p. 299] (where instead of requiring the Valiron-Wiman condi-
tion for just the first derivative as in [2; Formula (24)], we require the
full strength, namely

for j = 0,1, ..., n -1), and we show as in [2] that g(t) must be of finite or-
der of growth in |t|  1. We now retransform back to f(z) using [2; Lem-
mas D-H], and we show as in [2] that f(z) is of finite order on the sector
(8.3). This establishes Lemma 8.3 and thus also Lemma 8.2.

9. Proof of Theorem A.

Let (Hql’ ...,Hqn) be the ordered asymptotic system for (1.2) in
so that (6.7) holds, and let (Htl , ..., H ) be the ordered asymp-
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totic system for (1.2) in rj) so that,

By Theorem 4, a basic fundamental set { fl , ..., fn) for (1.2) exists in
F(rj-I, rj), and a basic fundamental set {g1, ..., gn) for (1.2) exists in

rj,,). Thus, for each 1~, we have

We begin with gt, which is a solution of (1.2) admissible in 
By basic existence theory (e.g. [21; Th. 2.2, p. 3]), the solution gt, has an
extension ’Gtl which is admissible in b), and thus for some constants
cl , ..., cn, we have

In view of (9.1) and (9.2) we see that cl in while in
we have Gtl/Htl -~ 1 by (9.2) since Gtl = gtl. In view of Lemma

8.2, clearly Gtl (and thus also Gtl/Htl) is analytic and of finite order in
some sector arg z - e for sufficiently large I z 1, and thus by Lemma
8.1, we have cl = 1, and

for some sufficiently small c &#x3E; 0. It follows from [16; § 97] that,

In view of (9.1) and (9.5), it is clear that the set f~ , ..., ft.1 is a fun-
damental set for (1.2) in 

’~

We now proceed by induction to construct for each k E f 1, ..., n}, so-
lutions Gt1,..., Gtk of (1.2) in with the following proper-
ties :

and {Gtl , ... , Gtk , ... , f~~ is a fundamental set for (1.2) in 
We have established this fact for 1~ = 1, and we now assume it for some
k  n. We consider the solution gtk-,, which, as before, has an extension

which is admissible in F(a, b). Thus, there are constants ctl , ..., ct.
such that in rj),

In view of the total ordering (6.7) of the set IH, , ..., Hn) in F(rj r~+1),



17

we let 1~ denote the subset of {tl , ..., tk~ consisting of those ti for which
« H~ in F(rj, and let 4 be the set {tl , ..., For ease of

notation, we denote the elements of 1’ by ta , t~ , ... , where we assume
that a.  (3  .... We now rewrite (9.7) in rj) as,

Let G denote the left side of (9.8), and consider G/Hta. In view of
(9.1), (9.2), and (9.6), we see from (9.8) that Cta in rj). On
the other hand, in rj+l)’ we have gtk+1 so that Dtk+l/Hta - 0 by
(9.2) and the definition of the set r. In addition, if ti E J then Ht2 « 
in F(rj, by definition of 4, so that by (9.6) we have Gti/Hta I 0 since
t" E r. Thus, by definition of G, we have 0 in rj,l). We can
conclude that ct« = 0 by lemma 8.1. We now repeat the above argument
using Ht~ instead of Hta, and we conclude that ct~ = 0. Similarly, we con-
clude that all ct2 = 0 for ti E r. Thus, again from (9.1), (9.2), and (9.8), we
see that in but now by the definition of G and
4, we also have 1 in Thus from Lemma 8.1, we can
conclude that Ctk+l = 1, and that 1 as z - °° in some sector

larg z - rj ~ e. It follows from [16; § 97] that G/Htk+1 - 1 in F(rj-I, rj,,).
The form of G shows that G is a solution of (1.2) and so if we denote G
by then (9.6) holds for i = k + 1 also. In view of (9.6) and (9.1), it
easily follows that ... , Gtk+l , ,ftk+2 ~ ~ ~ ~ ~ ftn~ is a fundamental set for
(1.2) in F(rj-I, rj). Thus, we have established our desired statement
(9.6) by induction, and so for k = n, the solutions Gtl , ... , Gtn form a ba-
sic fundamental set for (1.2) in F(rj-l, rj,,). This proves Theorem
A.

