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Fixed Points for Automorphisms
in Cartan Domains of Type IV.

CHIARA DE FABRITIIS (*)

ABSTRACT - In this paper we study the set of fixed points for holomorphic auto-
morphisms of a Cartan domain of type four, 6D,,,. We give a direct proof of the
fact that each holomorphic automorphism f of Wn extends to a continuous
function f on Wn, the closure of Wn, in itself. Using this result we give a classi-
fication of the set of fixed points of f, the continuous extension of f, in Wn in
the case in which f has no fixed points in 6D,,,: in almost all cases this set has
the following structure: it contains p isolated points and the intersection of r
affine complex lines with Wn, moreover p + 2r ~ 4.

0. Introduction.

In this note we shall investigate the structure of the set of fixed
points for holomorphic automorphisms of Cartan domains of type four.
A Cartan domain of type four W is a bounded symmetric homogeneous
domain defined by

and can be expressed as the open unit ball for the norm p, where

v, see [Harris 1]. The Shflov boundary of 6D is

(*) Indirizzo dell’A.: Scuola Normale Superiore, P.zza Cavalieri 7, 50127
Pisa, Italia.
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The group of automorphism of W has the following representation.
Let

In the first section we prove that, given g E G as above,

where (D is the closure of (D.

Then, for all g in G, the holomorphic C n-valued function

is well defined on (D. We show that g - is a surjective homomor-
phism of G onto Aut(D, whose kernel is 
A proof can be found joining [Hau 1] and [Satake 1] (see also [Hirze-

bruch 1]); as the notations in these two papers are quite different, here
we give a direct and complete proof.

Moreover (0.1) gives a direct proof of the known fact that every
f E Aut W can be extended to a holomorphic-hence continuous-func-
tion in a neighborhood of (D.

In the second section we investigate the case in which f E Aut 6D has
a fixed point in (D. Setting fix f = {2; E (D: flz) = it is known that fix f
(if not empty) is connected. It is actually arcwise holomorphically con-
nected, in the sense that for all x, y in fix f there exists a holomorphic
map 1J from 4 to (D which is a complex geodesic for the Kobayashi met-
ric such that x, y c fix f. Then it is natural to ask whether there is
more than one complex geodesic having this property. We show that
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this is true iff x and y satisfy a condition on complex extreme
points.

In the third section we consider the case in which f E Aut 6D has no
fixed points in_(D. Denoting by the same symbol f the continuous exten-
sion of f to 6D and setting Fixf= {z E W: = z}, Brouwer’s fixed
point theorem ensures that Fix f # 0. We shall show that for «almost
all» f E Aut W (in a sense that shall be made more precise later) such
that 0, the set Fixf contains p ~ 0 points and r &#x3E; 0 intersections
of affine lines with (JJ, with p + 2r  4.

1. Extension of automorphisms to continuous maps on (D.

According to a general result of W. Kaup and H. Upmeier (see
[Kaup-Upmeier 11), every holomorphic automorphism of a ball in a Ba-
nach space can be extended to a continuous function on the closure of
the ball. A direct proof of this fact will be given here.

We begin by briefly describe the «projective representation- due to
Satake.

Let S be a quadratic form on a real vector space V of dimension
n + 2 with signature (n, 2) and let hs be the hermitian form on the com-
plexification V c of V extending S, that is hs (x, y) = S(x, y).

PROPOSITION 1.1. There exists a bij ection of the set of all real, ori-
ented two-planes V- in V, such that  0 onto the set of all complex
lines _W in V~ such that S~W = 0 and  0 which identifies V-c with
W O W and is such that ix A x (where x is in W - {O}) is positive for the
orientation of V-.

For a proof see [Satake 1].
The set M = { W is a complex line in Vc such that = 0 } is a

quadric hypersurface in P(Vc ), the complex projective space.
Let 6D* be the open set in M defined by hslw  0.

By Proposition 1.1 6D* has two connected components. We prove
that one of these components is 6D. For x E is the complex line
generated by x.

Choosing a base ~i...~+2 in V such that

is contained in 6D*, then we have

and
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and this implies that and zn + 2 are linearly independent on

R, whence

Let D1 be the connected component of 6D* containing 1

the component where Thus we can normal-

From now on we set w =tzz.

