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Baer-Elation Planes.

VIKRAM JHA - NORMAN L. JOHNSON (*)

SUMMARY - Translation planes of even order q2 and kernel G.F(q) that admit
an elation group (Baer group) of order q and a non-trivial Baer group
(Elation group) are studied. A classification of these « Baer-Elation »

planes is determined. Aside from the classifications, the main result is

that translation planes of order q2 and kernel GF(q) which admits a Baer
group of order q and elations with at least two axes (in the translation
complement) are the translation planes of Hall.

1. Introduction.

A translation plane a of order p2r will be said to be a Baer-Elation
plane if an only if there exists a nontrivial Baer p-group and a non-
trivial elation group in the translation complement.

By Foulser [2] , any Baer-Elation plane must be of even order.
Also, there are quite a number of examples of Baer-Elation planes.
For example, the Hall and Desarguesian plane are Baer-Elation planes.
Biliotti-Menichetti [1] have studied translation planes which are de-
rived from semifield planes and which admit elations with more than
one axis. The number of elation ages - 1 gives the kernel of the
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plane. Hence, (see also Johnson-Rahilly [9]) the only such plane of
dimension 2 (kernel GF(q), order q2) admits 1 -]-- q elation axes. The
plane turns out to be Hall by a result of Johnson and Rahilly.
Translation planes of order q2 which are derived from semifield planes
admit a Baer collineation group of order q. However, the existence
of a Baer group does not (or may not) imply that the plane is deriv-
able or even, it so, derivable from a semifield plane

(1.1) DEFINITION. Let n be a translation plane of even order q2.
Let ? be a 2-group which fixes a Baer subplane pointwise of order 2b
and 8 an elation group of order 2e where ~3, ~ are subgroups of the
translation complement. We assume 8 normalizes ~3. We call a plane
n with groups 93 and 8 above, a Baer-Elation plane of type (2b, 2e).
Note that (see Foulser [2] for 2b c q). Also, note that if 6
normalizes 93 then 8 centralizes ~.

When one of the groups ~’3 or 8 is large, the other group tends to
be small. For example, we note the following:

(1.2) THEOREM (Jha-Johnson [4] , [~]) .
(1) Let n be a Baer-Elation plane of even order q2 and type

(2b, q). Then b = 1.

(2) Let n be a Baer-Elation plane of even order q2 and type
(&#x3E; 2~/~,2~. Then e = 1. (Also, note that it is not necessary to

assume that 8 normalizes % in this case. See Jha-Johnson [7].)

In this article, we consider Baer-Elation planes of order q2 and
type (q, 2) or (2, q). And, although many of our arguments may be
extended for planes or arbitrary dimension, we consider only those
planes of dimension 2 but we make no assumption as to the possible
derivation of these planes.

In sections 2 and 3, we consider the classification of (2, q) or (q, 2)
planes of order q2 and dimension 2 (note, we assume the groups are
in the linear translation complement in the (2, q)-situation).

In section 4, we consider planes of type (q, 2) with several elation
axes (or type (2, q) with several Baer axes). Here we obtain the
rather surprising result that the plane must be Hall (or type (2, q)
is Desarguesian). (Contrast this result with the work of Biliotti-

Menichetti [1] and Johnson-Rahilly [9].)
This paper probably raises more questions then it answers and

several problems and questions are listed in section 5.
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2. The structure of Baer-elation planes of order q2 and type ( q, 2 ) .

(2.1) Let p be a translation plane of even order q- and kernel F
isomorphic to GF(q). Assume that n is a (q, 2)-plane with collinea-
tion groups B and 6 in the translation complement such that 93 is
a Baer 2-group (fixes a Baer subplane ~o pointwise) and 6 is an ela-
tion group with axis ~.

Assume the conditions of (2.1) in the following.

(2.2) NoTEs.

(1) 93 centralizes 8.

(2) B is in the linear translation complement.

PROOF 1. By Jha-Johnson [4] if ]lS[ &#x3E; 2 1l4 then any elation group
has order 2. Hence, if 9) does not centralize 8 then 93 must move
the axis of 6 so that 8 cannot, in turn, normalize ~6. In this case,
there are at least two Baer groups of order 93~ and by Jha-Johnson [7],
the plane must be Hall.

