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Carter Subgroups and Injectors in a Class
of Locally Finite Groups.

B. HARTLEY - M. J. TOMKINSON (*)

1. Introduction.

The class of ’l1 of locally finite groups was introduced in [4], where
a theory of saturated formations was developed in an arbitrary sub-
class of ’B1, closed under subgroups and homomorphic images. Many
other results from the theory of finite soluble groups have since been
extended to ’l1, and our main aim here is to develop the basic theory
of Fitting classes and their associated injectors.

The class ’l1 was originally defined as the largest subgroup closed
class of locally finite groups satisfying the conditions:

( U1 ) If then G has a series with

locally nilpotent factors,

( U2 ) I f is any set of primes, then the Sylow (that is
maximal) n-subgroups of G are conjugate in G.

It was shown in [7] that the first condition is redundant, as it is
implied by the second. In fact a much stronger result was obtained
Lemma 4.2. of [7] shows that

(*) Indirizzo degli AA.: B. HARTLEY: Department of Mathematics, Uni-
versity of Manchester, Manchester M13 9PL, England; M. J. TOMKINSON:
Department of Mathematics, University of Glasgow, Glasgow G12 8QW,
Scotland.
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LEMMA 1.1. If G E ’l1, then G has a series of normal subgroups

with N locally nilpotent, A/N abelian of f inite rank, BIA abelian with
f inite primary components, and G/B finite.

In particular, GIN is hyperfinite, in the sense that it has an ascending
series of normal subgroups with finite factors.

We shall need to consider more general series. Let S2 be a totally
ordered set. A series of type S~ of a group G is a set ( ZTa, a E Q)
of pairs of subgroups of G, indexed by S2, such that

Such a series is called a normal series of G if the subgroups Ua, Ya
are all normal in G. If the index set Q is well ordered, then can be
taken to be a set of ordinals and the above reduces to the usual concept
of an ascending series, with Ua = and, for limit ordinals (J,

A subgroup H of G is said to be serial in G (written H ser G) if H
is a member of some series of G, and ascendant in G (written .H~ asc G)
if .H~ is a member of some ascending series of G. If .H’ is serial in a

locally finite group G and NaG, then HN ser G (see [6], and also [5,
Corollary E1] ). This makes it easy to see that a serial subgroup of a
hyperfinite locally finite group is ascendant, y and hence that if G is
locally finite, GIN is hyperfinite and H ser G, then HN asc G.
This remark will be crucial in the proof of our main result on in-
jectors.

For our results on injectors we work within an arbitrary but fixed
subclass K of U satisfying

(Kl) K is closed under taking sicbgrou,ps.

(.g2 ) If G e K and cyclic group of prime order p, then G X Cp E K.

(Classes of groups, as usual, are taken to be closed under isomorphisms
and to contain the trivial groups.) It follows that K contains all cyclic
groups of prime order. From now on, X denotes a class satisfying
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these conditions. Among the many possibilities for K are the class
of all finite soluble groups, y the class of all periodic locally soluble
groups having a locally nilpotent subgroup of finite index, the class
of periodic soluble linear groups, the class of soluble Cernikov groups, y
and ’11 itself. A Fitting class of K-groups (or a K-Fitting class) is a
subclass of K such that

Every serial subgroup of an belongs to X.

(F2) Every generated by serial belongs to X.

When K is the class of all finite soluble groups this coincides with
the usual definition as given in [3], and for the class of soluble ~ernikov
groups it agrees with [1].

Examples of subgroup-closed Fitting classes are easily obtained
from Fitting classes of finite soluble groups.

LEMMA 1.2. Let X be a subgroup-closed Fitting class of finite soluble
groups. Then the class .L~ of all locally-X groups in K is a Fitting
class of K-groups.

PROOF. The class ZX r) K is clearly closed under taking serial

subgroups. Let G be a K-group generated by serial ZX n K-subgroups
Hi If F is a finite subgroup of G, then F (Fi, ... , -F,,,) = .L,
where F, is a finite subgroup of H;, (1 c r c n). Thus 
= L n ..., .L n Each L n B’ir is a subnormal I-subgroup
of L, whence and F E ~. 

’

In particular, we have the Fitting class (LN)k n K of K-groups
of locally nilpotent length at most 7~. For examples of Fitting classes
that are not subgroup-closed (working relative to the class of soluble
Cernikov groups) see [1].