As a consequence of the normalization we find

therefore ( w ~  1 (- w is the Cayley transform of

showing that the component containing Wo , is biholomorphic to
(D.

Now we want to prove that every automorphism of (D can be ex-
tended to a continuous function on a neighborhood of (D. First of all we
establish (0.1). This implies that Tg is holomorphic on a neighborhood
of (D if g E G. Then we show that is a surjective homomorphism of G
into Aut 6D. 

A D 
I

Notice that every element g = C B in G leaves S and h invari-
ant and maps D1 in In fact the definition of D* and the invariance of

,S and hs imply that g maps 6D* onto itself. As (D* has two connected
components, one of which is 6D,, ~1 n gives g6D, = 6D,. So we
are left to prove that W 1 n ~ 0. Then we compute the image of Wo
which is the complex line spanned by
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and, setting . we obtain

we can define then it is enough to show that this term is different
from 0 on W_.

For z E 6D let

The above discussion on the projective representation shows that q has
the following properties: S(q, q) = 0 and hs (q, q) ~ 0.

We denote by zl ... zn + 2 the coordinates of gq, i.e.

then we must show that ~+1+~+2~0, so we can define on m.

It is obvious that d(z) = zn + 1 + izn + 2 ~ 0 on 6D: if zn + 1 + izn + 2 = o
then gq = t (z i would not be in while we have shown
that every element of G maps D1 in 
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Now suppose that z E W. If + = 0 then we have two cases:
either 1) zn + 1= 0 or 2) zi + 1 # 0.

In the first case zn + 2 = 0: as g preserves hs and since hs (q, q) ; 0 we

have hs (z’ , z’ ) = hs (q, q)  0, then

zJ = 0 for all j =1, ..., n + 2; as z’ is in this is impossible.
In the second case zn + 1 ~ o. Let

It is easily seen that S(z’(t), z’(t)) = 0 and hs (z’ (t), z’ (t))  0,
Vt E [0, 1]. z’ (t) is a continuous function of t. If t E [1/2, 1) then z’ (t) is in

because t (tz1... tzn ) is in 6D -

Let us define : this is a continuous negative func-

tion on [1/2, 1); moreover ( 1 ) = zn + 1 ~ 0, so p is continuous on [ 1/2, 1 ]
and p(t) ~ 0 on this interval; then it is not possible that zn + 1 + izn + 2 = o
because this implies p(l) =1.

Thus we have established the following

PROPOSITION 1.2. For every z in 6D and then

d(z) =1= 0.
Hence Fg is an element of Hol (6D, en) for all g E G and every ele-

ment in y(G) can be extended to a neighborhood of (D.
Actually, we have shown that c A direct computa-

tion shows that F is an homomorphism, so we have that
c Aut 6D.

Since the proof that Ker IF ± In + 2 is straightforward, we are left
to prove that IF is surjective. To do this we show that is transitive
on (D and that the isotropy group of the origin is contained in

vr(G).
If zo E (D, we exhibit and element g~ in G such that (zo ) = 0. Set-
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ting wo and defining

a simple computation gives that Xo is in M(n, 2, R),

and 12 &#x3E; 0 (which also implies
Hence there exists such that

Defining

it is easily seen that det D &#x3E; 0 and
Then

is in G and (zo ) = 0 (in fact

Now we must show that the isotropy of the origin, (Aut 6D)o consists
of the elements where e E R and A E 0(n).

Let f E (Aut 6D)O: as 6D is a bounded circular domain and 0 E W, then f
is the restriction of a linear automorphism Q of Cn by Cartan’s lemma,
(see [Vesentini 6]).

If z E Cn we define
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according to [Abate 1] we call À1 and A2 the «modules». Notice that À1 is
the norm p. The Kobayashi distance on 6D is given by k(J) (0, z) =
= w(0, p(z)), where w is the Poineard distance on the unit disk 4. As f is an
automorphism of 6D, then it preserves k and from f(0) = 0 we obtain that
À1 (z) = À1 ( f (z)) for all z E W; the fact that Q is linear and that W is a n
open neighborhood of the origin in Cn gives À1 (z) _ for all
z E C’n.