PROOF 2. If ~3~ &#x3E; 2 then by Foulser [2], the fixed point subplane
of B must be a F-subspace. Since, in any case, IS C ..T’L(4, F) this
forces 93 to be in f~Z(4, .~), lS is in the linear translation complement.

Let X denote the net of n of degree q + 1 which is defined by n0.
That is, the components of ~o are components of N.

(2.3) LEMMA. Coordinates may be chosen so that

and

Furthermore, the components of JV (see (2.2) and following) have
the form
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and f is a function on such that

and f is a function
I r ’1 "..."

on F such that

When convenient, we write (xl , x2 , Y1’ y2 ) _ (x, y ) .

PROOF. Choose components belonging to ~co as (x = 0), (y = 0),
and (y = x). 93 is in the linear translation complement, fixes

pointwise and is elementary abelian. All of this implies that

The components of ~o on clearly have the form

for various elements a, b, c in .F. However, b and c must be deter-
mined by a so that b = f (a) and c = g(a) for functions f, g: F2013~F.
By using the form of ? we have that

if and only if

This implies ab = bg(a) so that a = g(a).
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(2.4) LEMMA. Let 8 = denote the elation group of order 2.
Then coordinates may be chosen so that

PROOF. a centralizes ~3. Hence, choose the axis of a to be x = 0

then A basis change so that thisp y y a )
latter component is y = x would not alter the form of B so as a has

the form I C clearly C = I where I = 1 0 ], o = 0 00 1 y 0 1 0 0

(2.5) LEMMA. contains precisely q -1 Baer involutions ta

101 not in ~3. Each Baer involution fixes pointwise a
Baer subplane na which shares precisely the component x = 0 with
~b b.

PROOF. 93~ - ~ - ~ j - q -1 and $&#x26; is elementary abelian. The
q -1 Baer involutions are

Lo 0 0 1 j

(2.6) LEMMA. If

then the components of ~a have the following form:

where G is a function from 1~’ X (F - 10}) to F.
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PROOF. A component

is fixed by ra if and only if

Equating entries we have:

Hence, m,a = 1 and m4 = m1 + 1. Since there are q components
~ (x = 0) which are fixed by ra, m1 takes on all possible entries
in .F. Thus, m2 depends uniquely on a-i and m1 as any two matrices
in .F’. Thus, m2 depends uniquely on a-i and m1 as any two ma-
trices which define components have nonsingular differences. Let

== 

Hence, we have:

(2.7) Lemma. There exist exactly (q -1) components of the form

The components of tla for a ~ 0 have the form:

PROOF. 1S6 is elementary abelian so $ must leave each sub-

plane na invariant and act transitively on the components not equal
to (0153 = 0). Hence, the B-images of
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have the following form:

Thus, we may give the basic structure for (q, 2)-planes of dimen-
sion 2 as follows:

(2.8) THEOREM. Let n be a translation plane of even order q2
and kernel .F’ isomorphic to GF(q). If n admits a Baer group of order q
and a nontrivial elation group then there exists a coordinatization so
that the following subspace define a spread of n: There exist func-

tions f, g : F -F such that

and the components for n have the form:

of F and (x, y) == (x1, x2, Y1, y2) for = 1, 2. Conversely,
if there are functions f , g on a field F isomorphic to GF(q) satisfiyng
(1), (2), (3) then a translation plane of order q and type (q, 2) may
be obtained.

PROOF. By Jha-Johnson ([7], [5]), ~ centralizes 8 and 181 == 2.
f(8 -~- 1) = f(s) since 8 exists. The conditions given in 2), 3) are the
requirements that the matrices and the differences of any two are
nonsingular.
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That is,

must have nonzero determinant so that

This expression reduces to ( f (d) + d(d -~-1) which is (2).
Also,

has nonzero determinant if and only if

Let d = k. Then, for distinct matrices we must have b # r so we
want k2(b + r)2= 0 which is automatically satisfied. Hence, non-

singularity is guaranteed if d = k. So assuming and letting
b -;- r == t we have g(d) + g(k) ~ -!- t(dkjd + k)). This is condi-
tion (3).