10. Proof of Theorem B.

We are given that (6.7) and (9.1) hold. Under the assumption of Part
(a), we thus have that (6.7) holds on both F(rj, and F(rj-I, rj). We
examine each ratio for k = 1, ..., n -1. It is easy to see (e.g.
see the proof of [7; Theorem 3]) that this ratio is either a function of the
form z" (Log (where « is complex, (3 is an integer, and where either
the real part of a is not zero or a = 0 while (3 "* 0), or the ratio is a func-
tion of the form,

where V ~- in F(a, b), for some c * 0 and d &#x3E; 0, and some con-
stants « and /3. In the first case, Lemma 2.3 shows that since
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1 in the same relation holds in F(a, b). In the sec-
ond case (i. e. where the ratio has the form (10.1)), we see from Lemma
2.2 that the indicial function (see (2.1)) of V must remain negative on
(rj-l, rj,,) in order that Hqk+l/Hqk « 1 on both F(rj-l, rj) and rj,,).
Thus by Lemmas 2.2 and 2.3, we have on F(rj-l, rj,,), and
thus we see that under the assumption of Part (a), the asymptotic rela-
tion (6.7) is valid on all of rj,,). Let (Gi , ..., Gn} be the basic fun-
damental set for (1.2) in whose existence is guaranteed by
Theorem A. If f ~ 0 is any solution of (1.2) which is admissible in

F(a, b), then there are constants cql , ..., cqn such that

Since in F(rj-l, rj,,) for each 1~, and since (6.7) holds on
rj, 1), we see that on some element of rj, 1), we have f =

= cqkHqk (1 + E), where E - 0 in and where 1~ is the smallest
index i for which cqi * 0. In view of the form of Hqk, we see that on some
element the solution f can have no zeros. The conclusion
of Part (ac), now follows immediately from Lemma 2.1.

Under the hypothesis of Part (b), clearly by (6.7) and (9.1), there
must be two elements Hi and Hk of the asymptotic set for which

By the discussion in Part (a) concerning the possible forms of the ratio
Hi/Hk, clearly the ratio Hi/Hk must have the form (10.1) in order for
the asymptotic behavior to change, and in addition, the indicial func-
tion of V must have a zero at rj or else the behavior would not change by
Lemma 2.2. As in Part (a), we let f G1, ..., Gn} be the basic fundamental
set for (1.2) in so that we have for the indices i and k in

(10.3),

Let G = ciGi + ck Gk for any non-zero constants ci and ck. Then G is an
admissible solution of (1.2) in F(rj-l, rj+,), and we assert that G satis-
fies the conclusion of Part (b).

To prove this, we observe first that since Hi/Hk has the form (10.1),
it follows from (10.4) that the equation G(z) = 0 is of the form,

where E 1 -") 0 in and where , It is easy to see that
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(10.5) can be written in the form,

where F(rj-l, and since the indicial function for V
must have a zero at , we have

The equation (10.6) is precisely the same equation as Equation (122)
in [4], where Formulas (158) and (159) of [4] hold. In addition, (10.7) is
precisely the same condition as Condition (160) in [4], and so exactly as
in [4; pp. 94-95], we show using Rouch6’s theorem that for any ~ &#x3E; 0,
the solution G(z) possesses the required sequence of zeros. This proves
Part (b) of Theorem B and concludes the proof.

11. Remarks.

(A) In the case where the coefficients of (1.2) are rational func-
tions, it follows from the last Remark in § 6 that Theorem B permits us
to test all the points ..., ax which appear in Part (B) of Theorem 1,
and which belong to ( - ~c, 7r), for the property of being extraneous in the
sense described in § 1. However, the value aj _ ~ cannot be tested this
way since it does not belong to the oscillation set. However, it is easy to
test ~c by simply making the change of independent variable (= -z in
(1.2). This converts argz = n to arg C = 0, and one simply tests the
transformed equation to see if the value 0 beongs to the oscillation set,
and, if so, whether or not it is extraneous.