LEMMA 1.3. For all z E en there exist 8 E R, A E 0(n) such that
e ie Az 0, ... , 0), where a, b E R + .

FOP a proof see [Hirzebruch 1].
A Straightforward computation gives

If 0 E R and A E 0(n), we call z H eÏ8 Az a orthogonal automorphism of
~. Obviously the orthogonal automorphisms preserve the modules.

As an easy consequence of Lemma 1.3 we have that À1 (z) = ~2 (z) = 1
implies À1 ( f (z)) _ À2 (f(z). In fact by Lemma 1.3 we can suppose that
z =t(10 ... 0) and

It is easily seen that, if A2 ( f (z)) ~ 1, f (z) is not a complex estreme point
for W, while z is, and this a contraddiction, because f is a linear auto-
morphism of 6D.

Let el , ..., en be the standard base of Cn and set 

~=1,...,n.
Let t E R and note that

we have

i.e.
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hence

Moreover that is, using ( 1.1 ),

Then we obtain Re Vh) = 0 if j =1= h, hence = 0.
Hence we have proved that Q is a unitary matrix, so that À1 (z) =

= À1 (Q(z)) gives

Define K =tQQ and consider last equation for we

obtain

then we have k~h = 0 khh with = 1; this ensures that
there exists n E R such that K = In.

From this we have immediately that there exists A E 0(n) and 6 E R
such that Q = e ie Az, hence f (z) = e " Az for all z E (D.

Then we have proved the following

PROPOSITION 1.4. The map IF: G - Aut 6D is a surjective homomor-
phism whose kernel is 

In view of this result Proposition 1.2 yields the following:

THEOREM 1.5. Every automorphism of (D has a holomorphic ex-
tension in a neighborhood of (D.

2. Fixed points in (D.

Let f E Aut 6D be such that 0. There is no restriction in assum-
ing 0 E fix f, so that there are A E 0(n) and 0 E R such that f(z) = ei8 Az
for all z E 6D.

Hence the set fix f is the intersection of 0~ with a complex vector
space; then it is convex and a fortiori connected. Thus the set of fixed

points of an element in Aut 6D is either connected or empty.
Throughout the following, the space of all holomorphic

maps of (D in en will always be endowed with the topology of uniform
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convergence on compact sets of (D. By Montel’s theorem, every se-
quence in 6D) contains a convergent subsequence.

In the following we shall consider the iterates of an automorphism
of W. In the case of the euclidean ball 4~z = {z E en: Izl  1} we have the
following theorem due to Herv6:

THEOREM 2.1. Let f E Aut dn - {id}, then
a) if f has a fixed point the sequence does not converge

and all coverging subsequences converge to an automorphism of W;
b) if f has no fixed points in dn then If ’} converges uniformly

on compact sets of dn to a constant function, mapping An to a point
in 9A.

For a proof see [Herv6 1].

In the case of 6D a weaker result holds, which turns out to be the
best possible in this direction.

THEOREM 2.2. Let f E Aut W - {id}, then
a) if f has a fixed point in 0~, the sequence does not converge

and all converging subsequences converge to an automorphisms of
,

b) if f has no fixed points in 6D; then does not necessarily
converge. If a subsequence of converges to a limit function h such
that h(W) n cf "* 0, then h is constant. Any converging subsequence
converges to holomorphic maps from (D into a6D.

REMARK.. Before proving the theorem we give an example show-
ing that it is possible that f has no fixed points in W and the sequence

does not converge.

The domain is biholomorphic to d x d via the map

Let h: A X A defined by

where 0, a. E R. Then fix h = 0.
Obviously, if (k then does not converge, but
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there is a converging subsequence whose limit function is ;

that maps d x d in f 1} x L1.

PROOF.. Since 6D is a ball (hence a taut domain), the limit function
of a convergent subsequence in Aut 6D is an element of Hol (6D, W) or a
holomorphic map of 6D into am.

Applying this result to convergent subsequences of { f n }, say
}, and again to a convergent subsequences of {f -li }, we obtain

that the limit function h is either an automorphism of W or is such that
maps (D into a6D.

