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On Multipliers of Heineken-Mohamed Type Groups.

B. BRUNO - R. E. PHILLIPS (*)

1. Introduction.

In this paper, a Heineken-Mohamed type group is a non-nilpotent p-
group G (p a prime) in which every proper subgroup is both subnormal
and nilpotent. The first example of such a group was given in [6]. Sub-
sequently, and using a variety of techniques, several authors con-
structed Heineken-Mohamed type groups (see [4], [5], [7] and [9]). In

particular, in [9] Meldrum constructs an uncountable number of iso-
morphism types of Heineken-Mohamed type groups (see also [7]). Mel-
drum’s groups are presented as direct limits of finite p-groups, a fact
which enables that author to determine the isomorphism types of the
groups constructed. All of the groups G constructed in the above refer-
ences are metabelian with ~(G) ~  ~. The question of the existence of
solvable Heineken-Mohamed groups of derived length greater than
two arises in the study of certain minimality conditions (see [2; p.
50]).

In this paper, we will show that if G is any of the p-groups
(p an odd prime) constructed by Meldrum, then the Schur multiplier
M(G) is infinite. Further, it will be shown that if H is any stem
extension of M(G) by G, then H is a three step solvable (and
non-metabelian) group of Heineken-Mohamed type. Evidently, the

(*) Indirizzo degli AA.: B. BRUNO: Dipartimento di Matematica Pura ed Ap-
plicata - Universita di Padova, Via Belzoni 7, 35131 Padova (Italy); R. E. PHIL-
LIPS : Department of Mathematics Michigan State University E. Lansing, MI
48823, USA.

The authors are indebted to Professor H. Heineken for several suggestions
concerning the subject of this paper.
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group H has infinite center, and it is easily seen that the multiplier
M(H) = 0.

The existence of solvable Heineken-Mohamed groups of derived

length greater than three remains an open question. Also, it seems

likely that any metabelian group of Heineken-Mohamed type has infi-
nite multiplier, but we have not been able to verify that this is so. As
will be evident in the sequel, our methods are amenable only to those
groups which are presented as certain direct limits of finite groups; it is
for this reason that we primarily discuss the groups of Meldrum.

2. Description of the groups and statement of the theorems.

We begin with a brief description of Meldrum’s construction. As
much as is possible, we will use the same terminology as that
of[9].

Let x3 be a positive integer satisfying

and 4} a sequence of positive integers with

The sequence {xk ~k ~ 3} is defined recursively by (2.1) and by

For the positive integer k &#x3E; 3, let Ak be the elementary Abelian p-
group of rank xk, and fix a basis of Ak-

The group

is a cyclic group of order pk which acts on Ak via

and

Equivalently, [ac(i, k), bk ] = a(i -1,1~) if 1  i  x,~, and 
-1

It is shown in [9; p. 438] that Bk acts faithfully on Ak-
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Now, let

the function 6k : Dk --~ defined by

is an embedding of Dk into Dkll. The direct limit

is a group of Heineken-Mohamed type, and G({rk }) is isomorphic to
G({(r* )k }) if and only if the sequences and {(r* )k } are equal [9;
pp. 440-444]. Thus, the direct limits G({rk }) provide an uncountable
number of isomorphism types of groups of Heineken-Mohamed type.
These groups are clearly metabelian. Further, Meldrum shows that
G = G({rk }) has a non-trivial center if and only if there is a ko such that
for all k &#x3E; ko, rk = 1. Finally, it is not difficult to show that for odd

primes, the sequence provided by

yields a G({rk }) which is isomorphic to the group constructed
in [6].

We now state our two principal results:

THEOREM 1. For any odd prime p and any sequence as de-
scribed above, the group G = G({rk }) has infinite multiplier M(G): fur-
ther, M(G) is an elementary Abelian p-group.

THEOREM 2. For any of the groups G in Theorem 1, let H be a stem
extension of M(G) by G. Then H is a three-step solvable and non-
metabelian group of Heineken-Mohamed type.

COROLLARY. For each odd prime p, there are an uncountable num-
ber of isomorphism types of p-groups G which have each of the follow-
ing properties.

(i) G is three-step solvable;

(ii) G is non-metabelian;

(iii) G is of Heineken-Mohamed type;

(iv) G has infinite center.
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Theorems 1 and 2 will be proved in the following Section 3; the
Corollary is an obvious consequence of Theorems 1 and 2. The results
embodied in Theorems 1 and 2 remain open for the prime p = 2.

3. Additional notation and proofs.

The essential ingredient of the proof is to apply the direct limit
property of multipliers; i. e. , the multiplier of a direct limit is a direct
limit of the multipliers [1: p. 57]. In Section 3.1, we develop the nota-
tion necessary to apply this tecnique: in subsequent subsections, we
use the methods of § 3.1 in the proofs of the theorems.