(B) In this section, we give a simple example of an equation (1.2)
having polynomial coefficients (so we take the neighborhood system to
be F(-7r, 7r)) which has the property that its oscillation set on (-x, x)
has extraneous elements. We consider the equation,

We rewrite the equation in the form (3.3), and we compute the polyno-
mial (3.5). We find that the critical degree is zero and the exponential
set is f 1, 2z } . Thus the transition set for ( 11.1 ) on (-7r, 7r) consists of
± x/4, ± 77/2, and ± 3x/4, and thus all of these points belong to the oscil-
lation set of (11.1) on (- ~, 7r). Using the method developed in §§ 5, 6,
we find that the asymptotic set for ( 11.1 ) Using Lemma
2.2, we find in F(7r/4, 37r/4) and also in F( - 3n/4, - ~/4),
while the reverse inequality holds in F(-7r, -37!/4), F( -7r/4, 7r/4) and
F(37r/4, 7r). Thus by Part (ac) of Theorem B, both ± /2 are extraneous,
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while Part (b) of Theorem B shows that ± x/4, ± 871/4 are all non-extra-
neous.

(C) If one knows the asymptotic set ..., Hn} for an equation
(1.2) satisfying the hypothesis of Part (B) of Theorem 4, it is a simple
matter to determine the oscillation properties around any given ray
arg z = 00, where 00 E (a, b). We use Lemma 2.2 and 2.3 to decide
whether the asumptotic set can be ordered (as in (6.7)) in F(oo - e, 00 +
+ e) for some e &#x3E; 0. If the answer is in the affirmative, then we can assert
that there is a ~ &#x3E; 0 such that any solution f ~ 0 has no zeros on a set of
the form, ( arg z - 00  ~. ~ ( z( &#x3E; R for some R = R ( f ) &#x3E; 0. If the answer
is in the negative, then we can assert that there is a solution f ~ 0 such
that for 0, f possesses infinitely many zeros in arg z - 00  8
which tend to 00. (The affirmative case follows from Part (a) of Theo-
rem B if 00 belongs to the oscillation set, and from the last conclusion of
Theorem 4 if 00 does not belong to the oscillation set. In the negative
case, Section (a) of Part (B) of Theorem 4 shows that 00 would have to be
in the oscillation set, say 60 = r~, and the proof of Part (a) of Theorem B
shows that the hypothesis of Part (a) of Theorem B cannot be satisfied.
Thus the hypothesis of Part (b) of Theorem B must hold and the conclu-
sion then follows from Part (b).)

12. Preliminaries for Theorem C.

The concept of «principal monomial» discussed in § 2 for algebraic
polynomials, also exists for differential polymomials (see [16; § 67]). In
the present paper, we will require this concept for equations of the
form Q(w) = p, where D(w) is a linear differential polynomial of the form
(5.1) whose coefficients belong to a logarithmic differential field ~t, of
rank zero over F(a, b), and where p 0 0 is an element of the field gener-
ated by the field x and all functions of the form,

where q is a nonnegative integer, K is a nonzero complex constant, and
where the a~ are real numbers. The algorithm in [16; § 67] produces for
any such equation S~(w) _ ~, a unique function M(z) of the form (12.1)
with the following two properties in F(a, b): (i) ~(M) ~- ~, and (ii)
i2(f) « , if f« M. The function M(z) is called the principal monomials
of the differential polynomial D(w) -1J. We remark that the algorithm
in [16; § 67] was carried out in [3; § 3], and an explicit formula for the
principal monomial was developed there.
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DEFINITION 12.1. Given an equation (1.2) whose coefficients belong
to a logarithmic field of rank zero over F(a, b), and let it have the form
(3.3) when written in terms of 0, where the satisfy the

n

conditions in § 3. Let and let be an

element of the logarithmic set for (1.2). From the conditions in § 3, each
Bj is of the form ai + ~i where ai is a constant and each «1 in