If I is any Fitting class of K-groups, and G E Jt, the join Gx of
all serial X-subgroups of G is a characteristic X-subgroup Gx, the X-
radical of G. A routine argument gives

LEMMA 1.3. I f 3C is a class, G and H ser G, then
Hx = H n Gx.

If X is any class of groups, then an X-injector of the group G is
an X-subgroup V of G such that V n H is a maximal X-subgroup
of .8’ whenever .g ser G. This agrees with the definition used for
soluble Cernikov groups in [1], and in particular is consistent with

the finite case. Our main result is
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be a Fitting class of K-groups. Then every X-

group G has X-injectors, and any two X-injectors of G are conjugate.

The proof is roughly similar to the finite case [3], but several tech-
nical difficulties have to be overcome. The proof in the finite case
depends on the conjugacy of the self-normalizing nilpotent (or Carter)
subgroups of a finite soluble group, and this result, a version of which
is known for 91-groups, must first be recast into the appropriate form.

2. Carter subgroups.

If X is any class of groups, then an X-projector of a group G is an
I-subgroup X of G such that XK = H whenever XH G, K«H
and E 3C. Though the Carter subgroups of a finite soluble group
were originally defined as the self-normalizing nilpotent subgroups [2],
they are of course now known to be the nilpotent projectors. In [4],
the Carter subgroups of a 91-group G were defined as its locally nil-
potent projectors. They were shown to exist and form a conjugacy
class, and it was shown [4, Lemma 5.8] that they are the self-normalizing
locally nilpotent sugbroups of G, provided that the locally nilpotent
subgroups of G are all hypercentral. However they do not have this
description in general, since a locally nilpotent group may possess
proper self-normalizing subgroups.

To remedy this, let us say that a subgroup H of G is self-serializing
in G, if is the only subgroup of G containing H as a serial subgroup.
Then the Carter subgroups of a ’B1-group G have the following charac-
terization, which is important for us.

THEOREM 2.1. The Carter subgroups of a G are precisely
its self- serializing locally nilpotent subgroups.

PROOF. Let C be a Carter subgroup of G and suppose that

C ser K  G. If then we have subgroups C c V’ C U  K with
Fo U. By ( U1 ), we can choose W with V  TT and W/ Y locally
nilpotent, contradicting the fact that C is a locally nilpotent projector 

°

of G. Thus C = g and C is self-serializing.
Conversely, let C be a self-serializing locally nilpotent subgroup

of G. We prove that C is a Carter subgroup of G by induction on the
locally nilpotent length of G. If G is locally nilpotent, the result is
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clear, since every subgroup of a locally nilpotent group is serial. We
need to consider separately the case G E In this case, let R

be the locally nilpotent radical of G, so that G~R is locally nilpotent.
If R = and C = are the unique Sylow bases of R and C
respectively, then C is contained in the basis normalizer D of the
Sylow basis of RC. However, C is then serial in D, and so
C = D. By Lemma 1.1, is hyperfinite and so hypercentral, and
so if OR  G, we have CR  N = N~:(C.R). Using the conjugacy of
the basis normalizers of CR and the Frattini argument, we have
N = But C is certainly self -normalizing, whence N = CR.
This contradiction shows that OR = G, and hence C is a Carter sub-
group of G [4, Theorem 5.1].

Now let G E (LJY’)k, where k &#x3E; 3, and again let .R be the LN-radical
of G. Suppose that ser Then lies in the locally
nilpotent radical of Since C is a self-serializing locally
nilpotent subgroup of the (L.V) 2-group .g, C is a Carter subgroup
of .K as we have seen. By the Frattini argument, H = .KN$(C) = K.
Thus C is a Carter subgroup of .g and, as is locally nilpotent,
H = CR. This shows that is a self-serializing locally nilpotent
subgroup of and a Carter subgroup of by induction. As C
is also a Carter subgroup of CR, the « Gaschütz Lemma » [4, Lemma 5.3]
shows that C is a Carter subgroup of G.

This characterization of Carter subgroups enables us to prove
an appropriate form of the main lemma of [3].

LEMMA 2.2. Let X be a Fitting class of K-groups. Let G c- K and N
be a normal subgroup of G such that GIN is locally nilpotent. I f U, V
are maximal of G such that U r1 N = V r1 N, then U
and V are conjugate in G.