If f has a fixed point in W this is a fixed point for all iterates and
therefore h is an element in Aut(J). Moreover, converges to h,
then converges to hf ~ h, and therefore f n does not con-

verge.
If f has a fixed points in 6D three cases are possible: i) the limit func-

tion h is in Aut 6D, ii) h(6D) n 2 =1= 0, iii) c L.

Since (D is convex the first case can not occur, according to a result
of M. Abate; in fact for convex domains ,f has no fixed points in W » is
equivalent to «f is compactly divergent». A proof of this theorem can be
found in [Abate 2], together with a detailed exposition of the general
theory of iterates.

In the second case, let zo E 6D be such that 
X E (see p. 161) and let 1J: W --~ _C, be defined by p(z) h(z);
this is a holomorphic map c:i and 9’(zo) = 1. By the maximum
principle is constant, then h(z) = h(zo ) for all z E (D.

In the third case we have h(6D) c a(J) - 2 and nothing more can be
said in general on the behaviour of h.

We recall a few facts concerning the notion of complex geodesic,
that is often an important tool in the investigation of fixed points of
automorphisms.

If V is a bounded convex domain in C’~, the Kobayashi and the
Caratheodory pseudodistances coincide and they induce on V the natu-
ral metric topology, hence V is a complete domain with respect to these
distances, and V is taut. If V is the unit ball in a Banach space with re-
spect to a continuous norm p we have kv (0, z) = ~(z)), where m is
the Poinear6 distance on the disk 4.

DEF. 1. A complex geodesic for the Kobayashi metric is a map
1J: 4 --~ V that is an isometry for the Kobayashi distance.
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We recall here the following theorems, due to [Vesentini 2, 3]
and [Vigu6 2].

THEOREM 2.3. and rp E Hol (L1, V). If

1) Kv (~C~~ ~(~) = xa (~,1) or
2) there is v such that p(E) = kA (v, E), then p is a

complex geodesic.

THEOREM 2.4. Two complex geodesics ~ and q have the same im-
age if and only if there is an automorphism 1 of 4 such that

p o l = y.

THEOREM 2.5. If V is a bounded convex domain in Cn then for ev-

ery pair there is a complex geodesic u such that

x, Y E p.(L1).

We start with the following

LEMMA 2.6. Let f E Hol (V, V) and x, y in fixf. Let x be a complex
geodesic such that x, then c fixf.

PROOF.. By Schwarz’s lemma, if a holomorphic map of 4 into 4 has
two fixed points then it is the identity map.

By Theorem 2.3 fop. is still a complex geodesic whose range coin-
cides with that of p.. Then, by Theorem 2.4, there exists 1 E Aut d such
that f o u = u o l.

Let a and b be points of 4 such that p.(a) = x and = y.
Then V(iG» = = f(x) = x, and V(ib» = = f(y) = y.

Since the isometry p. is one-to-one l(a) = a and t(b) = b, and so

1 = id.
This implies that fop. = p., i. e. is contained in the set of fixed

points of f.

The set of fixed points of f E Hol (V, V) is connexted if V is a bounded
convex domain in C’~, as a consequence of a result of J.-P. Vigue where-
by for every pair of fixed points x and y of f E Hol (V, V ) there is a com-
plex geodesic whose range contains x and y and is contained in the set
fix f (see [Vigu6 1,2]). This result extends the one we found directly in
the case in which f is in Aut(J).

It is interesting to ask whether there is more than one complex
geodesic whose image contains two fixed points and is contained in the
set fix f. There is no restriction in choosing 0 as one of the fixed points.
By Schwarz’s lemma it is obvious that, if x is a fixed point different
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from 0, the linear map ~(z) _ is a complex geodesic such that
0, x and is contained in fix f; from now on we call this map
the linear geodesic.

DEF. 2. Let IA a complex geodesic whose range contains 0 and x.
We say that u is normalized if = 0 and = x. We note that a
normalization as in the above definition is always possible: in fact if ~ is
a complex geodesic whose range contains 0 and x we can always find
a. E Aut L1 such that t/J 0 a is normalized (because A is homogeneous and
(Aut A)o - S 1); viceversa two normalized complex geodesic whose
ranges coincide, coincide too.