(2.9) COROLLARY. Under the conditions of (2.8), if f is identically
zero then n is derivable and a derived plane is a (2 q)-plane which
has components:

where g(0) = 0 and

PROOF Derive the net N. Now apply Jha-Johnsop. [8].

(2.16) THEOREM. Let n be a translation plane of even order q2
and kernel I’ isomorphic to GF(q). Assume n admits a Baer group
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of order q and a nontrivial elation group. Let the net defined by tha
Baer axis be denoted by X.

(1) Then the components uniquely determine JY’.

(2) Given a function g: .F’-~ .F’ satisfying condition (3) of (2.8),
and

then there exists at most one function f satisfying (1) and (2) of (2.8)
( f (a) = f (a) -f-1 and d -+- d2 + f (d) a-I =1= ac-1 for all d, a =1= 0 in F) -

PROOF. Suppose 7(; = N U M and = JY’1 where

for all a E F. Then X and N1 are mutual replacements so that A’ is
either equal to or X,, is the derived net of But then n1 is
also a (2, q)-plane which cannot be the case by Jha-Johnson [5].

Hence, if a plane exists, the function g uniquely determines the
function f.

(2.11) COROLLARY. Under the conditions of (2.10), if g(a) = tola
with Tr (to) ~ 0 0 then f is identically zero and the corre-

sponding plane is a Hall plane.

PROOF. Condition (3) for g becomes = + t(dol(d + g)))
for c. Let + c) = Z. Then t,IZ 0 t(1-~- tZ). Letting tZ = x,

x2 + x. That is, xz -~- x + to is irreducible over F, there is a cor-
responding Hall plane with components

and

Hence, by (2.10) f is uniquely determined as the zero function.
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3. The structure of Baer-elation planes of order q2 and type ( 2, qj .

(3.1) Let x be a translation plane of even order q 2and kernel F
isomorphic to GF(q). Assume that a is a (2, q)-plane with collinea-
tion groups $ and 8 in the linear translation complement where $
is a Baer 2-group of order 2, ~ is an elation group of order q which
centralizes ~3. Let ? fix no pointwise and let 8 have axis ~.

Let N denote the net of n of degree q + 1 which is defined by no.
Assume the conditions of (3.1) in the following.

(3.2) LEMMA. Coordinates may be chosen so that

and m is an additive function on ~’ such that = = 0.

PROOF. Choose x = 0, y = 0, y = x in no and change bases, if

necessary so that r has the required form. As in (2.3), the components
of JW have the form

for some function m on F such that m(O) = m(l) == 0. Hence, 8y
being transitive on X - (0153 === 0), has the form

However, as 8 is a group, it follows that m is an additive function.
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(3.3) LEMMA. There exist functions g, f on F where f is 1 - 1
such that

is a component for all v E .~’. 
"

PROOF. Consider an arbitrary component

Hence, consider the components

Since [v, 0] completely determines the (l,l) and (1,2)-entries, we must
have functions of v, g, f such that the (l,l)-entry is g(v) and the
(1,2)-entry is f (u). And,

is nonsingular so that f is 1-1.

(3.4) LEMMA. The components of n have the form

PROOF. Apply the group 8 to

(3.5) LEMMA. 6 contains exactly q Baer involutions = r6 ==
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PROOF. 1S6 is elementary abelian with Baer involutions 1S6 - 8.

PROOF. íaa fixes the component

if and only if a = m3 and m1 = m4 + m(a) + a. (See the argument
to (2.6)). If m4 = u then, by (3.4), u + g(a) = m1 = u + + a.

Hence, g(a) = m(a) + a.
Thus we have:

(3.7) THEOREM. Let ~c be a translation plane of even order q2
and kernel F isomorphic to GF(q). Let n admit an elation group 6
of order q and a nontrivial Baer 2-group such that 8 normalizes 93
and 8, 93 are in the linear translation complement. Then there exist
functions f, m on F such that

1) f is 1-1.

2 ) m is additive and = = 0.

is nonsingular when u # a b and the components of yr may
be represented in the form

Conversely, functions satisfying the above conditions give rise to
a translation plane of order q2 and type (2, q).

