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A Calculation of Injective Dimension
over Valuation Domains.

PAuL C. EKLOF - SAHARON SHELAH (*)

This paper takes up a problem which was posed in a paper by S.
Bazzoni [B], about the injective dimension of certain direct sums of
divisible modules over a valuation domain. We refer the reader to
that paper for the motivation for the problem. We shall make use
of the same notation as in [B], which we now proceed to review.

Let E be a valuation domain of global dimension n + 1, where
n>2. Let {La: a € A} be a family of archimedean ideals of B, where A
is a set of cardinality >N, .. For each « let I, be the injective en-

velope of R[Ly,. Let I = ]_[ I, and for each 1<k<n, let D,_, be the
xeA

submodule of I consisting of those elements having support of car-
dinality < 8._x, i.e. for all y € I, y belongs to D,_, if and only if the
cardinality of

{e e A: y(a) = 0}

is strictly less than N, .

Bazzoni proves in [B] that the injective dimension of D, , is at
most k. She also shows that the injective dimension of D,_, is exactly 1
and that it is consistent with ZFC that the injective dimension of
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D,_, is exactly 2. It is the main purpose of this paper to prove this
latter result in ZFC. In fact we prove:

THEOREM. The injective dimension of D, , is >2 if 2<k<n.

Before proving the theorem we prove some lemmas. The first of
these is a combinatorial fact. (Compare [Sh; § 6].)

LEMMA 1. Let % be a regular cardinal. There exists a family {w;:
o < wt, v < x} of subsets of xt satisfying for all o < s+:
1) a= Uwl;

v<x

(2) for all v < p < x, wy C wy;
(3) for all v < and all f < «, few; = wi = w) N B;
(4) for all v < x, the cardinality of w; is < =x.

Proor. We shall define the w, for all » by induction on «. Let
w) = @ for all ». Now suppose that w” has been defined for all § < a.
If o is a successor ordinal, say « =y + 1, then let w} = w} U {y}
for all ». It is easy to see that (1)-(4) hold for « if they hold for y.

If « is & limit ordinal, let 4 = the cofinality of «, and let : 1 —«
be a strictly increasing function such that the supremum of its range
is a. Define a function f: A — » by the rule:

f(u) = the least » < » such that

tor all v<o<p, n(r)€wi?.

It is easy to see that f is well-defined because of (1) and (2) and because
% is regular and >4 > |u|. Now for each » << » let

we= U {w!™: u <y and f(u)<v}.

Conditions (2) and (4) are easily verified. To see that (1) holds, sup-
pose y < « and choose x such that %(u) > . Then y € w?* for some =,
so if ¥ > max {7, u, f(u)}, then y € w;: To prove (3), let us fix « and »
and let ¥ = {u <v:f(u)<v»}. Thus

(+2
Wl = U w;v(u) .
uey
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Notice first that if T < u and g € Y, then 7(7) € w™®; so by induction
w!® = wI® N y(7). Now if few; then Bew!™ for some pe Y; in
this case it is easy to see, using the previous observation, that g € w]™
for any v € Y such that g << (7). Clearly

wh = wNBCwrN B,

so we are left with proving the opposite inclusion. Suppose y € w’, N §;
then y € w™ for some 7€ Y. As above, y € w!@ for any o€ Y such
that y < 7(c), so without loss of generality 8 < 5(r). But theny e w?™ N
N B=wf, since B ew!™.

The second lemma will be used to show that for certain submodules
K'2 K of I,, the quotient H'/K has sufficiently large cardinality.
(K and K’ will have the form {u € I,:ru = 0} for an appropriate 7.)
Here J(y) is the set of all subsets of y.

LEMMA 2. Let {r,: v <y} be a sequence of elements of R, and let N
be a pure-injective module such that for all u <<y there swists an element
ay € N such that rua, =0 and ry 0,7 0. Then for each S € T(y) there
exist an element xs of N such that

(%) forallf<yandall 8, TeF(y),if SN =T0nN B, then rs ,(vs—
—2,) =0 if and only if SN(B+1)=TnN (B +1).

ProoF. The idea of the construction is that zs should «be» > ay.
uHes
The actual construction is by induction on y. If y is finite and SCy,

let 25 = > a,. (We let 5 = 0.) Now suppose that for all § <y and

ues
all 8C ¢ we have defined x5 so that (%) holds. We consider two cases.

Case1: y = 6 + 1 for some 6. We let g = 25,5 if 6 ¢ 8, and we
let g = wgns + a5 if 6 € 8. It is easy to check, using the inductive
hypothesis, that (%) holds.

Case 2: y = A, a limit ordinal. Here we use the fact that since N
is pure-injective it is algebraically compact: see, for example, [F'S;
p. 215]. For any S C A we let x5 be a solution of the set of equations

{rﬁ+1(w_ an(ﬂ+1)) =0: ﬂ < }‘}

in the single unknown . (The elements #s,4+1) of N have been
defined by induetion.) This system of equations is finitely solvable
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in N: indeed, for any finite subset F of A, if d > sup (¥), then xg,s
is a solution of

{s1(® — Tgnp+n) =0: e F}.

Hence by algebraic compactness there is a global solution, ws. It
remains to check that (%) is satisfied. So suppose that S and 7' are
subsets of 4, and f < A4 such that SN = TN F. We have:

s — p = (Bs— Tgn(p+1) T @sns+1)— Lra@+1)) T @rag+1)— 1)

80 7541(®s — @1) = 0 + 7511(Fgn(s+1) — Tra+n) + 0; hence we are
done by induction. O

The third lemma will guarantee us the existence of the elements
a, in Lemma 2 provided that 7., ¢ r.B. (Of course, over a valuation
domain, injective = pure-injective 4 divisible.)