From now on we set y = (1 lp(x)) x. If y is contained in the Shflov
boundary the unique normalized complex geodesic tA whose range con-
tains 0 and x is given by the linear one (for the proof see [Vesenti-
ni 3]).

Then, if is a point in the Shllov boundary, there
exists only one normalized geodesic whose range contains 0 and x.
Hence we turn our attention to the case in which y is not a point in the
Shflov boundary.

In the first section we stated

LEMMA 1.3. For all z E Cn there exist e E R, such that
e " Az 0, ... , 0) where a, b E R + and

If z E then À1 (z) = 1, hence a E [0,1] and b =1- a; moreover z is
in the ShQov boundary if and only if a = 0, 1.

We set 4 (r) = {2: E C: Izl  r} .

PROPOSITION 2.7. Let y E am - 2. If A E 0(n) and 0 E R are such
that e " Ay = t (a, i(l - a), 0, ... , 0), where a E (0, 1), then y + 4 (r) z c Q~
with r &#x3E; 0 if and only if~=~’~A’~(l,-~0,...,0).

PROOF. It is enough to establish the proposition for

Let z ..., zn ) be such that y + 4(r) z c (D.
It is easily seen that for all

(ul , ... , un ) in C n and that the equality holfs if and only if un = 0.
Hence implies that y + d (r) t (z 1, z2 , 0, ... , 0) c W .
Passing to d x j via the biholomorphism (2.1) we obtain that

’(Zl, z2 ) = «(1, -i), for some a E C.
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As we have that z3 = ... zn = 0,
and this proves the proposition.

PROPOSITION 2.8. Let f E Aut 6D. Suppose 0, x E fix f and y =
= (1/p(x)) x is not on the Shflov boundary. If the point z * 0 such
that

is in fix f, then there is a normalized complex geodesic different from
the linear one, joining x and 0, whose range is contained in fixf. Other-
wise the unique normalized geodesic whose range contain 0 and x and is
contained in fix f is the linear one.

We first open a paranthesis and consider convex circular domains:
let V be a bounded convex circular neighborhood of 0 in Cn and let
y E av.

The family 9’ = {P convex circular subset of Cn such that y + P c V}
has a maximal element P( y).
We indicate by p the Minkowski norm associated to V. Then we

have the following

THEOREM 2.9. Let f E Aut V such that 0, z e fix f. Then fix f n

} if and only if there is a complex geodesic different

. from the linear one, whose range contains x and 0 and is contained in

fix f.

PROOF. As V is a bounded circular domain such that 0 E V, then f
is linear by Cartan’s lemma. In [Gentili 1], it is shown that, for all

holomorphic and such that h(0) = h( p(x)), the map

E - E/p(x) x + h(E) is a complex geodesic whose range contains 0 and x.
Viceversa, if 1J is a normalized complex geodesic whose range contains

0 and x, then there exists a holomorphic map h: L1 -") U 
01 p X

such that = h(p(x)) = 0 ~ 0 + h d 

, choose ’j and

T: L1 -") L1 holomorphic such that c(0) = c(p(z)) = 0, T =1= 0: the map
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x + ~ ~ w is a complex geodesic whose range contains 0
and x. p x 

C)

Moreover

hence and is a linear geodesic, that proves the first
assertion.

Viceversa, if there is a complex geodesic different from the linear
one, with the properties 0, x c fixf, we find a holomorphic map

such that h(0) = h(p(x)) = 0, h * 0 and 1J(Ç") =

Then 1J( Ç) for all ~ E L1 implies that

As f°lx f is convex, fix
B 1.- ... - - , /

Then Proposition 2.8 becomes an easy corollary of Theorem 2.9.

3. Fixed points on the boundary 

Since (D is the open unit ball of en for the norm p defined by p2 (z) _
then W is homeomorphic to 4n and the homeomor-

phism can be extended to 6D. Because of the Brouwer theorem and of
the results of § 1, we have

THEOREM 3.1. Let f E Aut W be such that Then the

unique holomorphic extention of f to a neighborhood of 6D has at least a
fixed point in a6D.

Now we state a classification of elements in Aut D which have no
fixed points in 6D.