PROOF. By Jha-Johnson [4], = 2. By the various lemmas
(3.2)-(3.6), we have the proof of (3.7).
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(3.8) THEOREM. Let a be a translation plane of even order q 2
and dimension 2 which is a (2, q)-plane. If the net defined by the
Baer subplane is derivable then coordinates may be chosen so that
the components for n have the form

for all u, v E F where f is a 1-1 function on F and x2 + 0153 + F(V)IV
is irreducible for 0 of F.

Conversely, a 1-1 function f such that X2 + x + f(v)fv is irre-
ducible for 0 gives rise to a (2, q)-plane of order q2 which is
derivable.

PROOF.

derivable implies m = 0 since m is additive and derivability im-
plies m is also multiplicative. But, m(1) = 0 so that m = 0. Now
apply (3.7).

Note that for derivable planes with m = 0, we have the connec-
tion between the (q, 2) and (2, q)-spreads (as noted in Jha-Johnson [8])

Also, w e may actually derive any elation orbit union (x = 0)
(in a (2, q)-derivable plane) as noted in Jha-Johnson [6].

If we change bases so that
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takes the place y = 0 and the orbit of 6 union x = 0 becomes a
derivable net, uTe obtain the corresponding function

That is, there are also the coordinates

for the (2, q)-plane where lao(a) = f (ao + a) + f (ao) for ao fixed in ~’

and for all a in F. Let gaJa-1) = f a(a). The corresponding (q, 2)-
plane has coordinates,

As gao(a-1) = g(ao -~--- a)-’ -~- g(ao 1), this second (q, 2)-plane may not be
isomorphic to the original. Again, see Jha-Johnson [6] for a few more
details regarding this construction.

4. Type (q, 2 )-planes of dimension 2 with several elation axes.

(4.1) Assume is a translation plane of order q2 with kernel F
isomorphic to GF(q). Assume n admits a Baer group 93 of order q
admits elations in the translation complement with at least two axes.

For the following, assume the conditions of (4.1).

(4.2) LEMMA.. Let 81 y 82 be distinct nontrivial elation groups with
axes L1, L2, L1 / L2. Then B centralizes E1, 83 and 181B == 1821 [ = 2 .

Also, 93 is in the linear translation complement.

PROOF. Jha-Johnson [4]. Note no is a kernel subplane by Foulser
and so the kernel of n0 is the kernel of n (or n is Desarguesian).

Assune n, n0 and 81 and B have the form given in section 2
(2.3), (2.4). Assume, without loss of generality that 83 has axis y = 0
and 83 = e&#x3E; where
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The net ~N’ has the form

where f is 1-1 as in section 2. Also, e must leave X invariant
as O centralizes B. Since p must map x = 0 onto

it must be that a3 = 0. That is,

so that a1 = a4. Also,

is mapped onto

where d = (1 + aa1)2 provided 1 + aa1 =F 0. Hence,

since this matrix must be

That is, f ( (1 + aa1)-la) = (1 -~- -~- f (a) ) for 1 + aa1 =F 0.

(4.3) LEMMA. If
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PROOF. Let

0, this element is a Baer involution which figes y = 0 but
fixes no other component of J1(’. Hence, there exist q components
of the form

which are fixed by xb by (2.8). Such a component is fixed by xb if and
only if

where F(d, a) = ~~-1 -j- d + g(a-1 ) . Now let b = if a2 =F 0.

Working out the (2,1)-entries, we have:

so that a-I a1 da-1 + (1 -f- a-1(a2 + l1a1) + (da-1 --~- 1) a1) a--1 = a-’. If
b = a22a2 for ~2=7~ 0 then we have (1 -E- a1)a-1 = a-lor rather a,. - 0.
This cannot be so a2 = 0.

(4.4) LEMMA. g(a-1) = a/ale
PROOF. Since a2 = 0, we have, equating the ji, j)-entries of the

matrix equations considered in (4.3):
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so that

where

Hence,

Hence, we have:

so that

Thus, equating (1,2 )’ and (1,1 )’ we have d2 a-2 ba1 -f- 0.

That is, a = b. Now replacing = b in (1,])’, we obtain,

If we now consider (2.11), it follows that f is identically zero.

(4.5) THEOREM. Let n be a translation plane of order q2 with
kernel F isomorphic to GF(q). Assume n admits a Baer group of
order q. If n admits affine elations with at least two distinct axes

(in the translation complement) then ~c is a Hall plane and conversely
a Hall plane admits such collineation groups.