F(a, b). It is proved in [7; § 6] that It is easy to
j w 

check by induction that for each j, the function oj M is of the form
where is a polynomial in u, with constant coef-

ficients, of degree at most q. It is also easy to check that under the

change of variable the function ojw becomes 
where (o + a.)j is the j-th iterate of the operator 0 + a. In view of these
facts, we have,

where and where,

We observe that the operator has coefficients in the same logarith-
mic field that contains the Thus, from the discussion in the first
part of this section, if go 00 then ~1(v) - pro possesses a unique principal
monomial Pi. (The formula in [3; § 3] shows that for some
e &#x3E; 0, so that

We now define a sequence of functions (Pl , P2 , ... ) as follows: If ~o = 0,
set Pi , P2 , ... all identically equal to zero. If 1J0 ;é 0, let PI be as above,
and make the change of dependent variable v = PI + u in the operator
on the right side of (12.2). We obtain the differential polynomial,

If 1JI == 0, define P2 , P3 , ... all to be identically zero. If pi 0 0, let P2 de-
note the principal monomial (z) in (12.5). (It is proved in [16;
§ 75] that P2 F(a, b). ) We now continue, and make the change of
variable U = P2 + y in (12.5) which yields the differential polynomi-
al,
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As before, if 1J2 = 0 we set Pg, P4 , ... all equal to zero, while if ~2 ~ 0, we
let Pg denote the principal monomial Continuing this way,
we obtain a sequence of functions (P1, P2 , ... ) with the properties
that

For a given positive integer q we will call the sequence (Pl, ..., Pq), the
principal q-tuple for (1.2) relative to M. (We emphasize that for any q,
the principal q-tuple can be easily calculated using [3; § 3]. )

13. Theorem C.

Given an equation (1.2) where the coefficients belong to a logarith-
mic field of rank zero over F(a, b). Let rl , ..., rt be the transition set for
(1.2) on (a, b). Set ro = a and b. (If the transition set is empty, set
t = 0.) Let M be an element of the logarithmic set for (1.2). Let q be any
positive integer, and let (P 1, ... , Pq) be the principal q-tuple for (1.2)
relative to M. Then, in each of F(ro, rl), F(rl , r2), ..., F(rt , rt+l) sepa-
rately, the following conclusion holds: The equation (1.2) possesses an
admissible solution of the form,

14. Proof of Theorem C.

We first consider the case where Pq --- 0, and we let k denote the
minimum positive integer i for which Pi = 0. If i = 1, then po 0 in
(12.2) and Pj --- 0 for j &#x3E; 1. From (12.2), we see that w = M solves (1.2),
and is a solution of the form (13.1). If i = 2, then 0 and Pj == 0 for
j : 2. It follows from (12.2) and (12.5) that solves (1.2)
and is the desired solution. In general, if i : 2, then v = PI + ... + 
solves and the desired conclusion follows from (12.2).
We now assume From Definition 12.1, we know that for

each j, 1 ~j ~ q, the function Pj is the principal monomial 
where po is given by (12.3), and
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Thus Pq is the principal monomial of the polynomial,

where, as in Definition 12.1, we have written Bj = aj + hj where aj is a
constant, and From [3; Lemma 5, p. 729], it follows that
there exists u * -~- Pq in F(a, b) such that,

Under the change of dependent variable u = u * + v, the differential
polynomial (14.2) becomes,

Let ~o (P~) = a. Then ~o (G)  a - e for some &#x3E; 0. Set ~1= ~ - E/12, and
consider the differential equation,

and where as in (12.2). Then

and so the differential equation on the left side of (14.5) is exactly the
type of equation treated in [7; Equation (6.8)], and it is proved in [7; § 6]
that in each F(rk , rk+1) separately, this equation possesses a solution
y * « But clearly the operator is simply and hence
the function v * = z -" y * solves A(v) = - G (in view of the definition of H
in (14.5)). Thus the function uo = u * + v * is a root of the differential
polynomial in (14.2), namely we have ’Pq-1- In view of the recur-
rence relation (14.1), we see that,

and thus from (12.2), we see that O(w) = 0 possesses the solution,

Since u * - Pq while v * « z a-(ë/12) (so that v * « Pq) we see that Uo - Pq
and so uo = Pq Pq. Thus (14.7) is the desired solution
and the proof is complete.