3.1. Notation. - The spirit of what follows is as in [8; pp. 296-300].
We assume the notation of Section 2: in particular, we assume that the
sequences and satisfy the conditions (2.1), (2.2), and (2.3) and
that

Throughout, we will use the generators

and relations

as a presentation of Dk-
Thus, if Fk is free on the generators

and the homomor-
phism defined by
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then

Further, there is an embedding defined by

and it is easily checked that the following diagram is commu-

tative

Denote the Schur multiplier of Dk by the above diagram implies
(see [1; Section 1.3]) that the homomorphism

induced by 6k (see 2.7) is given by

Finally, = the multiplier of G, is given by

(see [I ; pp. 56-57]).

3.2. The multipliers of the finite groups Dk. - In the free group Fk,
let

and
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Then Uk/Sk is isomorphic to the elementary Abelian group

Further,

is isomorphic to the Schur multiplier of Ek: also, with

the elements {y2, ~ (k)~ 1  i  j  xk -1} form a basis for the group
Wk. 

’

The automorphism bk of Ek induces an endomorphism Bk of Uk:
here

and

The subgroups U’k and [Sk, Uk ] are both Bk-invariant, and Ak induces
an automorphism (also called on the quotient Wk. In particular, we
have (in additive notation)

The equations (3.2.3) can be stated in the following, sometimes
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more convenient, form:

It has been shown by Evens [3; pp. 170-171] that, for odd primes p,
the group is isomorphic to a subgroup of M(Dk) =
= Rk specifically if we put

the mapping

defined by

is an embedding (this is the only point in all of our proofs where we use
the fact that p is odd). We are able to determine a basis and to derive

. 

other specific information regarding the vector space 
This, in conjunction with (3.2.6), will give considerable information
about the multiplier M(D~ ) and the homomorphism trk of (3.1.3). We
collect various properties of the vector space in the

following

(iii) Consider the element Wr,r+k where 1 ~ k  n - r, r &#x3E; 1. Then
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there are elements {ei(r, k)} in GF(p), the field of p elements, such
that:

where 8k = 2 if k is even, and if k is odd.

(iv) Let {Yl , ... , yt I and { ~l , ... , be sets of positive integers sat-
isfying the following three conditions:

Then i ~ tj is an independent set.

Proof. Throughout this proof we replace by yi,j; recall also
that yi,j is defined for 1 ~ i  j ~ n. The equations (3.2.4) can be trans-
lated to read

Part (i) of the lemma follows easily from (a), (A) and (~). We now move
to the proof of part (iii). Notice first that for all relevant r, = -

- 

Wr,r+l; thus the equations (3.2.7) hold for k = 1 and k = 2 (for all r).
Suppose (3.2.7) true for 2 ~ h  k (with h in place of k in (3.2.7)); we
complete the inductive proof by showing that (3.2.7) holds for 1~. By (a)
above, = r + k, the induction hypothesis yields

Now, if k is even, we have r + Sk-1 = r + 1 + = r + sk, while, if 1~ is
odd, r + s-i  r + 1 + Sk-2 = r + sk. It is then clear that the above sum
is of the desired type and this completes the proof of part (iii).

Observe that part (i), together with the equations (3.2.7), show that
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the set of vectors in (ii) (of cardinality m) forms a spanning set of
If we can show that contains a set of m inde-

pendent vectors (n = 2m or n = 2m + 1), the proof of part (ii) would be
complete. Producing such a set of vectors in appears diffi-

cult, and we instead show that the null space has
dimension at least m. Since Wk/[Wk , and have the same
dimension we conclude from this that = m, and part
(ii) will now follow.

To show that NS((PK - 1)) has dimension at least m, note that the el-
ements Yr of Wk, 1  r  m, defined by

are in The proof of this fact is routine, and we will not pre-
sent it here. The essential observation now is that yr contains the term
±y,,,,, and all other terms in yr are of the form where i  r and

j &#x3E; r + 1. From this observation, it is routine to show that the set

{ yl , ... , y~ } is an independent subset Further, the vec-
tors yr are defined in both of the cases n = 2m and n = 2m + 1. We con-
clude that has dimension at least m, and in view of the re-
marks above, this concludes the proof of part (ii).

For the proof of part (iv), observe that the formulas (3.2.7) together
with the conditions on -(i and ri imply that the equation (3.2.7) for the
vector involves the term while this vector does not occur
in the expression (3.2.7) of any other z , j ~ i. The independence of
the set -- tj follows easily, and this completes the proof of
the lemma.
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LEMMA 2. Let p be an odd prime and use the notation o, f 3.2.5
and 3.2.6.

Then

(i) uk is an embedding and

is a basis of
Im (uk ), while if 1
basis of Im (uk ).

It follows that Im is an elementary Abelian p-group of order
thus, from (i), M(Dk) is an elementary Abelian p-group of order

p m+ 1. .

(Vi) If the sets of positive integers and satisfy the hy-
potheses of (iv) of Lemmac 1, then  i ~ t} is an independent
subset of M(Dk ). 

" ’

Proof. The first statement of (i) is a consequence of a theorem of
Evens [3: p. 1671, as it has been noticed before. Moreover it is not hard
to prove is a subgroup of M(Dk ) of or-
der p and is isomorphic to HI«bk),Ek); further,
~ [s(a(1,1~)), is not contained in Im (uk ). From these con-
siderations and again from the work of Evens [3; Theorem 2.1], (i) fol-
lows. Part (ii) is a consequence of (i) and of part (ii) of Lemma 1, while
part (iii) follows from (i) and from (iv) of Lemma 1; this completes the
proof of Lemma 2.

