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Kasch Bimodules.

D. N. DIKRANJAN - E. GREGORIO - A. ORSATTI (*)

0. Introduction.

Let A and R be two rings with a non zero identity. Denote by 5lA the
full subcategory of Mod-A consisting of all submodules of the finitely
generated modules in Mod-A and by Rsl the analogous subcategory of
R-Mod. Observe that 5lA and RS are finitely closed.

Let A be a Kasch ring, i. e. a ring with a perfect duality [K]. It is
easy to check that the functors HomA (-, AA) and HomA (-, AA) induce
a duality between 5lA and AM

On the other hand, by well known results of Azumaya [Az], if AA
and RR are artinian, then every duality between two finitely closed
subcategories of Mod-A and R-Mod, both containing all finitely gener-
ated modules, induces a duality between TA and RIT-

This paper is devoted to the study of the bimodules RKA with the
property that the functors HomA ( -, KA ) and HomR (-, RK) give rise to
a duality between SA and Such a bimodule will be called a Kasch bi-

Since ~’A and Rs are finitely closed subcategories of Mod-A and
R-Mod respectively, the above duality is a special case of Morita duali-
ty, thus RKA is a Morita bimodule, i. e. RKA is faithfully balanced and KA
and RK are (injective) cogenerators. Moreover A and B are semiperfect
rings.

This paper is subdivided into three parts. In the first part we give
the following characterization:

(*) Indirizzo degli AA.: DIKRANJAN: Institute of Mathematics, Bulgarian
Academy of Sciences, 1090 Sofia (Bulgaria); E. GREGORIO, A. ORSATTI: Diparti-
mento di Matematica Pura e Applicata, via Belzoni 7, 35131 Padova (Italy).
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Let RKA be a Morita bimodule; then RKA is a Kasch birrcodule if and
only if RK and KA are finitely generated, if and only if AA and RR are
l.c.d. (i.e. linearly compact in the discrete topology) and with essential
socle. Moreover, if RKA is a Kasch bimodule and if AA is a cogenerator
of Mod-A, then A is a Kasch ring.

In the second part relations between Kasch bimodules and semiper-
fect rings are investigated. In particular, we obtain a generalization of
Azumaya’s Theorem 6 in [Az] in the following way:

Let A be a ring. Then there exist a ring R and a Kasch bimodule
RKA if and only if:

1) AA is l.c.d. with essential socle;
2) Mod-A contains a finitely generated injective cogenerator.

If A is commutative, then only condition 1) suffices by a very recent
result of Anh [An].

Moreover, in this part we give the following form of Morita

equivalence:

If F: TR is an equivalence, then F extends to a Morita equiva-
lence between Mod-A and Mod-R.

This fact will be substantially used in the sequel.
In the third part we obtain our principal results:

Let RKA be a Kasch bimodule and let B(R) and B(A) be the basic
rings of R and A. Then there exists a uniquely determined Kasch bi-
module B(R)HB(A) where B(R)H is a minimal injective cogenerator of
B(R)-Mod and similarly for HB(A).

Using this fact, we get our main result which can be summarized as
follows:

Let RKA be a Kasch bimodule with R and A basic rings aycd assume
that AA is a cogenerator of Mod-A. Then

We end this introduction with some notations and conventions. All

rings considered in this paper have a non-zero identity and all modules
are unital. For every ring R we shall denote by Mod-R (resp. R-Mod)
the category of all right (resp. left) modules over R. The symbol
MR is used to emphasize that M is a right (left) module. All cate-
gories and functors will be additive. Every subcategory of a given cate-
gory will be full and closed with respect to isomorphic objects.
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Recall that a subcategory ~A of Mod-A is finitely closed if ~ is
closed under taking submodules, homomorphic images and finite direct
sums. We assume that the reader is familiar with the elementary prop-
erties of linearly compact rings and modules in the sense of Leptin [L].
We denote by Z the ring of integers, by Q the field of rationals and by
N the set of positive integers.