LEMMA 3. Suppose L is an archimedean ideal and N is a divisible
module containing R/L. Suppose also that r, s, t are elements of KB such
that t is @ non-unit and r = st. Then there exists a € N such that ra = 0
and sa = 0.

Proor. We shall let b denote the coset, b + L of be R in R/LC N.
Since L is archimedean there is an element b e L\{L. If bt-'e R, let
a €N such that sa = bt~ -~ L. Then ra = b = 0, but sa % 0 since
bt-1¢ L (because b ¢ tL). If th-1€ R, let a € N such that s(tb-1)a = 1.
Then ra = b = 0, but sa = 0 since th-*(sa) = 1. O

We are now ready to give the:

Proor orF THE THEOREM. Let D= D, ,. As Bazzoni observes,
we can assume that |4| = N,._, since we can replace D by the direct
summand of D consisting of elements whose support lies in a fixed
subset of A of size N, .. It suffices to prove that Ext'(J, D)=~ 0
for some ideal J of R, for then Ext? (R/J, D)= 0 (cf. [FS; VI.5.2]).
For this it suffices to prove that the canonical map: Hom (J, I) —
— Hom (J, I/D) is not surjective. In fact we shall show that this
map is not surjective whenever J is an ideal of R which is not generated
by a set of size ¥,_, but is generated by a set of size §._x,1; there is
such an ideal because gl. dim R >n — k+ 2 (cf. [0] or [FS; IV.2.3].)

Let {jaﬂz o< Na_x1y be a set of generators of J ordered so that
for all f<a, js.1 € Rju,, and ju,, ¢ Rjs,,. Thus for every pair of
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ordinals f < « we have a non-unit 75 of R such that r3ja,, = js,,.
Moreover, for all f <y <o we have r=rjr;.

Let » = X._x. We may as well suppose that A = x». So defining
f:J —I/D amounts to choosing, for each »< x, elements x5 €I,
(¢ < %t =Nn_xy1) S0 that for all f<ea, |{v <x:rjay = m’f}l < x; for
then we can define f(ju,,) = @* -+ D, where 2* = (a*:v <xpel. We
are going to use the sets w} («x << xt, v < %) constructed in Lemma 1
in order to define the x’s; in fact, we shall construct them so that
r52% = #° if f € wi. Then f will be defined because, by (1) of Lemma 1,
for any f < o« there exists u < so that few,, and hence by (2),
the set of » such that 73 7 2} is contained in u, and thus has car-
dinality less than s.

In order to make f not liftable to a homomorphism into I we shall
also require that the z; be chosen so that if sup (w)) +» < f < a,
then rza} = #%. (The sum is ordinal addition.) Indeed, if there were a
g:J — I which lifted f, then we would have g(j») = y* for some y* € 1
such that y* = a* 4 d* for some doe D, for all a<<x»*. For each
p<ux, let

Yu & {o < »*: p ¢ supp (d*)} ;

then for some v < %, Y, is a stationary subset of x+ since |J ¥, = x+
(cf. [J; Lemma 7.4]). Now by (4), sup (w)) <« if ¢f (x) = %, so by
Fodor’s Lemma ([J; p. 59]) there is a stationary subset ¥’ of ¥, and
an ordinal y such that for all «€ ¥’ sup (w}) = y. Hence there are
elements g, « of Y’ such that y + » < f < a. But then y*(») = «;
and y?(») = 2f, and by construction 7§}~ #f, which means that g
is not a homomorphism.

Thus it remains only to construct for each » the elements % of I,
so that for all < a << x*:

(i) oy =) if fews;
(ii) r3ay = o5 if B> sup (wf) + .

We shall do this for each fixed » by induction on «. Let zy = I. Sup-
pose now that 42 has been defined for all B < a so that (i) and (ii) hold
where defined. In order to satisfy (i) it is enough to choose « to be
a solution, z, of the system of equations

() {3z =al: pews}.
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Since I is pure-injective, it suffices to show that this system is finitely
solvable in I,. If F is a finite subset of w, and ¢ = max (F'), we claim
that any 2 such that r;2 = #; will be a solution of

{ri2=afl: fe F}.

In fact, if f € F and § < o, then since o, § € w;, (3) implies that § € w},
so rjal = o) and hence 3z = rjrie = rja% = ab.

Now consider (ii). Let 6 = sup (w}). Let 2z be a fixed solution
of (). Then (i) will hold if %7 is of the form 2z -+ w where rju = 0.
Let f = 0 4+ » + 1. It suffices to choose % so that rs4 = 0 and for
each y such that f<y <a, rju=~rhal— r3z. (We let 75 =1.) For
then, since r3 = rr;, we have that (2 + %) #,. But Lemma 2
(with 7, = r5,, for » < ) in conjunction with Lemma 3 implies that
the quotient group

wel,:rsu=0}{uwel,:r5u=0
. B

has cardinality >2". Thus there certainly is a % with the desired
properties. This completes the inductive step of the construction,
and hence completes the proof of the theorem. O

CoOROLLARY. If gI, dim (R)>3, and for each n € w, I, is an injective
nodule containing R|L, for some archimedean ideal L, of R, then the

injective dimension of DI, is >2. O
new
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