THEOREM 3.2. Let f E Aut 6D be such that fix f= 0 and let g E G be
such that = f. If both 1 and -1 are eigenvectors of g whose geomet-
ric multiplicity does not exceed 2, then the set of fixed points of f in 6D
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is given by p isolated points and by the intersections of r complex
affine lines with W. If neither 1 or -1 are eigenvalues for g then
0p+2~4.

We begin with some preliminary observations about the state-
ment. 

__

Set Fixf = {z E 6D: f (z) = z}.

REMARK 1. We have proved that, if f E Aut 6D (or even

f E Hol (W, 6D)) and then the set fix f is connected. This is not
necessarily true for Fix f if f E Aut 0~. Let g E G be expressed by

where « E 1~. The fixed points of are the solutions of the system

(3.1) zl cosh a + w + 1 sinh a =

where, as before

Equations (3.1 ) and (3.2) imply that, if

Then 2 = 2(z, - iz2 )2 and therefore
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If a. =1= 0, then ± sinh a + cosh « ~ ± 1, using this we see that, if a. =1= 0,
~3=...=~=0. 

_

The set of fixed points of P’g in W is

we have two components (zi - iz2 = 1 and zi - iz2 = -1) which are the

intersections of 6D with two parallel complex affine lines.

REMARK 2. If z is a fixed point in £0, setting as before

has the following properties:

Viceversa, every eigenvector of g satisfying (3.5) gives a fixed point
of f in (D.

This method imitates the one used by Hayden and Suffridge in the
case of the open unit ball in a complex Hilbert spaces, see [Hayden-Suf-
fridge 1], leading to the following

THEOREM 3.3. Let B be the unit ball of a complex Hilbert space,
an let F E Aut B, unit ball of and Hilbert space_. If F has no fixed points
in B, then its (unique) continuous extention to B has at least one and at
most two fixed points in aB.

DEF.. We say that
+ &#x3E; 0, is normalized if

Notice that, for every point in W, the representation (3.4) yields a
normalized vector which satisfies (3.5), viceversa every normalized
vector in which satisfies condition (3.5) corresponds to a point
in W.

REMARK 3. The condition on the eigenvalues 1 and -1 is essen-
tial, as shown by the following example, in which the set of fixed points
in contained in the Shflov boundary and contains a manifold of real di-
mension k - 2 where k = 2, ... , n.
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Let

where 
The eigenvalues of g are: cosh a - sinh a, cosh a + sinh a, 1 with multi-

plicity 1~ and -1 with multiplicity n - k. The eigenvectors associated to
cosh a - sinh a and cosh « + sinh a are ... 0, -1 ) and t ( 1, 0, ... 0, 1).
A base for the eigenvectors associated to 1 is e2 , ... , e~ , en + 2 , while for
-1 we can en . 

_

We now look for the fixed points of ~’9 in W coming from eigenvec-
tors associated to 1 and - 1: first of all the normalization condition ex-
cludes all eigenvectors associated to -1 and implies that, if
v = t (o, v2 , ..., vk , 0, ... , 0, vn + 2 ) is a normalized eigenvector associated to

1, then vn + 2 = -i. This implies then

z = t (o, v2 , ... , vk , 0, ... ) is of the form where x E f 0 } 
x {0} and = -1. Thus the set of fixed points contains iS k - 2. As both
cosh a - sinh « and cosh a + sinh a correspond to a point, the set of fixed
points in W consists of two isolated points and a sphere 

PROOF (of the theorem).. Coming now to the proof of the theorem
we shall denote by S and hs not only the quadratic and hermitian
forms, but also the scalar products they induce. Let f x E en + 2 :
hs (x, x) = 0); if x is an eigenvector of g with eigenvalue ~ and lçl =1= 1,
then x must be in tf because 9 preserves hs.

If y is another eigenvector with eigenvalue and 1 then

hs (x, y) = 0 for the same reason.
As hs has Witt index 2, i. e. the dimension of a maximal complex

subspace on which hs vanishes identically is 2, for every eigenvalue
whose modulus is different from 1 there are no more than two linearly
independent eigenvectors.