1. Finitely generated injective cogenerators.

1.1. Let A and R be two rings. A bimodule RKA is called a Morita
bimodule if RKA is faithfully balanced and both KA and RK are injective
cogenerators of Mod-A and R-Mod respectively. This definition is moti-
vated by the following well known result of Morita [Mo]: The bimodute
RKA is a Morita bimodule if and only if the subcategories 8A of Mod-A

of R-Mod consisting of K-reflexive modules are finitely closed
and contain all finitety generated modules.

If RKA is a Morita bimodule, then by a known result of Muller [Mu]
AA, RR, KA and RK are 1. c. d. modules (i. e. linearly compact in the dis-
crete topology). In particular, the rings A and R are semiperfect.

1.2. Let RKA be a Morita bimodule. Then the subcategory TA of
Mod-A consisting of all submodules of the finitely generated modules is
contained in Similarly Rtf In general the Morita bimodule RKA
does not induce a duality between STA and although TA and ~ are
finitely closed subcategories of Mod-A and R-Mod respectively.

1.3. DEFINITION. a) Let RKA be a Morita bimodule. We say that
RKA is a Kasch bimodule if the functors H, = HomA (-, KA) and H2 =
- HomR (-,~7~) give a duality between 5lA and Rtf.

b) Let A be a ring. We say that A has a right Kasch duality if
there exist a ring R and a Kasch bimodule RKA.

c) Recall that a ring A is said to be a Kasch ring if both AA and AA
are injective cogenerators of Mod-A and A-Mod respectively.
We shall see in the sequel that if A is a Kasch ring, then the bimod-

ule AAA is a Kasch bimodule.

1.4. PROPOSITION. Let RKA be a Morita bimodule. The following
conditions are equivalent:

(a) RKA is a Kasch bimodule;
(b) KA and RK are finitety generated;
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(c) AA and RR are finitely cogenerated;
(d) AA and RR are l. c. d. with essential socle.

PROOF. (b) ~ (c) It is well known that the assignment (I)
defines a lattice antiisomorphism between the lattice 2(AA) of right
ideals of A and the lattice of submodules of RK.

(c) ~ (d) is evident.

(a) ~ (b) KA is a submodule of a finitely generated module
FA E Mod-A. Since KA is injective, KA is a direct summand of FA. Thus
KA is finitely generated.

(b) ~ (a) Let M E TA There exists an exact sequence

in Mod-A such that F is finitely generated, i. e. there exists an exact se-
quence A n ~ F -~ 0. Dualizing we get hence

Dualizing (1) we obtain the exact sequence

therefore HI (M) e R6l D

1.5. COROLLARY. Let A be an arbitrary ring. Then AAA is a Kasch
bimodule if and only if A is a Kasch ring.

1.6. The following proposition shows a further connection between
Kasch bimodules and Kasch rings.

1.7. PROPOSITION. Let RKA be a Kasch bimodule and assume that
AA is a cogenerator of Mod-A. Then A is a Kasch ring.

PROOF. Mod-A has finitely many non-isomorphic modules since A is
semiperfect. On the other hand AA is a cogenerator of Mod-A by hy-
pothesis. Then, by Theorem 12.5.2 from [K], AA is an injective cogen-
erator of Mod-A. Since AA is l. c. d. with essential socle by Proposition
1.4, we can apply Theorem 2.10. a) from [DO] (due to Claudia Menini,
see also [Me]) to conclude that AA is quasi-injective and consequently
injective. Again by Theorem 12.5.2 from [K], every simple module in
A-Mod is isomorphic to a left ideal of A. Thus AA is an injective cogen-
erator of A-Mod. Hence A is a Kasch ring. D

The following corollary is a consequence of a well known property of
Kasch rings.



151

1.8. COROLLARY. Under the hypotheses of the above proposition, A
induces a duality between SA and As defined by means of the linear
forms. Consequently R~ and AT are equivalent categories.