3.3. The proof of Theorem 1. - Recall that G is the direct limit of the
finite groups Dk with the embeddings ek (see (2.6) and (2.7)) and that
M(G) is the direct limit of the groups M(Dk ) with homomorphisms nk
(as in (3.1.3)). Keep in mind also that Dk is defined only for 1~ &#x3E; 3.

The fact that M(G) is an elementary p-group follows directly from
part (ii) of Lemma 2. We proceed to show that M(G) is infinite.

Let k ~ 3, nk = xk -1, and be the identity map on M(Dk ); for the
positive integer s &#x3E; 1 define nk, s by

To avoid excessive subscripting in this proof, we write
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For any i with 1 ~ i ~ nk -1, and s &#x3E; 1, write

It follows easily from (2.7), (3.1.2), (3.1.3) and (3.2.5) that

Further, it follows from (2.3) that the dimensions nk = xk - 1 satis-

fy

The essential features of the proof of Theorem 1 are embodied
in

For the proof of parts (a) and (b) of (3.3.5), use (3.3.3) and an obvi-
ous induction on s. We prove part (c) also by induction on s. If s = 1, we
have y1 (i) = ~(i -1) + rk+1 and ~nk + rk,l - 1 (see (2.3)). Then

(see (3.3.4)), and this verifies the s = 1 case.

Suppose now that

(by (3.3.4)) and this completes the proof of part (c) of (3.3.5).
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Now that (3.3.5) is established, 3 and consider the set of
vectors

It is routine to verify that

in all cases. We will now prove

is an independent subset of M(Dk+8) and

For the proof of (3.3.6) let il, z2 = il + 1, i3 = ~ + be all the

integers between 
nk 

+ 1 and nk -1 (including endpoints where appro-

priate). Consider now the sets of integers = 1, 2,..., t}, and
= 1, 2, ... , t} : we will prove that Ls is linearly independent by

using (iii) of Lemma 2; in particular we will prove that the two sets
above satisfy, for all s, conditions (a) (b) and (c) of (iv) of Lemma 1. The
independence of Ls easily implies that cardinality assertion.

For the verification of the hypotheses of Part (iv) of Lemma 1 note

that (c) of (3.3.5) gives + 1 and from this it is easy to de-

duce that (a) of Lemma 1 (iv) holds. Notice now that, from our defini-
tion, thus by (a) of (3.3.5) we have ys 
- = ps = rs(ij) - ys(ij), j =1, ..., t, and so (b) of Lemma 1 (iv) also
holds; since (c) of Lemma 1 (iv) is trivially verified, the proof of (3.3.6)
is complete.

It now follows that in the direct limit M(G) = ~k }, the
equivalence classes 

~

form an independent set. Thus, the rank of M(G) must be greater than
or equal to nk/2 - 2 for all k &#x3E; 3. Since the sequence tends to infin-

ity, M(G) is an elementary Abelian group (as a direct limit of element-
ary Abelian groups) of infinite rank, and this concludes the proof of
Theorem 1.
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3.4. The proof of Theorem 2. - Let G be any of the groups in Theo-
rem 1 and M = M(G) be the multiplier of G. Also let H be any central
«stem» extension of M by G (for existence see [1; p. 92]). We view M as
a subgroup of H and so M c H’ n ~(H). The group H is obviously three
step solvable; we show that H" ~ 1. As we have seen in Theorem 1, M
is an infinite elementary abelian p-group. Let S be a finite subgroup of
M of rank &#x3E; 2. There is then a finite subgroup K of H such that

(1) for some 1~ ~ 3, KM/M = K/K n M = Dk and

(2) S ~ K’ n M.

Now, since K n M is an elementary Abelian p-group, K’ n M is a di-
rect factor of K n M; thus there exists X c K n M such that K n M =
= (K’ n M) O X. Now W = K/X is a central «stem» extension of K n M/X
by (K/X)/(KnM/X) 

Moreover n M and S c K’ n M. Thus K n M/X has
rank &#x3E; 2. We will show that W" # 1, which in turn implies that

1.

Using the notation of [1; Prop. 3.4 pp. 92-93], there is a normal sub-
group Tk of Fk satisfying:

(iv) Rk/Tk = K n M/X has rank at least 2 and is a homomorphic
image of M(Dk ).

From Lemma 2 (i) we see that there must be an i such that

we see that [s(a(i,1~)), s(a(i + 1, k))]Tk E Thus W = Fk/Tk is
not metabelian.

To complete the proof of Theorem 2 we must prove that H is a group
of Heineken-Mohamed type. To this end, let N be a proper subgroup of
H; then NM is a proper subgroup of H, for otherwise H’ = N’ c N, and
since M c H’ c N, we have N = H, a contradiction. Thus NM/M is a
proper subgroup of H/M = G and so is subnormal in H/M and nilpotent.
This implies that NM is subnormal in H and, since M is central in H,
that N is nilpotent and subnormal. This completes the proof of Theo-
rem 2.
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