PROOF. We may clearly assume that G = ~ U, V&#x3E;, so that
V r1 Let bars denote homomorphic images in Gi U n N,

let M = Ng(U), and let ,S be a Sylow basis _of .lVl_. Then

is a Sylow basis of U, and, for [U r1 8p, 
 U r1 N =_ 1. Hence U normalizes S and so U is contained in a Carter

subgroup C = O/(U r1 N) of lVI [4, Theorem 5.9]. If C is serial in some

subgroup .H~ of G, then U is serial in .g’ and so By the max-
imality of U, we have U == and so HM, and since C is
self-serializing in lVl, we have C = H. Thus C is a self-serializing locally
nilpotent subgroup of 0, that is, by Theorem 2.1, a Carter subgroup of G.

Similarly, we have a Carter subgroup D = D/ U of C with
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The subgroups C and D are conjugate, and so  U, 
for some x E G. But U and V-- are serial X-subgroups of C, which
belongs to X, and so  TI, VZ) e ~. Finally, the maximality of II and
Yx gives U =  U, Vx&#x3E; = Vo.

COROLLARY 2.3. Let I be a Fitting class of and G E ~.
Let N, if be normal subgroups of G such that N  M and G/N is locally
nilpotent, and assume that each of M and N has a unique conjugacy
class of I-injectors. Let U be an X-injector of N and let V be any max-
imal of G containing U. Then V r’1 M is an X-injector of M.

PROOF. The hypotheses imply easily that U is contained in an
X-injector TYo of M. Now if we form any tower of X-subgroups of G
containing yYo, its union is generated by serial X-subgroups and so
belongs to ~. Hence, by Zorn’s Lemma, Wo is contained in a maximal
X-subgroup W of G. Now and so by Lemma 2.2,
V = Wx for some x E G. Therefore as

required.

COROLLARY 2.4. If X is a Fitting class of and G 
then any two X-injectors of G are conjugate in G.

PROOF. This follows by using Lemma 2.2 and induction on the
LJY’-length, exactly as in the finite case [3].

3. Injectors.

Let 3C be a Fitting class of K-groups. Then C(X), the characteristic
of 3C, is defined to be the set of primes p such that X contains a cyclic
group of order p. Standard arguments show that if C(~) _ a, then
every X-group is a n-group, and contains every locally nilpotent
n-group in K. Details of these arguments can be found in [1]. They
are similar to the finite case, and it is for them that (.g2 ) is needed.

In the rest of the paper, 3C denotes a Fitting class of K-groups,
and By the above remarks, so

is a and GIBGX is hyperfinite, by Lemma 1.1.
By the remarks in the introduction, if H ser G, then HRGX, asc G,
and much of our proof of the main theorem will consist of an induction
argument on an ascending series from to G. Limit ordinals are
dealt with by the following, in which flL-group properties are not
involved.
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LEMMA 3.1. Let G be the union of a set of serial sub-

groups G~, (A E 11 ) . Then V is an of G if and only if V r1 G~,
is an of for each A E A.

PROOF. If V is an X-injector of G, the definition shows that V r1 GJ.
is an X-injector of GA, for each A E ll.

Conversely, suppose V’ r1 Gi is an I-injector of GA, for each A E A,
and let H ser G. Then H r1 Gi ser and so V r1 H r1 Ga is maximal

among the I-subgroups of If V r1 and WE X, then
W n Gi E whence we find ’V~ n .H~ n W n Gz, and W =

Hence V n H is a maximal 

group of H.
The following is useful in dealing with serial subgroups not con-

taining 

LEmmA 3.2. I f W is an of the serial subgroup H of G
and then EX.

PROOF. Let ( U6, E Q) be a series from H to G. Since

Thus, intersecting with gives a series from .g r~ WGx ==
= = = W to Therefore W is a serial

X-subgroup of and hence E X. 
The main lemma is as follows.

LEMMA 3.3. Let M be a normal subgroup of finite index of G con-
taining If has an X-injector, then G has an a;-injector.

PROOF. By induction on IGIMI, we may assume that .M has prime
index p. Taking account of Corollary 2.4, our hypothesis implies that
every serial subgroup of M has a unique conjugacy class of I-injectors.

Let U be an X-injector of M and V be maximal among the X-
subgroups of G containing U. Since U has index at most p in any
X-subgroup of G containing it, the existence of V is clear. We shall
show that V is an X-injector of G. If .H~ ser G, then certainly
V r’1 the problem is to show that Y’ n H is a maximal I-sub-
group of H. Since V r1 M = U, an X-injector of M, we have that

an X-injector of H n M.
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CASE (i) = G. Let W be an X-subgroup of H containing
Now since we have and so 

by Lemma 1.3. By Lemma 3.2, w’Gx E X.
But V and so, by the maximality of V, we
deduce that w’Gx = V. Hence as required.