1.9. PROPOSITION. Let A be right artinian ring. Then A admits a
Morita duality with a ring R if and only if A admits a Kasch duality
with R. In this case 5lA coincides with the category of finiteLy generated
modules in Mod-A and similarly for Rtf.

PROOF. By a result essentially due to Azumaya [Az] (see e.g.
Tachikawa [T], Theorem 3.8), A has a right Morita duality if and only if
Mod-A has a finitely generated injective cogenerator.

1.10. COROLLARY. Every commutative artinian ring admits a

Kasch duality with itself.

PROOF. It is enough to show this for a local commutative artinian
ring with maximal ideal m. By a well known result of Matlis [Ma], the
module KA = E(A/rrt), the injective envelope ofA/m, is a Loewy module
with finite Loewy length and finite Loewy invariants. Therefore KA is
a module with finite length in the usual sense. Moreover End(KA) =
= A.

1.11. EXAMPLE. Let RKA be a Kasch bimodule. In general, the
rings R and A need not be self-injective, as the following example
shows.

Let A be a commutative local artinian ring with maximal ideal m,
and set KA = E(A/xrt). Assume that A is self-injective and observe that
Soc(A) is essential in A, so that AA is an injective cogenerator of Mod-
A. We will show that, in this case, Soc(A) must be simple. Indeed, let n
be the length of Soc(A). Then A = E(Soc(A)) = Kn. Dualizing we get
K = HomA (A, K) = HomA (Kn , K) = A" = Kn and this is possible if
and only if n = 1, so that Soc(A) is simple.

This is not true in general: let k be a field and set A = k X 1~ 2, the
trivial extension of the module k 2 by the ring k.

1.12. EXAMPLE. Let RKA be a Kasch bimodule. In general Soc(AA)
and Soc(RR) do not contain a copy of each simple module in Mod-A or in
R-Mod respectively. Consider the following example.

Let Z2 be the field with two elements and set
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the ring of 2x 2 upper triangular matrices over Z2. Then A is both left
and right artinian and both Mod-A and A-Mod have a finitely generat-
ed injective cogenerator (for instance, an injective cogenerator of
Mod-A is Homz (A, (a/Z)). Thus, by Proposition 1.9, A admits a left and
a right Kasch duality.

Consider the maximal two-sided ideal

Clearly there is a monomorphism of right A-modules A/m - AA if and
only if there exists a E A, a # 0, such that arrt = 0. Let us see that such
an element does not exist. In fact, let a = x y with x, y, z E Z2. Thenarrt = 0 yields 

hence x = y = z = 0. Consequently a = 0.

1.13. EXAMPLE OF A NON ARTINIAN COMMUTATIVE KASCH RING.
Let R be a noetherian commutative local ring with maximal ideal m and
assume that R is complete in its m-adic topology. Set E = E(R/m): by
well known results of Matlis [Ma], R = EndR (E). Consider the trivial
extension

Clearly A is a commutative local I,c,d, ring and moreover A is subdi-
rectly irreducible. Then, by an important result of Anh (cf. [An], Theo-
rem 7), A is self-injective. Therefore AA is an injective cogenerator of
Mod-A.

This example generalizes the one in ex. (11) in [K], Chap. 12.

1.14. Other examples of the kind given in 1.13 can be obtained in
the following way. Let A be any commutative I,c,d, ring. For a E A,
a ~ 0 and let I be an ideal of A which is maximal with respect to the
property a I I. Then AII is an 1. c. d. ring with simple and essential so-
cle. On the other hand, by the result of Anh, A/I is self-injective. Thus
A/I is a Kasch ring.
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2. Kasch bimodules and semiperfect rings.

We begin with a theorem which gives a necessary and sufficient
condition for a ring A in order to have a right Kasch duality.

2.1. LEMMA. Let A be a ring which is 1. c. d. on the right, KA an in-
jective cogenerator of Mod-A with essential socle and R = End (KA ).
Then the following conditions are equivalent:

(a) KA is l.c.d.;
(b) RK is an injective cogenerator of R-Mod;
(c) RR is 1. c. d.