Moreover if x and y are two eigenvectors with eigenvalues ~ and a
respectively and if both of them are not contained in the unit circle,
then X, Y If ~ ~ 1, then hs (x, y) = 0, this implies that there are no
more than two eigenvalues which are not conjugated under the involu-

(because eigenvectors associated to different eigenvalues
are linearly independent).
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Let us consider now the quadratic form S: if x, and J are as

above, we must have, as g preserves S, either = 1 or X E 8, where
E = {u E Cn+2|S(u, u) = 0}.

Moreover if 1, then S(x, y) = 0.
Hence we can divide the distinct eigenvalues in three sets, which

we list together with bases of corresponding eigenvectors:

1 with a base of eigenvectors pl , ... ple
-1 with a base of eigenvectors ~i , ... 

with a base of eigenvectors y with ol * 0 (mod. 7r),

with a base of eigenvectors qf, ...q:8’ with 0s # 0 (mod. 7r),
11 with a base of eigenvectors 

11 with a base of eigenvectors uf , ... u4 ,

where I lj # 1. (It is possible that some of these are not present).
By the previous observations there are no more than 4 eigenvalues

whose modulus are different from 1, and thus a ~4. Moreover we can
suppose that 11 is conjugated to l2 and l3 to 14 (if they exist). We can say
that tj is 0, 1, 2 and, if we admit rearrangements, we can think that
t1 ~ ~2 t3 and t4 ; if t1 is 2 then t3 and t4 must be 0 because hs has Witt in-
dex 2.

What we saw before implies that S is identically 0 on the vector
space of eigenvectors associated to any one of the eigenvalues in the
second or in the third set. To examine fixed points for the transforma-
tion ~’9 we need the following

n

LEMMA 3.4. Let x and y in F be normalized and 2: 2  19
n k=l I

2: 2  1. Let us suppose that the vector space spanned by x and y
k=1

is contained in 8, that is S(x, x) = S(x, y) = S(y, y) = 0. If the complex
affine line j oining x = t (xl , ... , xn ) and P = t (yl , ... , Yn ) in C n does not in-
tersect W, then hs (x, y) = 0.

PROOF.. If both x and y are contained in the Shflov boundary, re-
placing if necessary x and y by Ax and Ap, for a suitable A E O(n), we
can suppose that x = e1

Then we can apply the linear biholomorphism ~

d x d and (J)2. If the affine line joining and I does not inter-
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sect d x 4, then p ± 1, = 0.

gives

gives

so hs (x, y) = 0 in both cases.
If at least one of the two vectors, say x, is not in the Shilov bound-

ary, then 2 2  1. Every point on the complex affine line defined
k=1 1

by x and y is normalized and in a neighborhood U of x we still have
n

E IXk + t(Yk - xk)12  1 and S(x + t(y - x), x + t(y - x)) = 0.
k=1

If the affine line joining x and y does not intersect W, we must have
hs (x + t(y - x), x + t(y - x)) &#x3E; 0 in the neighborhood U.

As x amd y are in 1F we have hs (x + t(y - x), x + t(y - x)) _
= 2 Re (ths (x, y)) + Re hs (x, y) &#x3E; 0: the fact that this is not negative in
a neighborhood of t = 0 yields hs (x, y) = 0.

We now examine the three sets of eigenvalues.
We start with a trivial remark whereby the vector space spanned by

two eigenvectors u and v associated to different eigenvalues contains
no eigenvector which is not collinear to u or v; hence we are mainly in-
teressed in the case of eigenvalues with geometric multiplicity greater
than 1.
We have seen that, if the third set of eigenvalues contains an eigen-

value,X with geometric multiplicity 2, this set contains only A and A-’
and A-’ has multiplicity less than two. Hence the third set yields at
most four isolated fixed points or the set consisting of the intersections
of 6D with one or two complex affine lines.

Consider now the second set: as before we are mainly interessed in
the case of geometric multiplicity greater than 1.

Let vl , ..., vj be a base of eigenvectors associated to eie. We only con-
sider affine combinations representing points in (D, i.e. normalized and
satisfying conditions (3.5).
We can suppose that v, satisfies these properties: if it is the unique

vector in the vector space spanned by vl , ... , vk which satisfies (3.5)
then we change eigenvalue; if this is not the case we choose V2 satisfy-
ing (3.5): on the vector space spanned by v, and V2 S vanishes identical-
ly (because 1). By Lemma 4 we have hs (vl, v2 ) = 0.