24

REFERENCES

[1] S. BANK, A note on the location of complex zeros of solutions of linear dif-
ferential equations, Bull. Amer. Math. Soc. (New Series), 18 (1988), pp.
35-38.

[2] S. BANK, A note on the rate of growth of solutions of algebraic differential
equations in sectors, J. London Math. Soc. (2), 1 (1969), pp. 145-154.

[3] S. BANK, On principal solutions of linear differential equations, Proc.
Amer. Math. Soc., 10 (1968), pp. 724-732.

[4] S. BANK, On determining the location of complex zeros of solutions of cer-
tain linear differentiaL equations, Ann. Mat. Pura Appl., 151 (1988), pp.
67-96.

[5] S. BANK, On the instability theory of differential polynomials, Ann. Math.
Pura Appl., 74 (1966), pp. 83-112.

[6] S. BANK, On zero-free regions for solutions of n-th order linear differential
equations, Comment. Math. Univ. St. Paul, 36 (1987), pp. 199-213.

[7] S. BANK, On the complew zeros of sotutions of linear differential equations.
(To appear - Ann. Mat. Pura Appl.).

[8] E. W. CHAMBERLAIN, Families of principal solutions of ordinary differen-
tial equations, Trans. Amer. Math. Soc., 107 (1963), pp. 261-272.

[9] W. K. HAYMAN, The local growth of power series: a survey of the Wiman-
Valiron method, Canad. Math. Bull., 17 (1974), pp. 317-358.

[10] E. HILLE, Ordinary Differential Equations in the Complex Domain, Wi-
ley, New York (1976).

[11] E. HILLE, Lectures on Ordinary Differential Equations, Addison-Wesley,
Reading, Mass. (1969).

[12] E. HILLE, Analytic Function Theory, Volume II, Chelsea, New York
(1973).

[13] R. NEVANLINNA, Über Riemannsche Flächen mit endlich vielen

Windungspunkten, Acta Math., 58 (1932), pp. 295-373.
[14] C. POWDER, On the asymptotic behavior of a fundamentaL set of solutions,

Trans. Amer. Math. Soc., 255 (1979), pp. 91-110.
[15] Y. SIBUYA, Global Theory of a Linear Second Order Differential Equation

with a Polynomial Coefficient, North Holland Math. Studies n. 18, North
Holland, Amsterdam (1975).

[16] W. STRODT, Contributions to the asymptotic theory of ordinary differential
equations in the complex domain, Mem. Amer. Math. Soc., n. 13

(1954).
[17] W. STRODT, Principal solutions of ordinary differential equations in the

complex domain, Mem. Amer. Math. Soc., n. 26 (1957).
[18] W. STRODT, On the algebraic closure of certain partially ordered fields,

Trans. Amer. Math. Soc., 105 (1962), pp. 229-250.
[19] E. C. TITCHMARSH, The Theory of Functions, Oxford University Press,

London, 1939.
[20] G. VALIRON, Fonctions analytiques et equations differentielles, J. Math.

Pures Appl., 31 (1952), pp. 293-303.



25

[21] W. WASOW, Asymptotic Expansions for Ordinary Differential Equations,
Wiley, New York (1965).

[22] H. WITTICH, Eindeutige Lösungen der Differentialgeichung w’ = R(z, w),
Math. Z., 74 (1960), pp. 278-288.

Manoscritto pervenuto in redazione il 3 novembre 1989.