PROOF. See [DO], Corollary 5.12. 0

2.2. THEOREM. For any ring A the following conditions are equiva-
lent :

(a) A has a right Kasch duality;
(b) AA is L. c. d. with essential socle and Mod-A has a finitely gen-

erated injective cogenerator KA.
If (b) is fulfilled, then, setting R = End (KA), RKA is a Kasch

bimodule.

PROOF. (a) ~ (b) follows from Proposition 1.4. (b) =&#x3E;(a) Set R =
= End (KA ); then RKA is faithfully balanced by Proposition 2.10 of [DO].
The module KA is I.c.d. since it is a homomorphic image of A n, for a
suitable n E N. By Lemma 2.1 and by Müller’s Theorem 1 in [Mü], RKA
is a Morita bimodule. Finally, since AA is finitely cogenerated, RK is
finitely generated. D

When A is a commutative ring, the above theorem can be improved
as follows.

2.3. THEOREM. Let A be a commutative ring. Then A has a Kasch
duality if and only if A is L. c. d. with essential socle.

PROOF. The condition is necessary by the above theorem. For the
sufficiency, note that A, being 1. c. d. , has a Morita duality by the cited
result of Anh. By theorem 3 of [Mü], A has a Morita duality with itself,
so that there is a Morita bimodule AKA. Since A is finitely cogenerated,
KA is finitely generated. R
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2.4. PROPOSITION. Let A and R be two rings, let ~A be the subcate-
gory of Mod-A consisting of all submodules of the finitely generated
modules in Mod-A, let ~R be the analogous subcategory of Mod-R and
suppose that there exists an equivalence

Then the rings A and R are Morita equivalent.

PROOF. Set PR = F(A); then A = End (PR ), so we have the bi-
module APR. Let M E ~’R and consider the natural isomorphisms in
Mod-A

Then G - HomR (PR , - ) (G is naturally equivalent to HomR (P~, 2013)).
We show next that F - - OAP.

The module PR is a generator of FR in categorical sense, since AA is a
generator of Take a module M E ~’R and set

Assume T is a proper submodule of M and consider the canonical

projection

Then 7r "* 0 and since both M and M/T belong to ~’R and PR is a generator
of there exists a homomorphism f : PR - M such that 7rOf=l= 0, a con-
tradiction, since Im f c T = ker 7r. Therefore T = M.

Now assume that M E ~’R is finitely generated. Then by the above
argument there exist n E N and a surjective homomorphism M.
This shows that PR generates all finitely generated modules in Mod-R,
consequently it is a generator of Mod-R. It is well known that in such a
case AP is projective and, in particular, flat. This yields F -== - OAP. In
fact, let L E Then there exist a finitely generated module N E ~’A
and an exact sequence On the other hand,
N OR P is a homomorphic image of PR , for some n E N, so that
L OR P E since ~’R is finitely closed. Thus - (8) R P, restricted to 
is the unique adjoint of G. Now set T = - (8) AP and H = HomR (PR , - ).

Since PR is a projective object in it follows that PR is quasi-pro-
jective in Mod-R. Let us prove now that PR is finitely generated. In
fact, let be a directed family of finitely generated submodules of
PR with PR = lim Vx. Since morphisms, subobjects and quotients in ~
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are the usual ones, we get

There exists (J. E ~1 such that H(V,) = A, then T(A) = TH(V,) == Vp., the
isomorphism being canonical. Then P = V, is finitely generated. This
shows that PR is a quasi-progenerator in the sense of Fuller, because it
is a finitely generated quasi-projective generator of Mod-R. Now by
Theorem 2.6 in [Fu] the functor T defines an equivalence between
Mod-A and Mod-R, so that A and R are Morita equivalent. D

2.5. PROPOSITION. Let the rings A and R be Morita equivalent.
Then

a) if AA is 1. c. d. then also RR is l.c.d.;
b) if Soc (AA) is essential in AA, then also Soc (RR) is essential

in RR;
c) if AA is semiperfect and AA is a cogenerator of Mod-A, then al-

so R is semiperfect and RR is a cogenerator of Mod-R;
d) if A is a Kasch ring, then also R is Kasch.