CASE (ii) = G. Recall that n = and is a
Let ~S be a Sylow a-subgroup of G containing TT. Then

is a Sylow 7r-subgroup of since this subgroup is se-
rial [5, Theorem E], and since is the product of HGx/Gx and
the normal n’-subgroup GXR/GX, it follows that S is also

a Sylow n-subgroup of G/Gx . This gives Now we need

only apply Case (i) to 

CASE (iii) G. By the remarks in the introduction, there
is an ascending series

and after refining if necessary, we may assume that each factor is

finite abelian. Let 2 be minimal such that V is a maximal ~-

subgroup of Ha. If ~==0, then is a maximal X-sub-

group of containing the X-injector of .M r1

n By Case (ii) applied to we obtain that V n H is a

maximal X-subgroup of H.
Thus we may assume that A &#x3E; 0, so that V is a maximal

I-subgroup of lq’ while V n Ha is not a maximal X-subgroup of ~
if a  A.

CASE 1 exist. Put L = r1 M, and note that HalL
is finite abelian. We have V n E = U r1 which is a maximal

X-subgroup of L. Let Wo be a maximal X-subgroup of containing
U r1 &#x26;’a,_1, and W be a maximal I-subxoup of containing Wo .
Then and so by Lemma 2.2, W is

conjugate to in Ha : Therefore V n H).-1 = ~’x r1 Ha,_1 for

some contrary to the fact that is not a maximal

I-subgroup of 

CASE limit ordinals. Now U r1 .H~o is certainly not a
maximal X-subgroup of .8’0, but it is a maximal X-subgroup of Ho n M,
so we have U n .H’o  Wo for some maximal X-subgroup W’o of 
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We now construct subgroups yYa (a c ~,) such that for 

and yYa is a maximal X-subgroup of Ha . Having obtained Wa, we
can obtain since Ha+l/Ha is finite, or as in Corollary 2.3. If f3
is a limit ordinal and the previous Wa have been obtained, we put
Wo = U Wa, which is the join of ascendant X-subgroups and so

aB

belongs to 3C, and is clearly a maximal X-subgroup of Ho. Now we
show by induction that W a r1 .M- is an X-injector of lVl, for each
a c ~,. Since ~II = M, the case a = 0 is clear.

Lemma 3.1. deals with the passage to limit ordinals. i.f 1JI is
known to be an X-injector of Ha r1 .lVl, then Corollary 2.3 shows that
Wa+1 r1 lVl is an I-injector of Ha+1 n .M. Finally, we find that Wa r1 M
is an I-injector of lVl. Therefore WA n M = ( U ==

= (V n HA)x r1 M for some x E Hi r1 M, since this group has conjugate
X-injectors. By Lemma 2.2, Wi and are conjugate in Hz.
But Wi contains Wo, so while Y r1 Ha, = U ( Y r1 .Ha ) .

aA

Since V r1 Ha is not a maximal X-subgroup of Ha if «  A, and
] is either 1 or p, we have 

Therefore and a contradiction.
This completes the proof that V is an X-injector of G.

PROOF OF MAIN THEOREM. The conjugacy of X-injectors is given
in Corollary 2.4. For the existence, we first note that G~ is the unique
X-injector of For Lemma 3.2 shows that if H ser then
H r’1 GX is a maximal X-subgroup of H. Now by the remarks in the
introduction, we have an ascending series (Ga : of G with finite
abelian factors and such that Go = We show by induction on (X
that Ga (and hence all its serial subgroups) has an I-injector. For

a = 0 this has been remarked. The step from a to a + 1 follows from
Lemma 3.3. The limit ordinal step is made by forming a tower of in-
jectors and using Lemma 3.1.

The following results can be deduced exactly as in the finite case [3].

THEOREM 3.4 (i)..Let 1 = G be a series of G
with locally nilpotent factors and Then V is an X-injector of G
if and if V r1 Gi is a maximal a;-subgroup of Gi f or i = 0, 1, ... , n.

(ii) If V is an I-injector of G and then V is an X-

injector of .L.

(iii) The X-injectors of G are pronormal in G.
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