Hence, if w is a normalized vector verifying (3.5) and is not
an affine combination of v, and v2, the form hs restricted to the
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vector space spanned by via, V2 and w is identically 0. But this
is not possible because hs has Witt index 2.

Every eigenvalue of the second set yields an isolated fixed point or
the intersection of 6D with a complex affine line; in the last case the geo-
metric multiplicity of the eigenvalue must be two.

The bounds we posed on the geometric multiplicity of eigenvalues 1
and -1 ensure that each of them yields the intersection of 6) with com-
plex affine line or an isolated fixed point, so we have proved the first
part of our assertion.

Now we suppose that ... , u 4 are linearly independent eigenvec-
tors associated to ~i, ...,~4 which are eigenvalues different from ± 1
and that each ui corresponds to a fixed point of f in 

We have seen that ,

~ 

We know that ,
1.

Moreover we have proved that if u and v are eigenvectors associat-
ed to the eigenvalue li ~ ± 1 and correspond to fixed points of f in 36D,
then hs (v, u) = 0 (if it is obvious, if 1fJ.1=1 see Lemma 4).

Let u be an eigenvector corresponding to a fixed point of f in 96D, and
let &#x3E; be the associated eigenvalue of u. Moreover we suppose that u does
not belong to the complex affine lines spanned by any pair of uJ.

The conditions (3.5) are S(u, u) = 0 and hs (u, u) = 0. If we choose u
n

normalized, then E lUk 2 ~ 1.
k = 1

We now show that the fact that u does not belong to a complex
affine line spanned by some uk and ul yields a contradiction.

We have two possible cases.

1) = fJ.2 "* fJ.3 = 44 - Since we saw before that there is no eigen-
value different from ± 1 with more than 2 linearly independent eigen-
vectors, then u =1= fJ.3 .

Moreover by Lemma 4 U2) = U4) = 0.
1, then hs (u, u j) = 0, j = 1, 2, hence u, u 1 and U2 are three

linearly independent eigenvectors and they span a vector space of com-
plex dimension three which is totally isotropic for hs. However this is
not possible because hs has index 2; thus ,u,ul = 1.

With the same method we prove that = 1, and that implies uu1 =
= 1 1AIA3 whence fJ.3 but this is a contraddiction.

2) We are left to consider the case in which there are at least
three different which we call ,u 1, fJ.2 , u3. If u4 coincides with one of

them, say fJ.3, we get hs (u 3 , U4) = 0 by Lemma 4. As ,u 1 ~ ,u2 , it is not
possible that = 1 and IA2 IA3 = 1, so one of them is different from 1, so
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the three vectors u 1, U 3 (if =1= 1) or u 2, u 3 and u 4 (if fJ.2¡i3 ~ 1 )
span a vector space of dimension three which is totally isotropic for hs
and this is impossible.

Then the uj are all distinct, and thus we can find at least three of
them, such that W-Aj ~ 1. As they are all different, we can
find two of them for which ~ l, with j =1= k. Hence u, uk and u3 span
a vector space of complex dimension three on which hs is identically 0,
and this is a contradiction.

So we have proved that there are at most four linearly independent
eigenvectors associated to eigenvalues different from 1 and -1; this
implies the bound p + 2r ~ 4, because a point corresponds to an eigen-
vector, while the intersection of a complex affine line with W to a vector
space of dimension 2 in Cn + 2.

REMARK 4. The key-point in which we use the fact that f has no
inner fixed points is Lemma 4: in fact in the proof of the theorem we
never used the assumptions that f has no fixed points in (J) except in the
proof of the lemma.

Notice that, in the case in which f has fixed points in W, Lemma 4 is
not true. Consider, for example,

where parenthesis indicate elements that exists iff n is odd.
Let us choose 0 = 82 . Then u = el + en + 1, and are

two normalized eigenvectors corresponding to two fixed points on the
Shflov boundary with hs (u, v) _ -1; while it is evident ~9 (0) = 0.
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