PROOF. Let

be a Morita equivalence represented by the faithfully balanced bimod-
ule APR = T(A) which is a progenerator on both sides.

a) Follows from Lemma 1.7 in [G].

b) Observe that for every M E Mod-A there exists an isomor-
phism between the lattice 2(M) of submodules of M and the lattice
2(T(M) of submodules of T(M). This observation proves b), since

is essential in M if and only if Soc(T(M)) is essential in T(M). In
particular Soc (PR ) is essential in PR, since Soc (AA ) is essential in AA.
There exists a surjective homomorphism

(n E N), thus RR is a direct summand Therefore Soc (RR) is essen-
tial in RR, since Soc (PR) is essential in PR.

c) First of all we note that the equivalence (2) preserves finitely
generated modules and projective covers, so that R is semiperfect,
since every finitely generated module in Mod-R has a projective cover
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by the respective property of Mod-A. By Theorem 12.5.2 in [K], AA is a
cogenerator of Mod-A if and only if every faithful module in Mod-A is a
generator. Since Mod-R has only a finite number of non-isomorphic
simple modules, we can apply the same theorem to show that RR is a co-
generator of Mod-R. In order to do this it suffices to note that the
equivalence (2) takes generators to generators and faithful A-modules
to faithful R-modules. We give a proof of the latter fact.
A module M EMod-A is faithful if and only if n (kerf: f E

E HomA (A, = 0. Thus for a faithful module M EMod-A

To prove that EMod-R is faithful, it suffices to show that

It follows from (3) that pn = for a submodule X of P ". Clearly (4)
implies

Let r E I. To prove that r = 0, it suffices to show that the element (0, r)
of P’ belongs to the intersection (5). In fact, for p: P n ~ T(M) consider
the restriction pal of p to 101 @72. Clearly p(O~) = pi(0,r) = 0 by the
choice of r, since pal can be considered as an element of

HomR (R, 7W)).
d) Follows obviously from a), b) and c). D

2.6. EXAMPLE OF A NON ARTINIAN NON COMMUTATIVE KASCH RING.
Let A be a Kasch ring and let An (n &#x3E; 1) be the ring of n x n matrices
over A. Then An is Morita equivalent to A and so is a Kasch ring by
Proposition 2.5, but is not commutative since n &#x3E; 1.

3. Reduction of a Kasch bimodule to a Kasch ring.

3.1. Now we need some properties of semiperfect rings (cf. [AF],
Chapter 7, §2).

a) A semiperfect ring B is said to be a basic ring if B/J(B) _
n

Di, where the Di are division rings. Lifting the idempotents of
i=1

B/J(B) to B, we get the following decomposition of B
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where is a complete system of pairwise orthogonal primitive
idempotents of B. The left ideals {Bei : i = 1, ... , n} provide a complete
irredundant set of representatives of the projective indecomposable
modules in B-Mod. For i = 1,..., n EndB (Bei) = ei Bei is a local

ring.
b) Let R be an arbitrary semiperfect ring. Then R is Morita

equivalent to a basic ring B which is uniquely determined up to isomor-
phism. This basic ring will be called the basic ring of R and denoted by
B(R). Let

be a Morita equivalence. Then the modules pro-
vide a complete irredundant set of representatives of the projective in-
decomposable modules in R-Mod.

c) Two semiperfect rings are Morita equivalent if and only if
their basic rings are isomorphic.

3.2. LEMMA. Let RKA be a Morita bimodule acnd suppose that R is a
basic ring. Then KA is the minimal injective cogenerator of Mod-A.