PROOF. Apply the previous lemmas and (2.11).
We also obtain the corresponding result for (2, q) planes although

in this case we must assume a normalizing property.

(4.6) THEOREM. Let n be a translation plane of even order q2
with kernel F isomorphic to GF(q). Assume n admits an elation
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group 8 of order q. Also, assume n admits distinct Baer 2-groups
$2 in the linear translation complement where 8 normalizes $1

and $2 but $2 rt 61Si . Then n is Desarguesian.

PROOF. By section 3, == 1$2B I = 2 and since 8 centralizes

$2 and ~32 ~ there must be two Baer subplanes which are
pointwise fixed by involutions in B2B18 which belong to the same
net of degree 1-f- q. That is, we may assume if ~i is the associated
Baer subplane pointwise fixed by ~i, i =1, 2 then ~i belongs to JW.
Hence, by Foulser [3], N must be derivable as 7li, i =1, 2 must be
Desarguesian subplanes. (Note, the components are completely de-
fined by the Baer involutions in 931 ~ (~28). Since two corresponding
subplanes therefore must overlap and 8 fixes each and acts transi-
tively on the components of each, it must be that subplanes belong
to the same net of degree 1--~- q.)

The result now follows from (4.5).

5. Questions and open problems.

(5.1) In sections 2 and 3, Baer-elation planes of dimension 2,
order q2 and type (2, q) or (q, 2) were developed. Determine a clas-
sification of type (2, q) (or (q, 2))-planes of order q 2 and arbitrary
dimension. Determine the subclass where there are many Baer axes

(or many elation axes).

(5.2) Determine the derivable Baer-Elation planes of type (2, q) or
type (q, 2) and order q2 and of dimension 2.

(5.3) If n is a Baer-Elation plane of order q2, q = 2r and type
(2k, 2r+l-k) show the type is (2, q) or (q, 2).

(5.4) It is possible to have a ( &#x3E; 4, &#x3E; 4)-Baer-Elation plane of any
dimension

(5.5) If n is a Baer-Elation plane of order q2 and type (2b, 2e),
is it possible that 2b. 28 &#x3E; 2q~

(5.6) If n is a Baer-Elation plane of dimension 2, derive the dual
of n to obtain various semi-translation planes. Try to recover a Baer-
elation plane by properties of an associated semi-translation plane.
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(5.7) If a semifield plane a of even order q2 admits a Baer involu-
tion then n is a (2, q)-plane. Determine all semifield planes of even
order q2 and type (2, q) which are of dimension 2.

REFERENCES

[1] M. BILIOTTI - G. MENICHETTI, Derived semifield planes with affine elations.
J. Geometry, 19 (1982), pp. 50-88.

[2] D. A. FOULSER, Baer p-elements in translation planes, J. Alg., 34 (1974),
pp. 354-366.

[3] D. A. FOULSER, Subplanes of partial spreads in translation planes, Bull,
London Math. Soc., 4 (1972), pp. 32-38.

[4] V. JHA - N. L. JOHNSON, Baer involutions in translation planes admitting
large solution groups, Resultate d. Math., 11 (1987), pp. 63-71.

[5] V. JHA - N. L. JOHNSON, Coexistence of elations and large Baer groups
in translation planes, J. London Math. Soc., 2 (32) (1985), pp. 297-304.

[6] V. JHA - N. L. JOHNSON, Derivable nets defined by central collineations
(to appear) Information and Systems Sci.

[7] V. JHA - N. L. JOHNSON, Solution to Dempwolff’s nonsolvable B-group
problem, European J. Comb., 7 (3) (1986), pp. 227-235.

[8] V. JHA - N. L. JOHNSON, Notes on the derived Walker planes (to appear)
J. Comb. Theory, 42 (2) (1986), pp. 320-323.

[9] N. L. JOHNSON - A. RAHILLY, On elations of derived semifield planes.
Proc. London Math. Soc., (3) 35 (1977), pp. 76-88.

Manoscritto pervenuto in redazione il 6 settembre 1985 e in forma rive-
duta il 28 febbraio 1986.