PROOF. Since RKA is a Morita bimodule, Soc (KA ) = Soc and
this is an essential submodule both in KA and in RK. Applying the func-
tor HomA (-, KA) to the exact sequence

we get the exact sequence

Clearly HomA (K/Soc (K), KA ) coincides with the ideal of R consisting
of the endomorphisms of KA vanishing on Soc (KA) i.e. having essential
kernel. Since KA is injective, HomA (K/Soc (K), KA) coincides with the
Jacobson radical J(R) of R. Therefore

where the Di are division rings. This yields that Soc is a direct
sum of pairwise non isomorphic simple A-modules (cf. [DO], Lemma
7.4). 0
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3.3. PROPOSITION. a) If RKA is a Kasch bimodule urith A and R ba-
sic rings, then RK and KA are the minimal injective cogenerators of
R-Mod and Mod-A respectively.

b) Let RKA be a Kasch bimodules and let R aycd A be rings Morita
equivalent to R and A respectively. Then there exists a Kasch bimod-
ule RHA. If R = B(R) and A = B(A) are the basic rings, then is

uniquely determined by the property of being a minimal injective co-
generator on both sides.

PROOF. a) follows directly from the above lemma.

b) Consider a Morita equivalence

Then clearly EndR = A, so we have the bimodule i-?F(RK)A. By
Proposition 2.5, RR is 1. c. d. with essential socle and is a finitely
generated injective cogenerator of R-Mod. By virtue of Theorem 2.2,
i-?F(RK)A is a Kasch bimodule.

Now consider a Morita equivalence

and set

It can be shown as above that the bimodule RHA is a Kasch bimod-
ule.

The uniqueness of H in the case when R = B(R) and A = B(A) fol-
lows from a). 0

3.4. THEOREM. Let RKA be a Kasch bimodule with both A and R ba-
sic rings. The following conditions are equivalent:

(a) AA is a cogenerator of Mod-A;
(b) A is a Kasch ring;
(c) RR is a cogenerator of R-Mod;
(d) R is a Kasch ring;
(e) RK ~-_RR, KA = AA and A i R.

PROOF. (a)=&#x3E;(b) and (c)=&#x3E;(d) follow from Proposition 1.7.

(b) - (c) A is a Kasch ring; by setting E(M) = HomA (M,AA) for
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M E A-Mod, we get a Kasch duality

Taking the composition with the Kasch duality

given by the bimodule RKA, we get an equivalence hence a
Morita equivalence A-Mod --~ R-Mod, by Proposition 2.4. By Proposi-
tion 2.5 c), RR is a cogenerator of R-Mod.

(d) =&#x3E; (e) Let R be a Kasch ring. We show first that RK -RR. By
virtue of Proposition 3.3 a), it suffices to show that RR is a minimal in-
jective cogenerator of R-Mod. By (6) of 3.1 we can write

where are pairwise non isomorphic indecomposable
modules. Since RR is injective with essential socle, also Rei is injective
with essential socle. Thus Rei is the injective envelope of a simple mod-
ule. Since the modules Rei are pairwise non isomorphic, RR is a minimal
injective cogenerator of R-Mod and consequently RK = RR . Since RKA is
faithfully balanced, we have also

This isomorphism implies also AA = KA.
(e) ~ (a) is obvious. D

In contrast with the above theorem we prove the following.

3.5. PROPOSITION. Let A a commutative ring. Then the following
conditions are equivalent:

(a) A admits a Kasch duality;
(b) A is a subdirect products of a finite number of subdirectly ir-

reducible Kasch rings.

PROOF. (a) ~ (b) By Theorem 2.3 A is 1. c. d. with essential socle. On
the other hand, by 1.14 A is a subdirect product of subdirectly ir-
reducible Kasch rings. Since Soc (A) is finitely generated, this product
can be taken finite.

(b) ~ (a) Clearly A is l. c. d. with essential socle, so that Theorem
2.3 applies again. D
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